// find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel
- int ne11_mm_min = 1;
+ int ne11_mm_min = src0t == GGML_TYPE_F16 ? 1 : 16;
#if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
- //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
- kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
+ kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);