#include <aclnnop/aclnn_copy.h>
#include <aclnnop/aclnn_cos.h>
#include <aclnnop/aclnn_div.h>
+#include <aclnnop/aclnn_embedding.h>
#include <aclnnop/aclnn_exp.h>
#include <aclnnop/aclnn_fill_scalar.h>
#include <aclnnop/aclnn_group_norm.h>
#include <vector>
#include "ggml-impl.h"
-#include "kernels/ascendc_kernels.h"
#define GGML_COMMON_DECL_C
ACL_CHECK(aclDestroyIntArray(repeats));
}
+/**
+ * @brief Casts the elements of a tensor to a specified data type using the CANN backend.
+ *
+ * @details This function performs a type conversion on the elements of the input tensor `acl_src`
+ * and stores the results in the destination tensor `acl_dst`. The conversion type is
+ * determined based on the `dst` tensor's data type.
+ *
+ * @param ctx The context for the CANN backend operations.
+ * @param acl_src The source tensor whose elements will be cast.
+ * @param acl_dst The destination tensor that will store the casted elements.
+ * @param dst The ggml tensor specifying the target data type.
+ */
+static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src,
+ aclTensor* acl_dst, ggml_tensor* dst) {
+ uint64_t workspaceSize = 0;
+ aclOpExecutor* executor;
+ void* workspaceAddr = nullptr;
+ ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src,
+ ggml_cann_type_mapping(dst->type),
+ acl_dst, &workspaceSize, &executor));
+
+ if (workspaceSize > 0) {
+ ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
+ workspaceAddr = workspace_allocator.get();
+ }
+
+ ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
+}
+
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
GGML_ASSERT(ggml_can_repeat(src, dst));
}
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
+ ggml_tensor* src0 = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
+ aclTensor* acl_src = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
-
- ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- src->extra = src_extra_allocator.get();
- dst->extra = dst_extra_allocator.get();
- ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
-
- if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) &&
- ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- // TODO: simplify
- if (src->type == GGML_TYPE_F16) {
- if (dst->type == GGML_TYPE_Q8_0) {
- aclrtlaunch_ascendc_quantize_f16_q8_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
- }
- if (dst->type == GGML_TYPE_Q4_0) {
- aclrtlaunch_ascendc_quantize_f16_to_q4_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
- }
- if (dst->type == GGML_TYPE_F16) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
-
- aclrtlaunch_ascendc_dup_by_rows_fp16(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
- }
- GGML_ABORT("fatal error");
- }
- if (dst->type == GGML_TYPE_F32) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
- aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
- }
- GGML_ABORT("fatal error");
- }
- // TODO
- GGML_ABORT("fatal error");
- } else if (src->type == GGML_TYPE_F32) {
- // TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size
- // && nb0 == type_size)
- if (dst->type == GGML_TYPE_Q8_0) {
- aclrtlaunch_ascendc_quantize_f32_q8_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
- }
- if (dst->type == GGML_TYPE_Q4_0) {
- aclrtlaunch_ascendc_quantize_f32_to_q4_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
+ if (ggml_are_same_shape(src0, dst)) {
+ if (dst->type == src0->type) {
+ cann_copy(ctx, acl_src, acl_dst);
+ } else {
+ aclnn_cast(ctx, acl_src, acl_dst, dst);
}
- if (dst->type == GGML_TYPE_F32) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
+ } else {
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
+ if (dst->type == src0->type) {
+ size_t cpy_size = ggml_nbytes(dst);
+ ACL_CHECK(aclrtMemcpyAsync(
+ dst->data, cpy_size, src0->data, cpy_size,
+ ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
return;
- }
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
- aclrtlaunch_ascendc_dup_by_rows_fp32(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
} else {
- // TODO: dst not contiguous
- GGML_ABORT("fatal error");
- }
- }
- if (dst->type == GGML_TYPE_F16) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
+ ggml_cann_pool_alloc src_buffer_allocator(
+ ctx.pool(),
+ ggml_nelements(dst) * ggml_type_size(dst->type));
+ void* src_trans_buffer = src_buffer_allocator.get();
+ size_t src_trans_nb[GGML_MAX_DIMS];
+ src_trans_nb[0] = ggml_type_size(dst->type);
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
+ src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
+ }
+ aclTensor* src_trans_tensor = ggml_cann_create_tensor(
+ src_trans_buffer, ggml_cann_type_mapping(dst->type),
+ ggml_type_size(dst->type), src0->ne, src_trans_nb,
+ GGML_MAX_DIMS);
+
+ aclnn_cast(ctx, acl_src, src_trans_tensor, dst);
+ size_t cpy_size = ggml_nbytes(dst);
+ ACL_CHECK(aclrtMemcpyAsync(
+ dst->data, cpy_size, src_trans_buffer, cpy_size,
+ ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
+ ACL_CHECK(aclDestroyTensor(src_trans_tensor));
return;
}
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
- aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
+ } else if (ggml_is_contiguous(dst)) {
+ ggml_cann_pool_alloc src_buffer_allocator(
+ ctx.pool(), ggml_nelements(dst) * ggml_type_size(dst->type));
+ void* src_trans_buffer = src_buffer_allocator.get();
+ size_t src_trans_nb[GGML_MAX_DIMS];
+ src_trans_nb[0] = ggml_type_size(dst->type);
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
+ src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
- }
- // TODO
- GGML_ABORT("fatal error");
- } else {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
+ aclTensor* src_trans_tensor = ggml_cann_create_tensor(
+ src_trans_buffer, ggml_cann_type_mapping(dst->type),
+ ggml_type_size(dst->type), src0->ne, src_trans_nb,
+ GGML_MAX_DIMS);
+
+ aclnn_cast(ctx, acl_src, src_trans_tensor, dst);
+
+ size_t cpy_size = ggml_nbytes(dst);
+ ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src_trans_buffer,
+ cpy_size, ACL_MEMCPY_DEVICE_TO_DEVICE,
+ ctx.stream()));
+ ACL_CHECK(aclDestroyTensor(src_trans_tensor));
return;
+ } else {
+ GGML_ABORT("Unsupport dst is not tontiguous.");
}
- GGML_ABORT("fatal error");
}
+
+ ACL_CHECK(aclDestroyTensor(acl_src));
+ ACL_CHECK(aclDestroyTensor(acl_dst));
}
#ifdef __cplusplus
ACL_CHECK(aclDestroyTensor(tmp_mask_tensor));
}
-void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src0 = dst->src[0];
- ggml_tensor* src1 = dst->src[1];
+/**
+ * @brief Performs embedding operation on a 4D tensor using the CANN backend.
+ *
+ * This function extracts slices from the source tensor (`src_buffer`),
+ * index tensor (`index`), and destination tensor (`dst`), and performs an
+ * embedding operation on them. The embedding operation is applied by iterating
+ * over the last two dimensions of the source tensor, creating the necessary
+ * tensors for the source, index, and output, and executing the embedding operation.
+ *
+ * @param ctx The context for CANN backend operations.
+ * @param src_buffer The source buffer holding the data for the source tensor.
+ * @param src_ne The dimensions of the source tensor.
+ * @param src_nb The strides (byte offsets) of the source tensor.
+ * @param index The index tensor used in the embedding operation.
+ * @param dst The destination tensor where the result will be stored.
+ */
+static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
+ int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
+ ggml_tensor* dst) {
+ for (int64_t i = 0; i < src_ne[3]; i++) {
+ for (int64_t j = 0; j < src_ne[2]; j++) {
+ // src
+ int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
+ size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
+ aclTensor* acl_src_tensor = ggml_cann_create_tensor(
+ (char*)src_buffer + i * src_nb[3] + j * src_nb[2],
+ ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
+ acl_src_ne, acl_src_nb, 2);
+
+ // index
+ int64_t acl_index_ne[1] = {index->ne[0]};
+ size_t acl_index_nb[1] = {index->nb[0]};
+ aclTensor* acl_index = ggml_cann_create_tensor(
+ (char*)index->data + i * index->nb[2] + j * index->nb[1],
+ ggml_cann_type_mapping(index->type), ggml_element_size(index),
+ acl_index_ne, acl_index_nb, 1);
+
+ // out
+ int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
+ size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
+ aclTensor* acl_out = ggml_cann_create_tensor(
+ (char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
+ ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
+ acl_out_ne, acl_out_nb, 2);
+
+ uint64_t workspaceSize = 0;
+ aclOpExecutor* executor;
+ void* workspaceAddr = nullptr;
+
+ ACL_CHECK(aclnnEmbeddingGetWorkspaceSize(
+ acl_src_tensor, acl_index, acl_out, &workspaceSize, &executor));
+
+ if (workspaceSize > 0) {
+ ggml_cann_pool_alloc workspace_allocator(ctx.pool(),
+ workspaceSize);
+ workspaceAddr = workspace_allocator.get();
+ }
+
+ ACL_CHECK(aclnnEmbedding(workspaceAddr, workspaceSize, executor,
+ ctx.stream()));
+
+ ACL_CHECK(aclDestroyTensor(acl_src_tensor));
+ ACL_CHECK(aclDestroyTensor(acl_index));
+ ACL_CHECK(aclDestroyTensor(acl_out));
+ }
+ }
+}
- ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- src0->extra = src0_extra_allocator.get();
- src1->extra = src1_extra_allocator.get();
- dst->extra = dst_extra_allocator.get();
- ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
+void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+ ggml_tensor* src0 = dst->src[0]; // src
+ ggml_tensor* src1 = dst->src[1]; // index
switch (src0->type) {
case GGML_TYPE_F32: {
-#ifdef ASCEND_310P
- // Special operation for get_row_f32 kernel of 310P: clear the
- // content of dest data buffer when row is not aligned to 32 bytes
- if ((src0->ne[0] % 8) != 0) {
- size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] *
- src0->ne[0] * ggml_type_size(GGML_TYPE_F32);
- ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
- }
-#endif
- aclrtlaunch_ascendc_get_row_f32(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src0->extra)->nb,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
+ aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
+ dst);
break;
}
case GGML_TYPE_F16: {
-#ifdef ASCEND_310P
- // Special operation for get_row_f16 kernel of 310P: clear the
- // content of dest data buffer when row is not aligned to 32 bytes
- if ((src0->ne[0] % 16) != 0) {
- size_t dst_len =
- src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] *
- ggml_type_size(
- GGML_TYPE_F32); // out is also f32, even input is f16
- ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
+ aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
+ ggml_cann_pool_alloc src_buffer_allocator(
+ ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
+ void* src_trans_buffer = src_buffer_allocator.get();
+ size_t src_trans_nb[GGML_MAX_DIMS];
+ src_trans_nb[0] = sizeof(float_t);
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
+ src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
-#endif
- aclrtlaunch_ascendc_get_row_f16(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src0->extra)->nb,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
+ aclTensor* src_trans_tensor = ggml_cann_create_tensor(
+ src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
+ src0->ne, src_trans_nb, GGML_MAX_DIMS);
+ aclnn_cast(ctx, acl_src0, src_trans_tensor, dst);
+ aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
+ src_trans_nb, src1, dst);
+ ACL_CHECK(aclDestroyTensor(acl_src0));
+ ACL_CHECK(aclDestroyTensor(src_trans_tensor));
break;
}
- case GGML_TYPE_Q4_0:
- aclrtlaunch_ascendc_get_row_q4_0(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- break;
- case GGML_TYPE_Q8_0:
- aclrtlaunch_ascendc_get_row_q8_0(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
+ case GGML_TYPE_Q8_0: {
+ // add 1 dim for bcast mul.
+ size_t weight_nb[GGML_MAX_DIMS + 1], scale_nb[GGML_MAX_DIMS + 1],
+ dequant_nb[GGML_MAX_DIMS + 1];
+ int64_t weight_ne[GGML_MAX_DIMS + 1], scale_ne[GGML_MAX_DIMS + 1],
+ *dequant_ne;
+ int64_t scale_offset = 0;
+
+ // [3,4,5,64] -> [3,4,5,2,32]
+ weight_ne[0] = QK8_0;
+ weight_ne[1] = src0->ne[0] / QK8_0;
+ weight_nb[0] = sizeof(int8_t);
+ weight_nb[1] = weight_nb[0] * weight_ne[0];
+ for (int i = 2; i < GGML_MAX_DIMS + 1; i++) {
+ weight_ne[i] = src0->ne[i - 1];
+ weight_nb[i] = weight_nb[i - 1] * weight_ne[i - 1];
+ }
+
+ // [3,4,5,64] -> [3,4,5,2,1]
+ scale_ne[0] = 1;
+ scale_ne[1] = src0->ne[0] / QK8_0;
+ scale_nb[0] = sizeof(uint16_t);
+ scale_nb[1] = scale_nb[0] * scale_ne[0];
+ for (int i = 2; i < GGML_MAX_DIMS + 1; i++) {
+ scale_ne[i] = src0->ne[i - 1];
+ scale_nb[i] = scale_nb[i - 1] * scale_ne[i - 1];
+ }
+
+ // [3,4,5,64] -> [3,4,5,2,32]
+ dequant_ne = weight_ne;
+ dequant_nb[0] = sizeof(float_t);
+ for (int i = 1; i < GGML_MAX_DIMS + 1; i++) {
+ dequant_nb[i] = dequant_nb[i - 1] * dequant_ne[i - 1];
+ }
+
+ scale_offset = ggml_nelements(src0) * sizeof(int8_t);
+ ggml_cann_pool_alloc dequant_buffer_allocator(
+ ctx.pool(), ggml_nelements(src0) * sizeof(float_t));
+
+ aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
+ src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb,
+ GGML_MAX_DIMS + 1);
+ aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
+ src0->data, ACL_FLOAT16, sizeof(float16_t), scale_ne, scale_nb,
+ GGML_MAX_DIMS + 1, ACL_FORMAT_ND, scale_offset);
+ aclTensor* dequant_tensor = ggml_cann_create_tensor(
+ dequant_buffer_allocator.get(), ACL_FLOAT, sizeof(float_t),
+ dequant_ne, dequant_nb, GGML_MAX_DIMS + 1);
+
+ aclnn_mul(ctx, acl_weight_tensor, acl_scale_tensor, dequant_tensor);
+ dequant_nb[0] = sizeof(float_t);
+ dequant_ne = src0->ne;
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
+ dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
+ }
+
+ aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
+ dequant_ne, dequant_nb, src1, dst);
+
+ ACL_CHECK(aclDestroyTensor(dequant_tensor));
break;
+ }
default:
- GGML_ABORT("fatal error");
+ GGML_ABORT("Unsupported tensor type for GGML_OP_GET_ROWS");
break;
}
}
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
- nullptr, nullptr, nullptr, antiquantGroupSize, acl_output_tensor,
- &workspaceSize, &executor));
+ nullptr, nullptr, nullptr, antiquantGroupSize,
+ acl_output_tensor, &workspaceSize, &executor));
if (workspaceAddr == nullptr) {
workspaceAddr = workspace_allocator.alloc(workspaceSize);
}