return tensor;
}
- struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
+ struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend, bool optional = false) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
if (cur == NULL) {
+ if (optional) {
+ return NULL;
+ }
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
}
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
- try {
- layer.bq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, backend);
- } catch (const std::runtime_error& e) {
- if (std::string(e.what()).find("not found") != std::string::npos) layer.bq = NULL; else throw;
- }
-
- try {
- layer.bk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, backend);
- } catch (const std::runtime_error& e) {
- if (std::string(e.what()).find("not found") != std::string::npos) layer.bk = NULL; else throw;
- }
-
- try {
- layer.bv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, backend);
- } catch (const std::runtime_error& e) {
- if (std::string(e.what()).find("not found") != std::string::npos) layer.bv = NULL; else throw;
- }
-
- try {
- layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
- } catch (const std::runtime_error& e) {
- if (std::string(e.what()).find("not found") != std::string::npos) layer.bo = NULL; else throw;
- }
+ // optional bias tensors
+ layer.bq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, backend, true);
+ layer.bk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, backend, true);
+ layer.bv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, backend, true);
+ layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend, true);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);