// get more optimal quantization type based on the tensor shape, layer, etc.
if (!params->pure && ggml_is_quantized(default_type)) {
+ int fallback = qs.n_fallback;
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
- // unless the user specifies a type
- if (params->tensor_types) {
+ // unless the user specifies a type, and the tensor geometry will not require fallback quantisation
+ if (params->tensor_types && qs.n_fallback - fallback == 0) {
const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
const std::string tensor_name(tensor->name);
for (const auto & [tname, qtype] : tensor_types) {
}
}
}
-
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
new_type = params->token_embedding_type;
}