-ot N, --offset-t N time offset in milliseconds (default: 0)
-on N, --offset-n N segment index offset (default: 0)
-mc N, --max-context N maximum number of text context tokens to store (default: max)
+ -ml N, --max-len N maximum segment length in characters (default: 0)
-wt N, --word-thold N word timestamp probability threshold (default: 0.010000)
-v, --verbose verbose output
--translate translate from source language to english
-otxt, --output-txt output result in a text file
-ovtt, --output-vtt output result in a vtt file
-osrt, --output-srt output result in a srt file
- -owts, --output-words output word-level timestamps to a text file
+ -owts, --output-words output script for generating karaoke video
-ps, --print_special print special tokens
-pc, --print_colors print colors
-nt, --no_timestamps do not print timestamps
\r
usage: ./bin/main [options] file0.wav file1.wav ...\r
\r
-options:\r
-h, --help show this help message and exit\r
-s SEED, --seed SEED RNG seed (default: -1)\r
-t N, --threads N number of threads to use during computation (default: 4)\r
-ot N, --offset-t N time offset in milliseconds (default: 0)\r
-on N, --offset-n N segment index offset (default: 0)\r
-mc N, --max-context N maximum number of text context tokens to store (default: max)\r
+ -ml N, --max-len N maximum segment length in characters (default: 0)\r
-wt N, --word-thold N word timestamp probability threshold (default: 0.010000)\r
-v, --verbose verbose output\r
--translate translate from source language to english\r
-otxt, --output-txt output result in a text file\r
-ovtt, --output-vtt output result in a vtt file\r
-osrt, --output-srt output result in a srt file\r
- -owts, --output-words output word-level timestamps to a text file\r
+ -owts, --output-words output script for generating karaoke video\r
-ps, --print_special print special tokens\r
-pc, --print_colors print colors\r
-nt, --no_timestamps do not print timestamps\r
-l LANG, --language LANG spoken language (default: en)\r
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)\r
-f FNAME, --file FNAME input WAV file path\r
+ -h, --help show this help message and exit\r
\r
```\r
return std::string(buf);
}
+// helper function to replace substrings
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
for (size_t pos = 0; ; pos += replace.length()) {
pos = s.find(search, pos);
}
}
-// a cost-function that is high for text that takes longer to pronounce
-float voice_length(const std::string & text) {
- float res = 0.0f;
-
- for (size_t i = 0; i < text.size(); ++i) {
- if (text[i] == ' ') {
- res += 0.01f;
- } else if (text[i] == ',') {
- res += 2.00f;
- } else if (text[i] == '.') {
- res += 3.00f;
- } else if (text[i] == '!') {
- res += 3.00f;
- } else if (text[i] == '?') {
- res += 3.00f;
- } else if (text[i] >= '0' && text[i] <= '9') {
- res += 3.00f;
- } else {
- res += 1.00f;
- }
- }
-
- return res;
-}
-
// command-line parameters
struct whisper_params {
int32_t seed = -1; // RNG seed, not used currently
int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t max_context = -1;
+ int32_t max_len = 0;
float word_thold = 0.01f;
params.offset_n = std::stoi(argv[++i]);
} else if (arg == "-mc" || arg == "--max-context") {
params.max_context = std::stoi(argv[++i]);
+ } else if (arg == "-ml" || arg == "--max-len") {
+ params.max_len = std::stoi(argv[++i]);
} else if (arg == "-wt" || arg == "--word-thold") {
params.word_thold = std::stof(argv[++i]);
} else if (arg == "-v" || arg == "--verbose") {
fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms);
fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n);
fprintf(stderr, " -mc N, --max-context N maximum number of text context tokens to store (default: max)\n");
+ fprintf(stderr, " -ml N, --max-len N maximum segment length in characters (default: %d)\n", params.max_len);
fprintf(stderr, " -wt N, --word-thold N word timestamp probability threshold (default: %f)\n", params.word_thold);
fprintf(stderr, " -v, --verbose verbose output\n");
fprintf(stderr, " --translate translate from source language to english\n");
fprintf(stderr, " -otxt, --output-txt output result in a text file\n");
fprintf(stderr, " -ovtt, --output-vtt output result in a vtt file\n");
fprintf(stderr, " -osrt, --output-srt output result in a srt file\n");
- fprintf(stderr, " -owts, --output-words output word-level timestamps to a text file\n");
+ fprintf(stderr, " -owts, --output-words output script for generating karaoke video\n");
fprintf(stderr, " -ps, --print_special print special tokens\n");
fprintf(stderr, " -pc, --print_colors print colors\n");
fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n");
fprintf(stderr, "\n");
}
-void whisper_print_segment_callback(struct whisper_context * ctx, void * user_data) {
+void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
const whisper_params & params = *(whisper_params *) user_data;
const int n_segments = whisper_full_n_segments(ctx);
- // print the last segment
- const int i = n_segments - 1;
- if (i == 0) {
+ // print the last n_new segments
+ const int s0 = n_segments - n_new;
+ if (s0 == 0) {
printf("\n");
}
- if (params.no_timestamps) {
- if (params.print_colors) {
- for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
- if (params.print_special_tokens == false) {
- const whisper_token id = whisper_full_get_token_id(ctx, i, j);
- if (id >= whisper_token_eot(ctx)) {
- continue;
+ for (int i = s0; i < n_segments; i++) {
+ if (params.no_timestamps) {
+ if (params.print_colors) {
+ for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
+ if (params.print_special_tokens == false) {
+ const whisper_token id = whisper_full_get_token_id(ctx, i, j);
+ if (id >= whisper_token_eot(ctx)) {
+ continue;
+ }
}
- }
- const char * text = whisper_full_get_token_text(ctx, i, j);
- const float p = whisper_full_get_token_p (ctx, i, j);
+ const char * text = whisper_full_get_token_text(ctx, i, j);
+ const float p = whisper_full_get_token_p (ctx, i, j);
- const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
+ const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
- printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
+ printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
+ }
+ } else {
+ const char * text = whisper_full_get_segment_text(ctx, i);
+ printf("%s", text);
}
+ fflush(stdout);
} else {
- const char * text = whisper_full_get_segment_text(ctx, i);
- printf("%s", text);
- }
- fflush(stdout);
- } else {
- const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
- const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
-
- if (params.print_colors) {
- printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
- for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
- if (params.print_special_tokens == false) {
- const whisper_token id = whisper_full_get_token_id(ctx, i, j);
- if (id >= whisper_token_eot(ctx)) {
- continue;
+ const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
+ const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
+
+ if (params.print_colors) {
+ printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
+ for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
+ if (params.print_special_tokens == false) {
+ const whisper_token id = whisper_full_get_token_id(ctx, i, j);
+ if (id >= whisper_token_eot(ctx)) {
+ continue;
+ }
}
- }
- const char * text = whisper_full_get_token_text(ctx, i, j);
- const float p = whisper_full_get_token_p (ctx, i, j);
+ const char * text = whisper_full_get_token_text(ctx, i, j);
+ const float p = whisper_full_get_token_p (ctx, i, j);
- const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
+ const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
- printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
- }
- printf("\n");
- } else {
- const char * text = whisper_full_get_segment_text(ctx, i);
+ printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
+ }
+ printf("\n");
+ } else {
+ const char * text = whisper_full_get_segment_text(ctx, i);
- printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
+ printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
+ }
}
}
}
return true;
}
-// word-level timestamps (experimental)
-// TODO: make ffmpeg output optional
-// TODO: extra pass to detect unused speech and assign to tokens
+// karaoke video generation
+// outputs a bash script that uses ffmpeg to generate a video with the subtitles
// TODO: font parameter adjustments
-// TODO: move to whisper.h/whisper.cpp and add parameter to select max line-length of subtitles
-bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, const std::vector<float> & pcmf32) {
- std::vector<float> pcm_avg(pcmf32.size(), 0);
-
- // average the fabs of the signal
- {
- const int hw = 32;
-
- for (int i = 0; i < pcmf32.size(); i++) {
- float sum = 0;
- for (int j = -hw; j <= hw; j++) {
- if (i + j >= 0 && i + j < pcmf32.size()) {
- sum += fabs(pcmf32[i + j]);
- }
- }
- pcm_avg[i] = sum/(2*hw + 1);
- }
- }
-
- struct token_info {
- int64_t t0 = -1;
- int64_t t1 = -1;
-
- int64_t tt0 = -1;
- int64_t tt1 = -1;
-
- whisper_token id;
- whisper_token tid;
-
- float p = 0.0f;
- float pt = 0.0f;
- float ptsum = 0.0f;
-
- std::string text;
- float vlen = 0.0f; // voice length of this token
- };
-
- int64_t t_beg = 0;
- int64_t t_last = 0;
-
- whisper_token tid_last = 0;
-
+bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
std::ofstream fout(fname);
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
+ // TODO: become parameter
+ static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
+
fout << "!/bin/bash" << "\n";
fout << "\n";
- fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE << ":rate=25:color=black -vf \"";
-
- bool is_first = true;
+ fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << t_sec << ":rate=25:color=black -vf \"";
for (int i = 0; i < whisper_full_n_segments(ctx); i++) {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
- const char *text = whisper_full_get_segment_text(ctx, i);
-
- const int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
- const int s1 = std::min((int) pcmf32.size(), (int) (t1*WHISPER_SAMPLE_RATE/100));
-
const int n = whisper_full_n_tokens(ctx, i);
- std::vector<token_info> tokens(n);
-
- if (n <= 1) {
- continue;
- }
-
+ std::vector<whisper_token_data> tokens(n);
for (int j = 0; j < n; ++j) {
- struct whisper_token_data token = whisper_full_get_token_data(ctx, i, j);
-
- if (j == 0) {
- if (token.id == whisper_token_beg(ctx)) {
- tokens[j ].t0 = t0;
- tokens[j ].t1 = t0;
- tokens[j + 1].t0 = t0;
-
- t_beg = t0;
- t_last = t0;
- tid_last = whisper_token_beg(ctx);
- } else {
- tokens[j ].t0 = t_last;
- }
- }
-
- const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
-
- tokens[j].id = token.id;
- tokens[j].tid = token.tid;
- tokens[j].p = token.p;
- tokens[j].pt = token.pt;
- tokens[j].ptsum = token.ptsum;
-
- tokens[j].text = whisper_token_to_str(ctx, token.id);
- tokens[j].vlen = voice_length(tokens[j].text);
-
- if (token.pt > params.word_thold && token.ptsum > 0.01 && token.tid > tid_last && tt <= t1) {
- if (j > 0) {
- tokens[j - 1].t1 = tt;
- }
- tokens[j].t0 = tt;
- tid_last = token.tid;
- }
+ tokens[j] = whisper_full_get_token_data(ctx, i, j);
}
- tokens[n - 2].t1 = t1;
- tokens[n - 1].t0 = t1;
- tokens[n - 1].t1 = t1;
-
- t_last = t1;
-
- // find intervals of tokens with unknown timestamps
- // fill the timestamps by proportionally splitting the interval based on the token voice lengths
- {
- int p0 = 0;
- int p1 = 0;
- while (true) {
- while (p1 < n && tokens[p1].t1 < 0) {
- p1++;
- }
-
- if (p1 >= n) {
- p1--;
- }
-
- if (p1 > p0) {
- double psum = 0.0;
- for (int j = p0; j <= p1; j++) {
- psum += tokens[j].vlen;
- }
-
- //printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
-
- const double dt = tokens[p1].t1 - tokens[p0].t0;
-
- // split the time proportionally to the voice length
- for (int j = p0 + 1; j <= p1; j++) {
- const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
-
- tokens[j - 1].t1 = ct;
- tokens[j ].t0 = ct;
- }
- }
-
- p1++;
- p0 = p1;
- if (p1 >= n) {
- break;
- }
- }
- }
-
- // fix up (just in case)
- for (int j = 0; j < n - 1; j++) {
- if (tokens[j].t1 < 0) {
- tokens[j + 1].t0 = tokens[j].t1;
- }
-
- if (j > 0) {
- if (tokens[j - 1].t1 > tokens[j].t0) {
- tokens[j].t0 = tokens[j - 1].t1;
- tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1);
- }
- }
-
- tokens[j].tt0 = tokens[j].t0;
- tokens[j].tt1 = tokens[j].t1;
- }
-
- // VAD
- // expand or contract tokens based on voice activity
- {
- const int hw = WHISPER_SAMPLE_RATE/8;
-
- for (int j = 0; j < n; j++) {
- if (tokens[j].id >= whisper_token_eot(ctx)) {
- continue;
- }
-
- const int64_t t0 = tokens[j].t0;
- const int64_t t1 = tokens[j].t1;
-
- int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
- int s1 = std::min((int) pcmf32.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100));
-
- const int ss0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100) - hw);
- const int ss1 = std::min((int) pcmf32.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100) + hw);
-
- const int n = ss1 - ss0;
-
- float sum = 0.0f;
-
- for (int k = ss0; k < ss1; k++) {
- sum += pcm_avg[k];
- }
-
- const float thold = 0.5*sum/n;
-
- {
- int k = s0;
- if (pcm_avg[k] > thold && j > 0) {
- while (k > 0 && pcm_avg[k] > thold) {
- k--;
- }
- tokens[j].t0 = (int64_t) (100*k/WHISPER_SAMPLE_RATE);
- if (tokens[j].t0 < tokens[j - 1].t1) {
- tokens[j].t0 = tokens[j - 1].t1;
- } else {
- s0 = k;
- }
- } else {
- while (pcm_avg[k] < thold && k < s1) {
- k++;
- }
- s0 = k;
- tokens[j].t0 = 100*k/WHISPER_SAMPLE_RATE;
- }
- }
-
- {
- int k = s1;
- if (pcm_avg[k] > thold) {
- while (k < (int) pcmf32.size() - 1 && pcm_avg[k] > thold) {
- k++;
- }
- tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
- if (j < n - 1 && tokens[j].t1 > tokens[j + 1].t0) {
- tokens[j].t1 = tokens[j + 1].t0;
- } else {
- s1 = k;
- }
- } else {
- while (pcm_avg[k] < thold && k > s0) {
- k--;
- }
- s1 = k;
- tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
- }
- }
- }
- }
-
- // fixed token expand (optional)
- {
- const int t_expand = 0;
-
- for (int j = 0; j < n; j++) {
- if (j > 0) {
- tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
- }
- if (j < n - 1) {
- tokens[j].t1 = tokens[j].t1 + t_expand;
- }
- }
- }
-
- // debug info
- // TODO: toggle via parameter
- for (int j = 0; j < n; ++j) {
- const auto & token = tokens[j];
- const auto tt = token.pt > params.word_thold && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
- printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
- tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, token.text.c_str());
-
- if (tokens[j].id >= whisper_token_eot(ctx)) {
- continue;
- }
-
- //printf("[%s --> %s] %s\n", to_timestamp(token.t0).c_str(), to_timestamp(token.t1).c_str(), whisper_token_to_str(ctx, token.id));
-
- //fout << "# " << to_timestamp(token.t0) << " --> " << to_timestamp(token.t1) << " " << whisper_token_to_str(ctx, token.id) << "\n";
- }
-
- // TODO: become parameters
- static const int line_wrap = 60;
- static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
-
- if (!is_first) {
+ if (i > 0) {
fout << ",";
}
// background text
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
- is_first = false;
+ bool is_first = true;
for (int j = 0; j < n; ++j) {
const auto & token = tokens[j];
}
ncnt += txt.size();
-
- if (ncnt > line_wrap) {
- if (k < j) {
- txt_bg = "> ";
- txt_fg = "> ";
- txt_ul = "\\ \\ ";
- ncnt = 0;
- } else {
- break;
- }
- }
}
::replace_all(txt_bg, "'", "’");
::replace_all(txt_fg, "\"", "\\\"");
}
- // background text
- fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << token.tt0/100.0 << "," << token.tt1/100.0 << ")'";
+ if (is_first) {
+ // background text
+ fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << t0/100.0 << "," << t1/100.0 << ")'";
+ is_first = false;
+ }
// foreground text
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2:text='" << txt_fg << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;
+ wparams.token_timestamps = params.output_wts || params.max_len > 0;
+ wparams.thold_pt = params.word_thold;
+ wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
+
// this callback is called on each new segment
if (!wparams.print_realtime) {
wparams.new_segment_callback = whisper_print_segment_callback;
// output to WTS file
if (params.output_wts) {
const auto fname_wts = fname_inp + ".wts";
- output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, pcmf32);
+ output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
}
}
}
std::vector<whisper_segment> result_all;
std::vector<whisper_token> prompt_past;
+
+ // [EXPERIMENTAL] token-level timestamps data
+ int64_t t_beg;
+ int64_t t_last;
+ whisper_token tid_last;
+ std::vector<float> energy; // PCM signal energy
};
// load the model from a ggml file
//
// see the convert-pt-to-ggml.py script for details
//
-bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
+static bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
auto & model = wctx.model;
// - n_threads: number of threads to use
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
//
-bool whisper_encode(
+static bool whisper_encode(
whisper_context & wctx,
const int n_threads,
const int mel_offset) {
// - n_tokens: number of tokens in the prompt
// - n_past: number of past tokens to prefix the prompt with
//
-bool whisper_decode(
+static bool whisper_decode(
whisper_context & wctx,
const int n_threads,
const whisper_token * tokens,
}
// the most basic sampling scheme - select the top token
-whisper_token_data whisper_sample_best(
+static whisper_token_data whisper_sample_best(
const whisper_vocab & vocab,
const float * probs) {
- whisper_token_data result;
+ whisper_token_data result = {
+ 0, 0, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
+ };
int n_logits = vocab.id_to_token.size();
}
// samples only from the timestamps tokens
-whisper_vocab::id whisper_sample_timestamp(
+static whisper_vocab::id whisper_sample_timestamp(
const whisper_vocab & vocab,
const float * probs) {
int n_logits = vocab.id_to_token.size();
// naive Discrete Fourier Transform
// input is real-valued
// output is complex-valued
-void dft(const std::vector<float> & in, std::vector<float> & out) {
+static void dft(const std::vector<float> & in, std::vector<float> & out) {
int N = in.size();
out.resize(N*2);
// poor man's implementation - use something better
// input is real-valued
// output is complex-valued
-void fft(const std::vector<float> & in, std::vector<float> & out) {
+static void fft(const std::vector<float> & in, std::vector<float> & out) {
out.resize(in.size()*2);
int N = in.size();
}
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
-bool log_mel_spectrogram(
+static bool log_mel_spectrogram(
const float * samples,
const int n_samples,
const int sample_rate,
/*.print_realtime =*/ false,
/*.print_timestamps =*/ true,
+ /*.token_timestamps =*/ false,
+ /*.thold_pt =*/ 0.01f,
+ /*.thold_ptsum =*/ 0.01f,
+ /*.max_len =*/ 0,
+
/*.language =*/ "en",
/*.greedy =*/ {
/*.print_realtime =*/ false,
/*.print_timestamps =*/ true,
+ /*.token_timestamps =*/ false,
+ /*.thold_pt =*/ 0.01f,
+ /*.thold_ptsum =*/ 0.01f,
+ /*.max_len =*/ 0,
+
/*.language =*/ "en",
/*.greedy =*/ {
return result;
}
+// forward declarations
+static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window);
+static void whisper_exp_compute_token_level_timestamps(
+ struct whisper_context * ctx,
+ int i_segment,
+ float thold_pt,
+ float thold_ptsum);
+
+// wrap the last segment to max_len characters
+// returns the number of new segments
+static int whisper_wrap_segment(struct whisper_context * ctx, int max_len) {
+ auto segment = ctx->result_all.back();
+
+ int res = 1;
+ int acc = 0;
+
+ std::string text;
+
+ for (int i = 0; i < (int) segment.tokens.size(); i++) {
+ const auto & token = segment.tokens[i];
+ if (token.id >= whisper_token_eot(ctx)) {
+ continue;
+ }
+
+ const auto txt = whisper_token_to_str(ctx, token.id);
+
+ const int cur = strlen(txt);
+
+ if (acc + cur > max_len && i > 0) {
+ // split here
+ ctx->result_all.back().text = std::move(text);
+ ctx->result_all.back().t1 = token.t0;
+ ctx->result_all.back().tokens.resize(i);
+
+ ctx->result_all.push_back({});
+ ctx->result_all.back().t0 = token.t0;
+ ctx->result_all.back().t1 = segment.t1;
+
+ // add tokens [i, end] to the new segment
+ ctx->result_all.back().tokens.insert(
+ ctx->result_all.back().tokens.end(),
+ segment.tokens.begin() + i,
+ segment.tokens.end());
+
+ acc = 0;
+ text = "";
+
+ segment = ctx->result_all.back();
+ i = -1;
+
+ res++;
+ } else {
+ acc += cur;
+ text += txt;
+ }
+ }
+
+ ctx->result_all.back().text = std::move(text);
+
+ return res;
+}
+
int whisper_full(
struct whisper_context * ctx,
struct whisper_full_params params,
return -1;
}
+ if (params.token_timestamps) {
+ ctx->t_beg = 0;
+ ctx->t_last = 0;
+ ctx->tid_last = 0;
+ ctx->energy = get_signal_energy(samples, n_samples, 32);
+ }
+
const int seek_start = params.offset_ms/10;
// if length of spectrogram is less than 1s (100 samples), then return
}
}
+ // shrink down to result_len
tokens_cur.resize(result_len);
for (const auto & r : tokens_cur) {
for (int j = i0; j <= i; j++) {
result_all.back().tokens.push_back(tokens_cur[j]);
}
+
+ int n_new = 1;
+
+ if (params.token_timestamps) {
+ whisper_exp_compute_token_level_timestamps(
+ ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
+
+ if (params.max_len > 0) {
+ n_new = whisper_wrap_segment(ctx, params.max_len);
+ }
+ }
if (params.new_segment_callback) {
- params.new_segment_callback(ctx, params.new_segment_callback_user_data);
+ params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
}
}
text = "";
for (int j = i0; j < (int) tokens_cur.size(); j++) {
result_all.back().tokens.push_back(tokens_cur[j]);
}
+
+ int n_new = 1;
+
+ if (params.token_timestamps) {
+ whisper_exp_compute_token_level_timestamps(
+ ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
+
+ if (params.max_len > 0) {
+ n_new = whisper_wrap_segment(ctx, params.max_len);
+ }
+ }
if (params.new_segment_callback) {
- params.new_segment_callback(ctx, params.new_segment_callback_user_data);
+ params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
}
}
}
// call the new_segment_callback for each segment
if (params.new_segment_callback) {
- params.new_segment_callback(ctx, params.new_segment_callback_user_data);
+ params.new_segment_callback(ctx, 1, params.new_segment_callback_user_data);
}
}
return s.c_str();
}
+
+// =================================================================================================
+
+//
+// Experimental stuff below
+//
+// Not sure if these should be part of the library at all, because the quality of the results is not
+// guaranteed. Might get removed at some point unless a robust algorithm implementation is found
+//
+
+// =================================================================================================
+
+//
+// token-level timestamps
+//
+
+static int timestamp_to_sample(int64_t t, int n_samples) {
+ return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
+}
+
+static int64_t sample_to_timestamp(int i_sample) {
+ return (100*i_sample)/WHISPER_SAMPLE_RATE;
+}
+
+// a cost-function / heuristic that is high for text that takes longer to pronounce
+// obviously, can be improved
+static float voice_length(const std::string & text) {
+ float res = 0.0f;
+
+ for (size_t i = 0; i < text.size(); ++i) {
+ if (text[i] == ' ') {
+ res += 0.01f;
+ } else if (text[i] == ',') {
+ res += 2.00f;
+ } else if (text[i] == '.') {
+ res += 3.00f;
+ } else if (text[i] == '!') {
+ res += 3.00f;
+ } else if (text[i] == '?') {
+ res += 3.00f;
+ } else if (text[i] >= '0' && text[i] <= '9') {
+ res += 3.00f;
+ } else {
+ res += 1.00f;
+ }
+ }
+
+ return res;
+}
+
+// average the fabs of the signal
+static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) {
+ const int hw = n_samples_per_half_window;
+
+ std::vector<float> result(n_samples);
+
+ for (int i = 0; i < n_samples; i++) {
+ float sum = 0;
+ for (int j = -hw; j <= hw; j++) {
+ if (i + j >= 0 && i + j < n_samples) {
+ sum += fabs(signal[i + j]);
+ }
+ }
+ result[i] = sum/(2*hw + 1);
+ }
+
+ return result;
+}
+
+static void whisper_exp_compute_token_level_timestamps(
+ struct whisper_context * ctx,
+ int i_segment,
+ float thold_pt,
+ float thold_ptsum) {
+ auto & segment = ctx->result_all[i_segment];
+ auto & tokens = segment.tokens;
+
+ const int n_samples = ctx->energy.size();
+
+ if (n_samples == 0) {
+ fprintf(stderr, "%s: no signal data available\n", __func__);
+ return;
+ }
+
+ const int64_t t0 = segment.t0;
+ const int64_t t1 = segment.t1;
+
+ const int s0 = timestamp_to_sample(t0, n_samples);
+ const int s1 = timestamp_to_sample(t1, n_samples);
+
+ const int n = tokens.size();
+
+ if (n == 0) {
+ return;
+ }
+
+ if (n == 1) {
+ tokens[0].t0 = t0;
+ tokens[0].t1 = t1;
+
+ return;
+ }
+
+ auto & t_beg = ctx->t_beg;
+ auto & t_last = ctx->t_last;
+ auto & tid_last = ctx->tid_last;
+
+ for (int j = 0; j < n; ++j) {
+ auto & token = tokens[j];
+
+ if (j == 0) {
+ if (token.id == whisper_token_beg(ctx)) {
+ tokens[j ].t0 = t0;
+ tokens[j ].t1 = t0;
+ tokens[j + 1].t0 = t0;
+
+ t_beg = t0;
+ t_last = t0;
+ tid_last = whisper_token_beg(ctx);
+ } else {
+ tokens[j ].t0 = t_last;
+ }
+ }
+
+ const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
+
+ tokens[j].id = token.id;
+ tokens[j].tid = token.tid;
+ tokens[j].p = token.p;
+ tokens[j].pt = token.pt;
+ tokens[j].ptsum = token.ptsum;
+
+ tokens[j].vlen = voice_length(whisper_token_to_str(ctx, token.id));
+
+ if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) {
+ if (j > 0) {
+ tokens[j - 1].t1 = tt;
+ }
+ tokens[j].t0 = tt;
+ tid_last = token.tid;
+ }
+ }
+
+ tokens[n - 2].t1 = t1;
+ tokens[n - 1].t0 = t1;
+ tokens[n - 1].t1 = t1;
+
+ t_last = t1;
+
+ // find intervals of tokens with unknown timestamps
+ // fill the timestamps by proportionally splitting the interval based on the token voice lengths
+ {
+ int p0 = 0;
+ int p1 = 0;
+
+ while (true) {
+ while (p1 < n && tokens[p1].t1 < 0) {
+ p1++;
+ }
+
+ if (p1 >= n) {
+ p1--;
+ }
+
+ if (p1 > p0) {
+ double psum = 0.0;
+ for (int j = p0; j <= p1; j++) {
+ psum += tokens[j].vlen;
+ }
+
+ //printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
+
+ const double dt = tokens[p1].t1 - tokens[p0].t0;
+
+ // split the time proportionally to the voice length
+ for (int j = p0 + 1; j <= p1; j++) {
+ const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
+
+ tokens[j - 1].t1 = ct;
+ tokens[j ].t0 = ct;
+ }
+ }
+
+ p1++;
+ p0 = p1;
+ if (p1 >= n) {
+ break;
+ }
+ }
+ }
+
+ // fix up (just in case)
+ for (int j = 0; j < n - 1; j++) {
+ if (tokens[j].t1 < 0) {
+ tokens[j + 1].t0 = tokens[j].t1;
+ }
+
+ if (j > 0) {
+ if (tokens[j - 1].t1 > tokens[j].t0) {
+ tokens[j].t0 = tokens[j - 1].t1;
+ tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1);
+ }
+ }
+ }
+
+ // VAD
+ // expand or contract tokens based on voice activity
+ {
+ const int hw = WHISPER_SAMPLE_RATE/8;
+
+ for (int j = 0; j < n; j++) {
+ if (tokens[j].id >= whisper_token_eot(ctx)) {
+ continue;
+ }
+
+ int s0 = timestamp_to_sample(tokens[j].t0, n_samples);
+ int s1 = timestamp_to_sample(tokens[j].t1, n_samples);
+
+ const int ss0 = std::max(s0 - hw, 0);
+ const int ss1 = std::min(s1 + hw, n_samples);
+
+ const int ns = ss1 - ss0;
+
+ float sum = 0.0f;
+
+ for (int k = ss0; k < ss1; k++) {
+ sum += ctx->energy[k];
+ }
+
+ const float thold = 0.5*sum/ns;
+
+ {
+ int k = s0;
+ if (ctx->energy[k] > thold && j > 0) {
+ while (k > 0 && ctx->energy[k] > thold) {
+ k--;
+ }
+ tokens[j].t0 = sample_to_timestamp(k);
+ if (tokens[j].t0 < tokens[j - 1].t1) {
+ tokens[j].t0 = tokens[j - 1].t1;
+ } else {
+ s0 = k;
+ }
+ } else {
+ while (ctx->energy[k] < thold && k < s1) {
+ k++;
+ }
+ s0 = k;
+ tokens[j].t0 = sample_to_timestamp(k);
+ }
+ }
+
+ {
+ int k = s1;
+ if (ctx->energy[k] > thold) {
+ while (k < n_samples - 1 && ctx->energy[k] > thold) {
+ k++;
+ }
+ tokens[j].t1 = sample_to_timestamp(k);
+ if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) {
+ tokens[j].t1 = tokens[j + 1].t0;
+ } else {
+ s1 = k;
+ }
+ } else {
+ while (ctx->energy[k] < thold && k > s0) {
+ k--;
+ }
+ s1 = k;
+ tokens[j].t1 = sample_to_timestamp(k);
+ }
+ }
+ }
+ }
+
+ // fixed token expand (optional)
+ //{
+ // const int t_expand = 0;
+
+ // for (int j = 0; j < n; j++) {
+ // if (j > 0) {
+ // tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
+ // }
+ // if (j < n - 1) {
+ // tokens[j].t1 = tokens[j].t1 + t_expand;
+ // }
+ // }
+ //}
+
+ // debug info
+ //for (int j = 0; j < n; ++j) {
+ // const auto & token = tokens[j];
+ // const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
+ // printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
+ // tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(ctx, token.id));
+
+ // if (tokens[j].id >= whisper_token_eot(ctx)) {
+ // continue;
+ // }
+ //}
+}
typedef int whisper_token;
- struct whisper_token_data {
+ typedef struct whisper_token_data {
whisper_token id; // token id
whisper_token tid; // forced timestamp token id
float p; // probability of the token
float pt; // probability of the timestamp token
float ptsum; // sum of probabilities of all timestamp tokens
- };
+
+ // token-level timestamp data
+ // do not use if you haven't computed token-level timestamps
+ int64_t t0; // start time of the token
+ int64_t t1; // end time of the token
+
+ float vlen; // voice length of the token
+ } whisper_token_data;
// Allocates all memory needed for the model and loads the model from the given file.
// Returns NULL on failure.
// You can also implement your own sampling method using the whisper_get_probs() function.
// whisper_sample_best() returns the token with the highest probability
// whisper_sample_timestamp() returns the most probable timestamp token
- WHISPER_API struct whisper_token_data whisper_sample_best(struct whisper_context * ctx);
+ WHISPER_API whisper_token_data whisper_sample_best(struct whisper_context * ctx);
WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx);
// Return the id of the specified language, returns -1 if not found
// Text segment callback
// Called on every newly generated text segment
// Use the whisper_full_...() functions to obtain the text segments
- typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, void * user_data);
+ typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, int n_new, void * user_data);
struct whisper_full_params {
enum whisper_sampling_strategy strategy;
bool print_realtime;
bool print_timestamps;
+ // [EXPERIMENTAL] token-level timestamps
+ bool token_timestamps; // enable token-level timestamps
+ float thold_pt; // timestamp token probability threshold (~0.01)
+ float thold_ptsum; // timestamp token sum probability threshold (~0.01)
+ int max_len; // max segment length in characters
+
const char * language;
struct {
// Get token data for the specified token in the specified segment.
// This contains probabilities, timestamps, etc.
- WHISPER_API struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
+ WHISPER_API whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
// Get the probability of the specified token in the specified segment.
WHISPER_API float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token);