* sampling : add support for backend sampling
This commit adds support for performing sampling operations on the
backend (e.g. GPU) as part of the model computation graph.
The motivation for this feature is to enable sampling to be performed
directly on the backend as part of the computation graph being executed,
allowing for some or all of the sampling to be done on the backend.
For example, the backend sampler chain might select/sample a token
directly in which case only the sampled token needs to be transferred
from device memory to host memory.
It is also possible for the backend samplers to perform filtering of
the logits, or compute and filter the probability distribution, in
which case only the filtered logits or probabilites need to be
transferred back to system memory for further processing by CPU
samplers.
Currently the backend sampling works in a similar manner to how
pooling works, it is a function that is called by build_graph and the
sampler operations become part of the models computation graph.
* llama-cli : add backend sampler configuration
* server : add backend sampling options/configuration
* webui : add backend sampling options
* ggml : add initial cumsum implementation for CUDA
* sampling : enable all backend sampler tests
This commit enables all exisiting backend sampler tests in the
test-backend-sampler. Previously, some tests were disabled because
there were missing ggml operation implementations.
* graph : do not include llama-model.h
* sampling : always expose sampled_ids
This commit precomputes and caches the full-vocab token id list in
llama_context's constructor, so llama_get_backend_sampled_token_ids_ith
always returns a valid pointer.
The motivation for this is that this enables both common/sampling.cpp
and src/llama-sampling.cpp can simplify their logic.
Not all backends samplers that process logits need to set the
sampled_tokens_id as they may not change the order of the logits, for
example the temperature sampler only scales the logits but does not
change their order. Simliar the logit bias sampler only adds bias to
specific token ids but does not change the order of the logits. In
these cases there will not be a device to host copy of the sampled
token ids, and this is the use case where having this precomputed
list is useful.
* sampling : ensure at most one output token per seq
This commit adds a check in the batch allocator to ensure that when
backend sampling is enabled, at most one output token is specified per
sequence.
* CUDA: Optimize argsort for gpu-based token sampling
Argsort is used for top-k currently. WE optimize argsort by 2 things:
1. Use `DeviceRadixSort` for single-row/sequence to parallelize it
across our SMs
2. Use `DeviceSegmentedSort` for multi-row/sequence as this is the
correct entrypoint (the function chooses different execution paths,
it contains `DeviceSegmentedRadixSort` as one of the paths and will
choose the best one according to heuristics.
https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceSegmentedSort.html#overview
Some perf numbers for a RTX PRO 6000:
On the kernel level, tested with
`GGML_CUDA_DISABLE_GRAPHS=1 ./test-backend-ops -o ARGSORT perf`
Before:
```
ARGSORT(type=f32,ne=[65000,16,1,1],order=0): 4130 runs - 359.24 us/run
ARGSORT(type=f32,ne=[200000,1,1,1],order=0): 8192 runs - 861.34 us/run
ARGSORT(type=f32,ne=[200000,16,1,1],order=0): 1343 runs - 1020.01 us/run
```
After:
```
ARGSORT(type=f32,ne=[65000,16,1,1],order=0): 4130 runs - 312.41 us/run
ARGSORT(type=f32,ne=[200000,1,1,1],order=0): 16384 runs - 63.48 us/run
ARGSORT(type=f32,ne=[200000,16,1,1],order=0): 1343 runs - 874.36 us/run
```
---
On the model level, tested with
`llama-cli -m gpt-oss-20b-mxfp4.gguf -n 200 -p "What is
the Capital of Sweden?" -no-cnv -fa 1 --backend-sampling`
Before:
```
llama_perf_sampler_print: sampling time = 0.25 ms / 207 runs ( 0.00 ms per token, 824701.20 tokens per second)
llama_perf_context_print: load time = 18215.58 ms
llama_perf_context_print: prompt eval time = 28.20 ms / 7 tokens ( 4.03 ms per token, 248.19 tokens per second)
llama_perf_context_print: eval time = 714.79 ms / 199 runs ( 3.59 ms per token, 278.40 tokens per second)
llama_perf_context_print: total time = 857.62 ms / 206 tokens
```
After
```
llama_perf_sampler_print: sampling time = 0.25 ms / 207 runs ( 0.00 ms per token, 828000.00 tokens per second)
llama_perf_context_print: load time = 18366.92 ms
llama_perf_context_print: prompt eval time = 35.92 ms / 7 tokens ( 5.13 ms per token, 194.87 tokens per second)
llama_perf_context_print: eval time = 532.79 ms / 199 runs ( 2.68 ms per token, 373.50 tokens per second)
llama_perf_context_print: total time = 683.65 ms / 206 tokens
```
* sampling : remove version from sampler chain
This commit removes the version field from the sampler chain and instead
used the sampler pointer itself for change detection.
* sampling : always populate logits for sampled probs
This commit updates common/sampler.cpp set_logits and
src/llama-sampling.cpp llama_sampler_sample to always populate the
logits field when backend sampled probabilities are available.
The motivation for this is that this ensure that CPU sampler always have
access to the logits values even when probabilites have been produced by
backend samplers.
* sampling : simplify backend sampling logic decode
This commit tries to simplify the backend sampling logic in
llama_context::decode.
* squash! sampling : simplify backend sampling logic decode
Fix condition to check if backend actually sampled tokens, not just that
backend samplers are available.
* common : fix regression caused by extra memory allocations during sampling
* squash! sampling : simplify backend sampling logic decode
The commit fixes a variable shadowing issue in the
`llama_context::decode` function which was introduced in a previous
refactoring.
* squash! common : fix regression caused by extra memory allocations during sampling
Apply the same changes to llama-sampling.cpp, llama_sampler_sample as
were applied in commit
38f408c25.
* sampling : introduce sampling_info struct
This commit introduces a sampling_info struct to encapsulate all
backend sampling related data within the llama_context class.
It also updates to use more descriptive names for sampled tokens and
candidates in the backend sampler ggml data structure.
* sampling : return early if backend sampling is disabled
* sampling : use pinned memory for backend sampling buffers
* common, tools : refactor model loading to support backend samplers
This commit refactors the model loading process in common/common.cpp
to enable backend sampler to be configure prior to the llama_context
creation.
The motivation for this change is that just being able to set/reset the
backend samplers after the llama_context has been created will cause a
resize to occur in llama_context::output_reserve which we want to avoid.
* sampling : add stride variable for clarity
* sampling: clarify candidate ids usage in comments
* sampling : fix copying both sampled tokens and logits/probs from backend
This commit fixes the issue where both sampled tokens and logits/probs
were not being copied correctly from the backend to the host when
multiple backend samplers were used.
A test for this scenario has also been added to ensure that both types
of data are copied correctly when different backend samplers are
employed.
* tests : cleanup test-backend-sampler.cpp
* common : remove build-info.cpp from commit [no ci]
This file was generated during the build process and should not be
included in previous commits.
* sampling : cleanup and clarify output_reserve
* sampling : remove redundant checks for stride and size [no ci]
* sampling : add debug log when backend sampler selects token
This commit adds a debug log statement in the llama_sampler_sample
to indicate when a backend sampler has selected a token for a given
index.
The modification helps in tracing the sampling process and understanding
the flow of control when backend samplers are used.
* examples : update batched to use backend sampling
This commit updates the batched example to demonstrate how to use
backend samplers.
* llama-cli : fix dangling reference to sampler config
* common : initialize backend samplers
* samplers : add missing cont
* sampling : add assertions for contiguous tensors in async copy functions
* examples : add info about hybrid sampling in batched [no ci]
* sampling : remove backend-dist option (wip)
This commit removes the `--backend-dist` option and instead uses the
configured --samplers chain to determine which samplers run on the
backend.
Backend sampling is still enabled using With `--backend_sampling`, and
the sampler chain, either explictly specified using `--samplers` or the
default, is automatically analyzed to determine which samplers can run
on the backend. The system finds the longest contiguous chain of
backend supported samplers from the start of the sampler sequence.
For example:
* If the chain is `top-k -> temperature -> top-p`, and both `top-k` and
`temperature` are backend-supported but `top-p` is not, then `top-k`
and `temperature` will run on the backend, while `top-p` and
subsequent samplers run on the CPU.
* If all configured samplers are supported, the final distribution
sampling will also happen on the backend, transferring only the
sampled token IDs back to the host.
* If the sampler chain starts with an unsupported sampler (e.g.,
`penalties`), all sampling runs on the CPU. Note that this is
currently the case with the default sampler so to use backend sampling
it is required to specify a sampler chain. See below for an example.
The following shows how llama-cli can be run with backend sampling:
```console
$ llama-cli -m models/Qwen2.5-VL-3B-Instruct-Q8_0.gguf \
--prompt 'What is the capital of Sweden?' \
-n 20 \
-no-cnv \
--verbose-prompt \
-ngl 40 \
--backend-sampling \
--samplers 'top_k;temperature'
```
In this case the all sampling will happen on the backend since both
`top_k` and `temperature` are supported backend samplers.
To enable a partial backend sampling (hybrid sampling), for example
running `top_k` and `temperature` on the backend and `typ_p` on the CPU
the following sampler chain could be specified:
```console
$ llama-cli -m models/Qwen2.5-VL-3B-Instruct-Q8_0.gguf \
--prompt 'What is the capital of Sweden?' \
-n 20 \
-no-cnv \
--verbose-prompt \
-ngl 40 \
--backend-sampling \
--samplers 'top_k;temperature;top_p'
```
If this looks good then I'll follow up with updates the llama-cli and
llama-server documentation to reflect these changes.
* CUDA: Add top-k implementation
* sampling : add min-p backend sampler
* Use `FetchContent` over CPM as it's bundled with CMake
Thanks @ggerganov for the suggestion
* common : add get_active_samplers function to check enabled samplers
This commit adds a function to check if a sampler is actually enabled,
meaning that it does not have values that disables its effect. This is
then used by the backend samplers initialization to avoid considering
samplers that are not enabled when determining the split point between
them.
The motivation for this is that this allows the default sampler chain
for `--samplers` to be used and any sampler that is not enabled will not
cause the backend samplers to be skipped.
For example, before this change if the penalties sampler was included in
the samplers list but had default values that disable it, it would cause
the backend samplers to be skipped entirely.
This commit also contains some refactoring to remove some code
duplication.
* cuda : fix editorconfig-checker warning
* sampling : use argmax for min-p sampling
* sampling : fix temperature check to allow zero temperature
This commit modifies the temperature sampling check to allow a
temperature value of zero. Previously, the check only allowed
positive temperature values, which excluded the valid case of
zero temperature.
The motivation for this is to enable a zero temperature setting which is
also currently causing the following test to fail:
```console
(venv) $ cd tools/server/tests
(venv) $ ./tests.sh unit/test_basic.py::test_load_split_model
```
* cuda : fix top-k compilation when CUB is unavailable
This commit adds a macro guard around argsort_f32_i32_cuda_cub usage
in the top-k fallback path, falling back to bitonic sort when
GGML_CUDA_USE_CUB is not defined.
The motivation for this is that some environments like AMD HIP
do not have CUB available, causing compilation failure.
Refs: https://github.com/ggml-org/llama.cpp/actions/runs/
19728226426/job/
56523606840#step:6:208
* sampling : add comments about backend sampler [no ci]
This commit adds a comment to llama_context's constructor explaining why
backend samplers are initialized early in the process.
* sampling : remove backend sampling chain from common_sampler
This commit removes the backend sampling chain from the common_sampler
structure and related functions.
The motivation for this change is that the backend samplers are not
currently set on the context, and if they are they would cause the
a graph reallocation to occur. Instead, the intialization is handled
like it currently is by llama_context's constructor.
* Fix top-k comp & behavior for non-CUB path
Some changes were made in
5ea3be265ba6f8916daf52e19e3fb8efe9a03637
which were incomplete. In the case of non-CUB, bitonic sort and its
limitations of ncols < 1024 have to apply, similar to argsort.cu
* sampling : support intermixed backend/cpu samplers
This commit updates the backend sampling implementation to support
intermixed usage of backend and CPU samplers within the same batch.
The initial implementation was developed as an all-or-nothing solution:
either perform backend sampling for the entire batch, or perform CPU
sampling for the entire batch.
The motivation for this change is to support batches with mixed
sequences. For example, we may have a backend sampler configured for
sequence 0, while sequence 1 in the same batch uses CPU sampling. This
was not supported in the initial implementation.
This issue manifested in llama-server with the webui: decoding with
backend samplers would work initially, but after changing to CPU
sampling, a slot (sequence) could still be using a backend sampler.
This meant that logits in output_reserve would not be allocated,
resulting in an error.
The solution in this commit inspects the batch to determine which
sampling modes are needed and allocates buffers accordingly. However,
there is a known inefficiency: when we have intermixed backend/CPU
samplers in the same batch, we currently copy all logits to the host,
even for sequences using backend samplers.
Added test_backend_cpu_mixed_batch to verify correct behavior with
mixed backend/CPU samplers in a single batch, including dynamic
sampler switching between decode calls.
* squash! sampling : support intermixed backend/cpu samplers
Add check that logits is not null which is can happen for embeddings.
* squash! sampling : support intermixed backend/cpu samplers
Fix llama-save-load-state which currently fails by handling the case
when batch.logits is nullptr (like when loading state) by allocating
space for all outputs as CPU logits.
* refactor : simplify and improve memory management
* Add initial version for top-p sampling
As we only support static graphs for the time and we don't know the size
of the output of top-p, we have to do value-scaling same as for min-p
operator.
Further improvements can be applied to the unit-test (i.e. check for
equivalence of top_p happening on backend with top_p happening on cpu)
and also by constructing candidates and sorting those as opposed to
reversing the sort of the logits (this would be arange +
get_rows instead of argsort + get_rows)
* sampling : use logits directly for min-p filtering
* sampling : simplify
* llama : simplify
* llama : cleanup + naming
* llama : call backend_init once
* llama : reserve graphs with samplers
* llama : naming
* cont : naming
* sampling : lower log level for output buffer reallocations [no ci]
This commit changes the logging level for output buffer reallocations
in the llama_context::output_reserve function from INFO to DEBUG.
The motivation for this is that it currently logs to info and when
enabling verbose logging for llama-cli this will get mixed with the
output, for example:
```console
What is the capital of Sweden?output_reserve: reallocating output buffer from size 0.58 MiB to 1.74 MiB
1. Stockholm
2\. Helsinki
Based are the options
1. Stockholm
Explanation: Stockholm is the capital of
...
```
* Fix backend_top_p_sampler
softmax(softmax) will return uniform distribution, so we should not
return the softmax but the logits instead.
* Factor out `ggml_sort` into its own function
* Make backend's top_p sampler inclusive
In addition to match the algorithm proposed in the original
[paper](https://arxiv.org/abs/1904.09751), this resolves the edge-case
where `max_p is > top_p` for a single logit, where the mask would
otherwise be empty (and we thus sample from the whole vocabulary with
equal likelihood)
* common : simplify sampler chain initialization
* sampling : do not create empty samplers
* sampling : fix top_p empty condition
* examples : remove outdated backend sampling section
This commit removes the outdated section about using backend samplers
from the README.md file in the examples/batched.
* sampling : fix backend temp sampler for zero temperature
This commit fixes the implementation of the temperature-based sampler
for the case when the temperature is set to zero. This now correctly
selects the most probable token by masking out all other tokens in the
logits.
* CUDA: Move cccl fetch to after cuda has been enabled in CMakeLists.txt
This will allow cccl to set build flags for the CUDA compiler, required
e.g. for MSVC compat, see also
https://github.com/NVIDIA/cccl/pull/6791
* CUDA: Use standard-compliant preprocessor for MSVC builds
Workarounds of https://github.com/NVIDIA/cccl/pull/6791 will not be
backported to CCCL 3.2, only the diagnostics/error messages will:
https://github.com/NVIDIA/cccl/pull/6827
* CUDA: Update CCCL's rc candidate
* squash! sampling : fix backend temp sampler for zero temperature
This modifies the parent commit to simply return the most probably token
instead of masking the logits.
* sampling : implement temp_ext_backend sampling
This commit implements the apply function for the extended temperature
sampling.
* sampling : minor cleanup
* sampling : stop short if backend sampler sampled a token
This commit modifies the graph building logic to immediately continue
when a token has already been sampled by the backend sampler.
It also updates the test for backend temporary sampling to include
top-k and distribution samplers in the chain to verify that they are not
producing any logits (they are not run).
* Revert "sampling : stop short if backend sampler sampled a token"
This reverts commit
87b2719eca55b30afff600fc7f61c6cce9452cbf.
* sampling : fix backend temp sampling to use logits masking
* sampling : simplify temp sampling
* sampling : remove redundant calls to ggml_build_forward_expand
* sampling : check backend support during init
* cont : keep backend sampling disabled for now
* sampling : fix outputs and device checks
* sampling : fix candidates logic
* Add perf-tests for CUMSUM
* Readd `cub::DeviceScan::InclusiveSum`-based CumSum
For single rows and large columns doing a for-loop over the function
`cub::DeviceScan::InclusiveSum` offered by CUB outperforms the
`cumsum_cub_kernel` where `cub::BlockScan` is used.
Numbers before this change
Backend 1/3: CUDA0
Device description: NVIDIA RTX 6000 Ada Generation
Device memory: 48510 MB (48039 MB free)
CUMSUM(type=f32,ne=[128,128,4,4]): 311258 runs - 3.26 us/run - 2048 kB/run - 599.76 GB/s
CUMSUM(type=f32,ne=[2048,16,5,4]): 229390 runs - 4.40 us/run - 5120 kB/run - 1110.23 GB/s
CUMSUM(type=f32,ne=[20000,10,4,1]): 37583 runs - 29.63 us/run - 6250 kB/run - 201.18 GB/s
CUMSUM(type=f32,ne=[128,1,1,1]): 892819 runs - 1.12 us/run - 1 kB/run - 0.85 GB/s
CUMSUM(type=f32,ne=[1024,1,1,1]): 450505 runs - 2.25 us/run - 8 kB/run - 3.39 GB/s
CUMSUM(type=f32,ne=[4096,1,1,1]): 155629 runs - 6.61 us/run - 32 kB/run - 4.62 GB/s
CUMSUM(type=f32,ne=[8192,1,1,1]): 81910 runs - 12.60 us/run - 64 kB/run - 4.85 GB/s
CUMSUM(type=f32,ne=[16384,1,1,1]): 49146 runs - 23.99 us/run - 128 kB/run - 5.09 GB/s
CUMSUM(type=f32,ne=[32768,1,1,1]): 24573 runs - 47.10 us/run - 256 kB/run - 5.18 GB/s
CUMSUM(type=f32,ne=[65536,1,1,1]): 16382 runs - 93.57 us/run - 512 kB/run - 5.22 GB/s
CUMSUM(type=f32,ne=[131072,1,1,1]): 8191 runs - 184.79 us/run - 1024 kB/run - 5.29 GB/s
CUMSUM(type=f32,ne=[200000,1,1,1]): 8191 runs - 280.43 us/run - 1562 kB/run - 5.31 GB/s
CUMSUM(type=f32,ne=[
2000000,1,1,1]): 2148 runs - 2771.23 us/run - 15625 kB/run - 5.38 GB/s
CUMSUM(type=f32,ne=[128,4,1,1]): 458696 runs - 2.21 us/run - 4 kB/run - 1.73 GB/s
CUMSUM(type=f32,ne=[1024,4,1,1]): 360404 runs - 2.82 us/run - 32 kB/run - 10.83 GB/s
CUMSUM(type=f32,ne=[4096,4,1,1]): 147438 runs - 7.12 us/run - 128 kB/run - 17.15 GB/s
CUMSUM(type=f32,ne=[8192,4,1,1]): 81910 runs - 12.90 us/run - 256 kB/run - 18.92 GB/s
CUMSUM(type=f32,ne=[16384,4,1,1]): 49146 runs - 24.32 us/run - 512 kB/run - 20.08 GB/s
CUMSUM(type=f32,ne=[32768,4,1,1]): 24573 runs - 47.28 us/run - 1024 kB/run - 20.66 GB/s
CUMSUM(type=f32,ne=[65536,4,1,1]): 16382 runs - 93.21 us/run - 2048 kB/run - 20.96 GB/s
CUMSUM(type=f32,ne=[131072,4,1,1]): 8191 runs - 185.04 us/run - 4096 kB/run - 21.11 GB/s
CUMSUM(type=f32,ne=[200000,4,1,1]): 5369 runs - 282.08 us/run - 6250 kB/run - 21.13 GB/s
CUMSUM(type=f32,ne=[
2000000,4,1,1]): 537 runs - 2806.46 us/run - 62500 kB/run - 21.26 GB/s
CUMSUM(type=f32,ne=[128,8,1,1]): 458696 runs - 2.20 us/run - 8 kB/run - 3.47 GB/s
CUMSUM(type=f32,ne=[1024,8,1,1]): 360404 runs - 2.82 us/run - 64 kB/run - 21.66 GB/s
CUMSUM(type=f32,ne=[4096,8,1,1]): 147438 runs - 7.12 us/run - 256 kB/run - 34.28 GB/s
CUMSUM(type=f32,ne=[8192,8,1,1]): 81910 runs - 12.90 us/run - 512 kB/run - 37.84 GB/s
CUMSUM(type=f32,ne=[16384,8,1,1]): 49146 runs - 24.32 us/run - 1024 kB/run - 40.15 GB/s
CUMSUM(type=f32,ne=[32768,8,1,1]): 24573 runs - 47.28 us/run - 2048 kB/run - 41.31 GB/s
CUMSUM(type=f32,ne=[65536,8,1,1]): 16382 runs - 93.20 us/run - 4096 kB/run - 41.92 GB/s
CUMSUM(type=f32,ne=[131072,8,1,1]): 8194 runs - 185.05 us/run - 8192 kB/run - 42.22 GB/s
CUMSUM(type=f32,ne=[200000,8,1,1]): 5370 runs - 282.15 us/run - 12500 kB/run - 42.26 GB/s
CUMSUM(type=f32,ne=[
2000000,8,1,1]): 269 runs - 4067.61 us/run - 125000 kB/run - 29.36 GB/s
CUMSUM(type=f32,ne=[128,16,1,1]): 303067 runs - 3.32 us/run - 16 kB/run - 4.60 GB/s
CUMSUM(type=f32,ne=[1024,16,1,1]): 303067 runs - 3.32 us/run - 128 kB/run - 36.76 GB/s
CUMSUM(type=f32,ne=[4096,16,1,1]): 147438 runs - 7.17 us/run - 512 kB/run - 68.13 GB/s
CUMSUM(type=f32,ne=[8192,16,1,1]): 81910 runs - 12.90 us/run - 1024 kB/run - 75.68 GB/s
CUMSUM(type=f32,ne=[16384,16,1,1]): 49146 runs - 24.33 us/run - 2048 kB/run - 80.28 GB/s
CUMSUM(type=f32,ne=[32768,16,1,1]): 24573 runs - 47.30 us/run - 4096 kB/run - 82.59 GB/s
CUMSUM(type=f32,ne=[65536,16,1,1]): 12291 runs - 93.24 us/run - 8192 kB/run - 83.80 GB/s
CUMSUM(type=f32,ne=[131072,16,1,1]): 6147 runs - 185.07 us/run - 16384 kB/run - 84.45 GB/s
CUMSUM(type=f32,ne=[200000,16,1,1]): 4029 runs - 282.40 us/run - 25000 kB/run - 84.46 GB/s
CUMSUM(type=f32,ne=[
2000000,16,1,1]): 270 runs - 4118.40 us/run - 250000 kB/run - 58.11 GB/s
Backend CUDA0: OK
Backend 2/3: CUDA1
Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
Device memory: 97250 MB (96677 MB free)
CUMSUM(type=f32,ne=[128,128,4,4]): 368595 runs - 2.73 us/run - 2048 kB/run - 715.83 GB/s
CUMSUM(type=f32,ne=[2048,16,5,4]): 216282 runs - 4.72 us/run - 5120 kB/run - 1035.32 GB/s
CUMSUM(type=f32,ne=[20000,10,4,1]): 32214 runs - 34.33 us/run - 6250 kB/run - 173.64 GB/s
CUMSUM(type=f32,ne=[128,1,1,1]): 810909 runs - 1.24 us/run - 1 kB/run - 0.77 GB/s
CUMSUM(type=f32,ne=[1024,1,1,1]): 401359 runs - 2.52 us/run - 8 kB/run - 3.03 GB/s
CUMSUM(type=f32,ne=[4096,1,1,1]): 139247 runs - 7.44 us/run - 32 kB/run - 4.10 GB/s
CUMSUM(type=f32,ne=[8192,1,1,1]): 73719 runs - 14.27 us/run - 64 kB/run - 4.28 GB/s
CUMSUM(type=f32,ne=[16384,1,1,1]): 40955 runs - 27.24 us/run - 128 kB/run - 4.48 GB/s
CUMSUM(type=f32,ne=[32768,1,1,1]): 24573 runs - 53.46 us/run - 256 kB/run - 4.57 GB/s
CUMSUM(type=f32,ne=[65536,1,1,1]): 16382 runs - 105.29 us/run - 512 kB/run - 4.64 GB/s
CUMSUM(type=f32,ne=[131072,1,1,1]): 8191 runs - 210.15 us/run - 1024 kB/run - 4.65 GB/s
CUMSUM(type=f32,ne=[200000,1,1,1]): 8191 runs - 318.22 us/run - 1562 kB/run - 4.68 GB/s
CUMSUM(type=f32,ne=[
2000000,1,1,1]): 2148 runs - 3142.23 us/run - 15625 kB/run - 4.74 GB/s
CUMSUM(type=f32,ne=[128,4,1,1]): 303067 runs - 3.34 us/run - 4 kB/run - 1.14 GB/s
CUMSUM(type=f32,ne=[1024,4,1,1]): 253921 runs - 4.03 us/run - 32 kB/run - 7.58 GB/s
CUMSUM(type=f32,ne=[4096,4,1,1]): 122865 runs - 8.20 us/run - 128 kB/run - 14.89 GB/s
CUMSUM(type=f32,ne=[8192,4,1,1]): 73719 runs - 14.96 us/run - 256 kB/run - 16.32 GB/s
CUMSUM(type=f32,ne=[16384,4,1,1]): 40955 runs - 28.66 us/run - 512 kB/run - 17.04 GB/s
CUMSUM(type=f32,ne=[32768,4,1,1]): 24573 runs - 54.21 us/run - 1024 kB/run - 18.01 GB/s
CUMSUM(type=f32,ne=[65536,4,1,1]): 16382 runs - 106.49 us/run - 2048 kB/run - 18.34 GB/s
CUMSUM(type=f32,ne=[131072,4,1,1]): 8191 runs - 210.88 us/run - 4096 kB/run - 18.52 GB/s
CUMSUM(type=f32,ne=[200000,4,1,1]): 5369 runs - 321.77 us/run - 6250 kB/run - 18.53 GB/s
CUMSUM(type=f32,ne=[
2000000,4,1,1]): 537 runs - 3191.79 us/run - 62500 kB/run - 18.69 GB/s
CUMSUM(type=f32,ne=[128,8,1,1]): 376786 runs - 2.67 us/run - 8 kB/run - 2.86 GB/s
CUMSUM(type=f32,ne=[1024,8,1,1]): 245730 runs - 4.10 us/run - 64 kB/run - 14.90 GB/s
CUMSUM(type=f32,ne=[4096,8,1,1]): 122865 runs - 8.20 us/run - 256 kB/run - 29.79 GB/s
CUMSUM(type=f32,ne=[8192,8,1,1]): 65528 runs - 16.38 us/run - 512 kB/run - 29.82 GB/s
CUMSUM(type=f32,ne=[16384,8,1,1]): 40955 runs - 28.69 us/run - 1024 kB/run - 34.04 GB/s
CUMSUM(type=f32,ne=[32768,8,1,1]): 24573 runs - 55.28 us/run - 2048 kB/run - 35.33 GB/s
CUMSUM(type=f32,ne=[65536,8,1,1]): 16382 runs - 108.50 us/run - 4096 kB/run - 36.00 GB/s
CUMSUM(type=f32,ne=[131072,8,1,1]): 8194 runs - 213.75 us/run - 8192 kB/run - 36.55 GB/s
CUMSUM(type=f32,ne=[200000,8,1,1]): 5370 runs - 326.31 us/run - 12500 kB/run - 36.54 GB/s
CUMSUM(type=f32,ne=[
2000000,8,1,1]): 538 runs - 3252.68 us/run - 125000 kB/run - 36.72 GB/s
CUMSUM(type=f32,ne=[128,16,1,1]): 303067 runs - 3.32 us/run - 16 kB/run - 4.60 GB/s
CUMSUM(type=f32,ne=[1024,16,1,1]): 253921 runs - 4.06 us/run - 128 kB/run - 30.09 GB/s
CUMSUM(type=f32,ne=[4096,16,1,1]): 122865 runs - 8.20 us/run - 512 kB/run - 59.57 GB/s
CUMSUM(type=f32,ne=[8192,16,1,1]): 65528 runs - 16.38 us/run - 1024 kB/run - 59.63 GB/s
CUMSUM(type=f32,ne=[16384,16,1,1]): 40955 runs - 28.69 us/run - 2048 kB/run - 68.09 GB/s
CUMSUM(type=f32,ne=[32768,16,1,1]): 24573 runs - 55.28 us/run - 4096 kB/run - 70.67 GB/s
CUMSUM(type=f32,ne=[65536,16,1,1]): 12291 runs - 108.50 us/run - 8192 kB/run - 72.02 GB/s
CUMSUM(type=f32,ne=[131072,16,1,1]): 6147 runs - 213.60 us/run - 16384 kB/run - 73.17 GB/s
CUMSUM(type=f32,ne=[200000,16,1,1]): 4029 runs - 326.04 us/run - 25000 kB/run - 73.15 GB/s
CUMSUM(type=f32,ne=[
2000000,16,1,1]): 270 runs - 5458.69 us/run - 250000 kB/run - 43.84 GB/s
----
Numbers after:
Backend 1/3: CUDA0
Device description: NVIDIA RTX 6000 Ada Generation
Device memory: 48510 MB (48039 MB free)
CUMSUM(type=f32,ne=[128,128,4,4]): 311258 runs - 3.25 us/run - 2048 kB/run - 601.62 GB/s
CUMSUM(type=f32,ne=[2048,16,5,4]): 229390 runs - 4.40 us/run - 5120 kB/run - 1110.14 GB/s
CUMSUM(type=f32,ne=[20000,10,4,1]): 37583 runs - 29.67 us/run - 6250 kB/run - 200.89 GB/s
CUMSUM(type=f32,ne=[128,1,1,1]): 892819 runs - 1.12 us/run - 1 kB/run - 0.85 GB/s
CUMSUM(type=f32,ne=[1024,1,1,1]): 458696 runs - 2.21 us/run - 8 kB/run - 3.45 GB/s
CUMSUM(type=f32,ne=[4096,1,1,1]): 376786 runs - 2.66 us/run - 32 kB/run - 11.46 GB/s
CUMSUM(type=f32,ne=[8192,1,1,1]): 393168 runs - 2.59 us/run - 64 kB/run - 23.57 GB/s
CUMSUM(type=f32,ne=[16384,1,1,1]): 393168 runs - 2.59 us/run - 128 kB/run - 47.15 GB/s
CUMSUM(type=f32,ne=[32768,1,1,1]): 376786 runs - 2.69 us/run - 256 kB/run - 90.69 GB/s
CUMSUM(type=f32,ne=[65536,1,1,1]): 327640 runs - 3.06 us/run - 512 kB/run - 159.65 GB/s
CUMSUM(type=f32,ne=[131072,1,1,1]): 311258 runs - 3.28 us/run - 1024 kB/run - 297.77 GB/s
CUMSUM(type=f32,ne=[200000,1,1,1]): 270303 runs - 3.74 us/run - 1562 kB/run - 398.14 GB/s
CUMSUM(type=f32,ne=[
2000000,1,1,1]): 137472 runs - 7.35 us/run - 15625 kB/run - 2026.94 GB/s
CUMSUM(type=f32,ne=[128,4,1,1]): 876437 runs - 1.14 us/run - 4 kB/run - 3.33 GB/s
CUMSUM(type=f32,ne=[1024,4,1,1]): 442314 runs - 2.28 us/run - 32 kB/run - 13.39 GB/s
CUMSUM(type=f32,ne=[4096,4,1,1]): 155629 runs - 6.69 us/run - 128 kB/run - 18.24 GB/s
CUMSUM(type=f32,ne=[8192,4,1,1]): 81910 runs - 12.53 us/run - 256 kB/run - 19.49 GB/s
CUMSUM(type=f32,ne=[16384,4,1,1]): 49146 runs - 24.18 us/run - 512 kB/run - 20.20 GB/s
CUMSUM(type=f32,ne=[32768,4,1,1]): 65528 runs - 15.34 us/run - 1024 kB/run - 63.66 GB/s
CUMSUM(type=f32,ne=[65536,4,1,1]): 73719 runs - 14.76 us/run - 2048 kB/run - 132.35 GB/s
CUMSUM(type=f32,ne=[131072,4,1,1]): 65528 runs - 16.01 us/run - 4096 kB/run - 244.07 GB/s
CUMSUM(type=f32,ne=[200000,4,1,1]): 64428 runs - 16.51 us/run - 6250 kB/run - 360.97 GB/s
CUMSUM(type=f32,ne=[
2000000,4,1,1]): 33831 runs - 29.59 us/run - 62500 kB/run - 2016.08 GB/s
CUMSUM(type=f32,ne=[128,8,1,1]): 868246 runs - 1.16 us/run - 8 kB/run - 6.59 GB/s
CUMSUM(type=f32,ne=[1024,8,1,1]): 442314 runs - 2.28 us/run - 64 kB/run - 26.76 GB/s
CUMSUM(type=f32,ne=[4096,8,1,1]): 155629 runs - 6.69 us/run - 256 kB/run - 36.48 GB/s
CUMSUM(type=f32,ne=[8192,8,1,1]): 81910 runs - 12.53 us/run - 512 kB/run - 38.97 GB/s
CUMSUM(type=f32,ne=[16384,8,1,1]): 49146 runs - 24.17 us/run - 1024 kB/run - 40.41 GB/s
CUMSUM(type=f32,ne=[32768,8,1,1]): 24573 runs - 47.53 us/run - 2048 kB/run - 41.10 GB/s
CUMSUM(type=f32,ne=[65536,8,1,1]): 16382 runs - 61.25 us/run - 4096 kB/run - 63.77 GB/s
CUMSUM(type=f32,ne=[131072,8,1,1]): 32776 runs - 31.79 us/run - 8192 kB/run - 245.82 GB/s
CUMSUM(type=f32,ne=[200000,8,1,1]): 32220 runs - 32.90 us/run - 12500 kB/run - 362.35 GB/s
CUMSUM(type=f32,ne=[
2000000,8,1,1]): 6725 runs - 151.99 us/run - 125000 kB/run - 785.77 GB/s
CUMSUM(type=f32,ne=[128,16,1,1]): 851864 runs - 1.18 us/run - 16 kB/run - 12.97 GB/s
CUMSUM(type=f32,ne=[1024,16,1,1]): 442314 runs - 2.30 us/run - 128 kB/run - 53.13 GB/s
CUMSUM(type=f32,ne=[4096,16,1,1]): 155629 runs - 6.68 us/run - 512 kB/run - 73.13 GB/s
CUMSUM(type=f32,ne=[8192,16,1,1]): 81910 runs - 12.68 us/run - 1024 kB/run - 77.00 GB/s
CUMSUM(type=f32,ne=[16384,16,1,1]): 40955 runs - 24.56 us/run - 2048 kB/run - 79.53 GB/s
CUMSUM(type=f32,ne=[32768,16,1,1]): 24573 runs - 47.52 us/run - 4096 kB/run - 82.21 GB/s
CUMSUM(type=f32,ne=[65536,16,1,1]): 12291 runs - 93.44 us/run - 8192 kB/run - 83.62 GB/s
CUMSUM(type=f32,ne=[131072,16,1,1]): 16392 runs - 63.36 us/run - 16384 kB/run - 246.68 GB/s
CUMSUM(type=f32,ne=[200000,16,1,1]): 16116 runs - 65.25 us/run - 25000 kB/run - 365.53 GB/s
CUMSUM(type=f32,ne=[
2000000,16,1,1]): 3375 runs - 304.46 us/run - 250000 kB/run - 785.98 GB/s
Backend CUDA0: OK
Backend 2/3: CUDA1
Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
Device memory: 97250 MB (96677 MB free)
CUMSUM(type=f32,ne=[128,128,4,4]): 376786 runs - 2.69 us/run - 2048 kB/run - 727.04 GB/s
CUMSUM(type=f32,ne=[2048,16,5,4]): 216282 runs - 4.64 us/run - 5120 kB/run - 1053.30 GB/s
CUMSUM(type=f32,ne=[20000,10,4,1]): 32214 runs - 34.21 us/run - 6250 kB/run - 174.27 GB/s
CUMSUM(type=f32,ne=[128,1,1,1]): 819100 runs - 1.22 us/run - 1 kB/run - 0.78 GB/s
CUMSUM(type=f32,ne=[1024,1,1,1]): 409550 runs - 2.47 us/run - 8 kB/run - 3.09 GB/s
CUMSUM(type=f32,ne=[4096,1,1,1]): 303067 runs - 3.31 us/run - 32 kB/run - 9.21 GB/s
CUMSUM(type=f32,ne=[8192,1,1,1]): 237539 runs - 4.33 us/run - 64 kB/run - 14.08 GB/s
CUMSUM(type=f32,ne=[16384,1,1,1]): 237539 runs - 4.33 us/run - 128 kB/run - 28.17 GB/s
CUMSUM(type=f32,ne=[32768,1,1,1]): 188393 runs - 5.37 us/run - 256 kB/run - 45.47 GB/s
CUMSUM(type=f32,ne=[65536,1,1,1]): 188393 runs - 5.41 us/run - 512 kB/run - 90.20 GB/s
CUMSUM(type=f32,ne=[131072,1,1,1]): 188393 runs - 5.41 us/run - 1024 kB/run - 180.41 GB/s
CUMSUM(type=f32,ne=[200000,1,1,1]): 188393 runs - 5.41 us/run - 1562 kB/run - 275.27 GB/s
CUMSUM(type=f32,ne=[
2000000,1,1,1]): 128880 runs - 7.76 us/run - 15625 kB/run - 1920.33 GB/s
CUMSUM(type=f32,ne=[128,4,1,1]): 802718 runs - 1.26 us/run - 4 kB/run - 3.03 GB/s
CUMSUM(type=f32,ne=[1024,4,1,1]): 401359 runs - 2.51 us/run - 32 kB/run - 12.18 GB/s
CUMSUM(type=f32,ne=[4096,4,1,1]): 139247 runs - 7.51 us/run - 128 kB/run - 16.26 GB/s
CUMSUM(type=f32,ne=[8192,4,1,1]): 73719 runs - 14.17 us/run - 256 kB/run - 17.23 GB/s
CUMSUM(type=f32,ne=[16384,4,1,1]): 40955 runs - 27.37 us/run - 512 kB/run - 17.84 GB/s
CUMSUM(type=f32,ne=[32768,4,1,1]): 40955 runs - 26.33 us/run - 1024 kB/run - 37.10 GB/s
CUMSUM(type=f32,ne=[65536,4,1,1]): 40955 runs - 26.19 us/run - 2048 kB/run - 74.59 GB/s
CUMSUM(type=f32,ne=[131072,4,1,1]): 40955 runs - 26.35 us/run - 4096 kB/run - 148.26 GB/s
CUMSUM(type=f32,ne=[200000,4,1,1]): 42952 runs - 24.18 us/run - 6250 kB/run - 246.51 GB/s
CUMSUM(type=f32,ne=[
2000000,4,1,1]): 32757 runs - 31.01 us/run - 62500 kB/run - 1923.68 GB/s
CUMSUM(type=f32,ne=[128,8,1,1]): 786336 runs - 1.28 us/run - 8 kB/run - 5.95 GB/s
CUMSUM(type=f32,ne=[1024,8,1,1]): 393168 runs - 2.57 us/run - 64 kB/run - 23.73 GB/s
CUMSUM(type=f32,ne=[4096,8,1,1]): 131056 runs - 7.67 us/run - 256 kB/run - 31.82 GB/s
CUMSUM(type=f32,ne=[8192,8,1,1]): 73719 runs - 14.43 us/run - 512 kB/run - 33.84 GB/s
CUMSUM(type=f32,ne=[16384,8,1,1]): 40955 runs - 27.90 us/run - 1024 kB/run - 35.01 GB/s
CUMSUM(type=f32,ne=[32768,8,1,1]): 24573 runs - 54.63 us/run - 2048 kB/run - 35.75 GB/s
CUMSUM(type=f32,ne=[65536,8,1,1]): 16382 runs - 72.24 us/run - 4096 kB/run - 54.08 GB/s
CUMSUM(type=f32,ne=[131072,8,1,1]): 20485 runs - 52.66 us/run - 8192 kB/run - 148.37 GB/s
CUMSUM(type=f32,ne=[200000,8,1,1]): 21480 runs - 48.00 us/run - 12500 kB/run - 248.42 GB/s
CUMSUM(type=f32,ne=[
2000000,8,1,1]): 16140 runs - 61.99 us/run - 125000 kB/run - 1926.51 GB/s
CUMSUM(type=f32,ne=[128,16,1,1]): 786336 runs - 1.28 us/run - 16 kB/run - 11.90 GB/s
CUMSUM(type=f32,ne=[1024,16,1,1]): 393168 runs - 2.57 us/run - 128 kB/run - 47.57 GB/s
CUMSUM(type=f32,ne=[4096,16,1,1]): 131056 runs - 7.65 us/run - 512 kB/run - 63.83 GB/s
CUMSUM(type=f32,ne=[8192,16,1,1]): 73719 runs - 14.42 us/run - 1024 kB/run - 67.74 GB/s
CUMSUM(type=f32,ne=[16384,16,1,1]): 40955 runs - 27.87 us/run - 2048 kB/run - 70.09 GB/s
CUMSUM(type=f32,ne=[32768,16,1,1]): 24573 runs - 54.54 us/run - 4096 kB/run - 71.63 GB/s
CUMSUM(type=f32,ne=[65536,16,1,1]): 12291 runs - 107.53 us/run - 8192 kB/run - 72.66 GB/s
CUMSUM(type=f32,ne=[131072,16,1,1]): 10245 runs - 105.10 us/run - 16384 kB/run - 148.70 GB/s
CUMSUM(type=f32,ne=[200000,16,1,1]): 10744 runs - 95.36 us/run - 25000 kB/run - 250.11 GB/s
CUMSUM(type=f32,ne=[
2000000,16,1,1]): 5400 runs - 186.97 us/run - 250000 kB/run - 1279.90 GB/s
* sampling : expand support (wip)
* tests : fix memory leaks
* cont : fixes
* tests : check temp back to 0.0
* sampling : fix top-p
* sampling : handle n_probs case
* server : handle unsupported cases
* metal : print node names for debugging
* ggml : remove redundant src in ggml_cast
* ggml-alloc : fix reuse-parent logic for misaligned sizes
* Revert "ggml : remove redundant src in ggml_cast"
This reverts commit
62d1b0082dbad699fbeea85a096bc334e3c1c0e6.
* CUDA: Add Cooperative-Groups-based parallelization of ncols in softmax
Old implementation parallelizes rows across SMs, which does not fit the
needs of backend-sampling (where we have ncols >> nrows and thus want to
parallelize ncols across SMs)
* Add TODOs to and adjust heuristics of row-wise soft_max in CUDA
Heuristics were selected based on the following numbers:
```
-- Before
Backend 1/2: CUDA0
Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
Device memory: 97250 MB (96691 MB free)
SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 2236 runs - 450.34 us/run - 655360 kB/run - 1401.20 GB/s
SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 17748 runs - 56.80 us/run - 128880 kB/run - 2168.19 GB/s
SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 57204 runs - 18.35 us/run - 12320 kB/run - 640.57 GB/s
SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 9840 runs - 102.46 us/run - 81920 kB/run - 763.45 GB/s
SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 98064 runs - 10.25 us/run - 6160 kB/run - 573.43 GB/s
SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 98310 runs - 10.25 us/run - 10240 kB/run - 953.20 GB/s
SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 172011 runs - 5.99 us/run - 640 kB/run - 101.84 GB/s
SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 172011 runs - 5.97 us/run - 770 kB/run - 123.02 GB/s
SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 172011 runs - 6.00 us/run - 64 kB/run - 10.16 GB/s
SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 163820 runs - 6.12 us/run - 256 kB/run - 39.91 GB/s
SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 147438 runs - 6.88 us/run - 1024 kB/run - 141.92 GB/s
SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 122865 runs - 8.20 us/run - 128 kB/run - 14.89 GB/s
SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 114674 runs - 8.87 us/run - 512 kB/run - 55.06 GB/s
SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 98292 runs - 10.24 us/run - 2048 kB/run - 190.82 GB/s
SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 49146 runs - 21.37 us/run - 256 kB/run - 11.43 GB/s
SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 49146 runs - 22.54 us/run - 1024 kB/run - 43.33 GB/s
SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 49146 runs - 23.92 us/run - 4096 kB/run - 163.32 GB/s
SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 32764 runs - 38.94 us/run - 512 kB/run - 12.54 GB/s
SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 24573 runs - 41.94 us/run - 2048 kB/run - 46.57 GB/s
SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 24582 runs - 43.09 us/run - 8192 kB/run - 181.32 GB/s
SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 16382 runs - 74.56 us/run - 1024 kB/run - 13.10 GB/s
SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 16382 runs - 79.85 us/run - 4096 kB/run - 48.92 GB/s
SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 12294 runs - 82.41 us/run - 16384 kB/run - 189.64 GB/s
SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 8191 runs - 145.16 us/run - 2048 kB/run - 13.46 GB/s
SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 8194 runs - 155.46 us/run - 8192 kB/run - 50.26 GB/s
SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 7175 runs - 160.70 us/run - 32768 kB/run - 194.56 GB/s
SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 8191 runs - 285.81 us/run - 4096 kB/run - 13.67 GB/s
SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 4098 runs - 306.91 us/run - 16384 kB/run - 50.92 GB/s
SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 3591 runs - 317.06 us/run - 65536 kB/run - 197.32 GB/s
-- After
Backend 1/2: CUDA0
Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
Device memory: 97250 MB (96691 MB free)
SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 2236 runs - 450.67 us/run - 655360 kB/run - 1400.15 GB/s
SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 17748 runs - 56.97 us/run - 128880 kB/run - 2161.50 GB/s
SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 57204 runs - 18.35 us/run - 12320 kB/run - 640.36 GB/s
SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 9840 runs - 102.46 us/run - 81920 kB/run - 763.42 GB/s
SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 98064 runs - 10.25 us/run - 6160 kB/run - 573.43 GB/s
SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 98310 runs - 10.25 us/run - 10240 kB/run - 953.21 GB/s
SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 147438 runs - 7.00 us/run - 640 kB/run - 87.26 GB/s
SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 147438 runs - 6.99 us/run - 770 kB/run - 105.05 GB/s
SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 172011 runs - 6.02 us/run - 64 kB/run - 10.13 GB/s
SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 163820 runs - 6.12 us/run - 256 kB/run - 39.87 GB/s
SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 147438 runs - 6.91 us/run - 1024 kB/run - 141.40 GB/s
SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 122865 runs - 8.20 us/run - 128 kB/run - 14.89 GB/s
SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 114674 runs - 8.79 us/run - 512 kB/run - 55.54 GB/s
SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 98292 runs - 10.24 us/run - 2048 kB/run - 190.82 GB/s
SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 131056 runs - 8.11 us/run - 256 kB/run - 30.12 GB/s
SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 49146 runs - 22.54 us/run - 1024 kB/run - 43.33 GB/s
SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 49146 runs - 23.32 us/run - 4096 kB/run - 167.50 GB/s
SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 122865 runs - 8.19 us/run - 512 kB/run - 59.63 GB/s
SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 40955 runs - 24.59 us/run - 2048 kB/run - 79.43 GB/s
SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 24582 runs - 43.21 us/run - 8192 kB/run - 180.84 GB/s
SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 122865 runs - 8.19 us/run - 1024 kB/run - 119.25 GB/s
SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 40955 runs - 24.59 us/run - 4096 kB/run - 158.87 GB/s
SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 12294 runs - 82.37 us/run - 16384 kB/run - 189.74 GB/s
SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 122865 runs - 8.20 us/run - 2048 kB/run - 238.28 GB/s
SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 36873 runs - 28.66 us/run - 8192 kB/run - 272.61 GB/s
SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 9225 runs - 108.51 us/run - 32768 kB/run - 288.13 GB/s
SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 98292 runs - 10.24 us/run - 4096 kB/run - 381.65 GB/s
SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 32784 runs - 31.74 us/run - 16384 kB/run - 492.43 GB/s
SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0): 8721 runs - 121.20 us/run - 65536 kB/run - 516.19 GB/s
```
* Fix compiler warnings by casting `const` away
* llama : require backend samplers to be of type llama_sampler_chain
* sampling : use host buffer type for inputs
* Try fixing HIP build errors by adding corresponding #defines
Will likely have to disable for MUSA as I didn't find any docs online
* Fix launch logic when supports_cooperative_launch=false
* Disable cooperative groups for musa
Didn't find any doc online, so I don't even know if they support this
* server : reconnect the backend_sampling setting in the WebUI
* graph : make the compute graph constant with respect to active samplers
* batch : fix sequence id ownage
* graph : respect sampler order for graph reuse
* HIP/MUSA: fix build for backend sampling
* sampling : optimize logit_bias sampler
* cont : fix build
* sampling : generic ggml op support detection
* sampling : fix greedy
* tests : run backend sampler tests always on the CPU
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <redacted>
* webui : fix lint
* Fix data-race in `soft_max_f32_parallelize_cols_single_row`
By using `tmp_vals` to store both max values and exponential
accumulator there was a potential data-race, where the exponential accumulator
for a given CTA may have written to `tmp_vals` before all others CTAs have
read the max value from it.
To avoid a third g.sync(), an additional temporary data-storage was
added. Given that there are syncs in place after writing to gmem, it is
guaranteed that the previous values for sums/max were read by all CTAs now.
* Apply automated code-formating to softmax.cu
* llama : clarify backend_accept/backend_set_input comments [no ci]
* llama : fix typo in comment [no ci]
* tests : use smart pointers for backend samplers
* tests : use smart pointers for model and context
* tests : remove vocab member from test_model_context
Also includes some minor cleanups related to nullptr checks.
* tests : extract batch info update to separate method
* tests : fix batch token position tracking in test_backend_sampler.cpp
* tests : add --device option support to backend sampler tests
This commit adds support for specifying a device to run the test on.
* common : disable backend sampling when grammar is involved
* Fix different RNG-states between backend-sampling and llama-sampling
By default, we perform a warm-up step where the ggml_cgraph is computed
once. For backend-sampling, this graph contains the sampler, and thus
the RNG state of the backend's dist sampler is advanced once.
Solution to this is to reset the samplers after the warmup has finished
* Make backend dist sampler use same rnd's as dist sampler
We sample in double precision and cast to float to match rnd numbers of
llama_dampler_dist which uses double precision (sampling from
std::uniform_real_distribution<double> and
std::uniform_real_distribution<float> with same rng will produce
different sequences).
* Update CCCL version to v3.2.0-rc2
* Build with CCCL 3.2 for CUDA backends
Gives best perf for backend-sampling on CUDA. Flag can be removed once
CCCL 3.2 is bundled within CTK and that CTK version is used in llama.cpp
* tests : revert server test changes (no longer needed)
* ggml : include cub/cub.cuh instead of block_scan.cuh
This commit updates the include directive in cumsum.cu to use
cub/cub.cuh instead of cub/block/block_scan.cuh.
The motivation of this change is that without it compilation fails
with the following error:
```console
/llama.cpp/ggml/src/ggml-cuda/cumsum.cu(196): error: name followed by "::" must be a class or namespace name
cub::DeviceScan::InclusiveSum(nullptr,
^
/llama.cpp/ggml/src/ggml-cuda/cumsum.cu(207): error: name followed by "::" must be a class or namespace name
cub::DeviceScan::InclusiveSum((void *) tmp_alloc.get(), tmp_size, src, dst, ne, stream);
^
2 errors detected in the compilation of "/llama.cpp/ggml/src/ggml-cuda/cumsum.cu".
gmake[2]: *** [ggml/src/ggml-cuda/CMakeFiles/ggml-cuda.dir/build.make:317: ggml/src/ggml-cuda/CMakeFiles/ggml-cuda.dir/cumsum.cu.o] Error 2
```
Commit
83b3b1c271c78bd77664120431aa8c354d68daac ("cuda: optimize
cumsum cub path (#18362)") updated the include directive replacing
device_scan.cuh which is causing this issue.
This commit uses cub/cub.cuh umbrella header which is consistent with
other files in the ggml-cuda directory like mean.cu, sum.cu, etc.
* arg : add shorthand for --backend-sampling
* ci : add server workflow with backend sampling
* sampling : fix reshapes
* server : remove printfs
* sampling : zero-initialize input buffers
* minor : add comments + some cleanup
* llama : assert at most one output token per sequence
* tests : add more top_k tests
* CUDA: Fix non-determinism of CUB-based Top-K
DeviceTopK::MaxPairs is an iterative algorithm, where `d_keys_out` is
written after every iteration. As a consequence, it must not overlap
with `d_keys_in`, or otherwise undefined behavior occurs (keys are no
longer unique in d_keys_in and may map to different values between
iterations)
* CUDA: Optimize index of top_k_cub
By using the fancy
[`counting_iterator`](https://nvidia.github.io/cccl/thrust/api/classthrust_1_1counting__iterator.html#classthrust_1_1counting__iterator)
exposed by CCCL, we can avoid materializing the index to GPU memory,
saving VRAM + 1 kernel invocation
* Apply code-formatting to top-k.cu
* CUDA: Remove obsolete temp_keys from CUB
Since we use cuda::discard_iterator to avoid writing out the keys, we
can directly pass in src instead of copying it to `temp_keys`
* minor : cleanup, TODOs, etc.
---------
Co-authored-by: Georgi Gerganov <redacted>
Co-authored-by: Oliver Simons <redacted>
Co-authored-by: Johannes Gäßler <redacted>
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build with CMake
+ # TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
run: |
cmake -S . -B build -G Ninja \
-DLLAMA_CURL=OFF \
-DCMAKE_CUDA_ARCHITECTURES=89-real \
-DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \
-DGGML_NATIVE=OFF \
- -DGGML_CUDA=ON
+ -DGGML_CUDA=ON \
+ -DGGML_CUDA_CUB_3DOT2=ON
cmake --build build
windows-2022-cmake-cuda:
- name: Build
id: cmake_build
shell: cmd
+ # TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=ON ^
-DGGML_CUDA=ON ^
- -DGGML_RPC=ON
+ -DGGML_RPC=ON ^
+ -DGGML_CUDA_CUB_3DOT2=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
- name: Build
id: cmake_build
shell: cmd
+ # TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^
-DGGML_NATIVE=OFF ^
-DGGML_CPU=OFF ^
-DGGML_CUDA=ON ^
- -DLLAMA_CURL=OFF
+ -DLLAMA_CURL=OFF ^
+ -DGGML_CUDA_CUB_3DOT2=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% --target ggml-cuda
include:
- build_type: Release
sanitizer: ""
+ extra_args: ""
+ - build_type: Release
+ sanitizer: ""
+ extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
+ - name: Build
+ id: cmake_build
+ run: |
+ cmake -B build -DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
+ cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
+
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
run: |
pip install -r tools/server/tests/requirements.txt
+ - name: Tests
+ id: server_integration_tests
+ if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }}
+ run: |
+ cd tools/server/tests
+ export ${{ matrix.extra_args }}
+ pytest -v -x -m "not slow"
+
server-windows:
runs-on: windows-2022
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
- CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
+ # TODO: Remove GGML_CUDA_CUB_3DOT2 flag once CCCL 3.2 is bundled within CTK and that CTK version is used in this project
+ CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DGGML_CUDA_CUB_3DOT2=ON"
if command -v nvidia-smi >/dev/null 2>&1; then
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
}
).set_sparam());
+ add_opt(common_arg(
+ {"-bs", "--backend-sampling"},
+ "enable backend sampling (experimental) (default: disabled)",
+ [](common_params & params) {
+ params.sampling.backend_sampling = true;
+ }
+ ).set_sparam().set_env("LLAMA_ARG_BACKEND_SAMPLING"));
add_opt(common_arg(
{"--pooling"}, "{none,mean,cls,last,rank}",
"pooling type for embeddings, use model default if unspecified",
std::vector<llama_adapter_lora_ptr> lora;
std::vector<common_sampler_ptr> samplers;
+ std::vector<llama_sampler_seq_config> samplers_seq_config;
};
common_init_result::common_init_result(common_params & params) :
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
//}
+ // init the backend samplers as part of the context creation
pimpl->samplers.resize(cparams.n_seq_max);
+ pimpl->samplers_seq_config.resize(cparams.n_seq_max);
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
+ pimpl->samplers_seq_config[i] = { i, common_sampler_get(pimpl->samplers[i].get()) };
+ }
+
+ // TODO: temporarily gated behind a flag
+ if (params.sampling.backend_sampling) {
+ cparams.samplers = pimpl->samplers_seq_config.data();
+ cparams.n_samplers = pimpl->samplers_seq_config.size();
}
llama_context * lctx = llama_init_from_model(model, cparams);
return pimpl->samplers[seq_id].get();
}
+void common_init_result::reset_samplers() {
+ for (int i = 0; i < (int) pimpl->samplers.size(); ++i) {
+ llama_sampler_reset(common_sampler_get(pimpl->samplers[i].get()));
+ }
+}
+
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
+
+ // reset samplers to reset RNG state after warmup to the seeded state
+ res->reset_samplers();
}
return res;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
+ bool backend_sampling = false;
+
bool has_logit_bias() const {
return !logit_bias.empty();
}
llama_model * model();
llama_context * context();
+
common_sampler * sampler(llama_seq_id seq_id);
+ void reset_samplers();
std::vector<llama_adapter_lora_ptr> & lora();
}
static llama_sampler_i llama_sampler_llg_i = {
- /* .name = */ llama_sampler_llg_name,
- /* .accept = */ llama_sampler_llg_accept_impl,
- /* .apply = */ llama_sampler_llg_apply,
- /* .reset = */ llama_sampler_llg_reset,
- /* .clone = */ llama_sampler_llg_clone,
- /* .free = */ llama_sampler_llg_free,
+ /* .name = */ llama_sampler_llg_name,
+ /* .accept = */ llama_sampler_llg_accept_impl,
+ /* .apply = */ llama_sampler_llg_apply,
+ /* .reset = */ llama_sampler_llg_reset,
+ /* .clone = */ llama_sampler_llg_clone,
+ /* .free = */ llama_sampler_llg_free,
+ /* .backend_init = */ NULL,
+ /* .backend_accept = */ NULL,
+ /* .backend_apply = */ NULL,
+ /* .backend_set_input = */ NULL,
};
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len,
}
void set_logits(struct llama_context * ctx, int idx) {
- const auto * logits = llama_get_logits_ith(ctx, idx);
+ const float * sampled_probs = llama_get_sampled_probs_ith (ctx, idx);
+ const float * sampled_logits = llama_get_sampled_logits_ith (ctx, idx);
+ const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx);
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
- cur.resize(n_vocab);
-
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
+ if (sampled_probs) {
+ const uint32_t sampled_probs_count = llama_get_sampled_probs_count_ith(ctx, idx);
+ cur.resize(sampled_probs_count);
+ for (uint32_t i = 0; i < sampled_probs_count; ++i) {
+ cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], sampled_probs[i]};
+ }
+ } else if (sampled_logits) {
+ const uint32_t sampled_logits_count = llama_get_sampled_logits_count_ith(ctx, idx);
+ cur.resize(sampled_logits_count);
+ for (uint32_t i = 0; i < sampled_logits_count; i++) {
+ cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], 0.0f};
+ }
+ } else {
+ const auto * logits = llama_get_logits_ith(ctx, idx);
+ GGML_ASSERT(logits != nullptr);
+ cur.resize(n_vocab);
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
+ }
}
cur_p = { cur.data(), cur.size(), -1, false };
return std::string(result);
}
-struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
+struct common_sampler * common_sampler_init(const struct llama_model * model, struct common_params_sampling & params) {
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
llama_sampler_chain_add(chain, smpl);
}
+ if (grmr && params.backend_sampling) {
+ LOG_WRN("%s: backend sampling is not compatible with grammar, disabling\n", __func__);
+
+ params.backend_sampling = false;
+ }
+
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ grmr,
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
+ // Check if a backend sampler has already sampled a token in which case we
+ // return that token id directly.
+ {
+ id = llama_get_sampled_token_ith(ctx, idx);
+
+ if (id != LLAMA_TOKEN_NULL) {
+ LOG_DBG("%s: Backend sampler selected token: '%d'. Will not run any CPU samplers\n", __func__, id);
+
+ GGML_ASSERT(!gsmpl->grmr && "using grammar in combination with backend sampling is not supported");
+
+ // TODO: simplify
+ gsmpl->cur.resize(1);
+ gsmpl->cur[0] = { id, 0.0f, 1.0f };
+ cur_p = { gsmpl->cur.data(), gsmpl->cur.size(), 0, true };
+
+ return id;
+ }
+ }
+
gsmpl->set_logits(ctx, idx);
if (grammar_first) {
// llama_sampler API overloads
-struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params);
+// note: can mutate params in some cases
+struct common_sampler * common_sampler_init(const struct llama_model * model, struct common_params_sampling & params);
void common_sampler_free(struct common_sampler * gsmpl);
// arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
+// get the underlying llama_sampler_chain
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// extended sampling implementation:
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
- std::vector<llama_sampler *> samplers;
+ std::vector<llama_sampler_seq_config> sampler_configs;
for (int32_t i = 0; i < n_parallel; ++i) {
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
- samplers.push_back(smpl);
+ sampler_configs.push_back({ i, smpl });
+ }
+
+ // TODO: temporarily gated behind a flag
+ if (params.sampling.backend_sampling) {
+ ctx_params.samplers = sampler_configs.data();
+ ctx_params.n_samplers = sampler_configs.size();
}
llama_context * ctx = llama_init_from_model(model, ctx_params);
continue;
}
- const llama_token new_token_id = llama_sampler_sample(samplers[i], ctx, i_batch[i]);
+ const llama_token new_token_id = llama_sampler_sample(sampler_configs[i].sampler, ctx, i_batch[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_predict) {
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
LOG("\n");
- llama_perf_sampler_print(samplers[0]);
+ llama_perf_sampler_print(sampler_configs[0].sampler);
llama_perf_context_print(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
- for (auto & sampler_config : samplers) {
- llama_sampler_free(sampler_config);
+ for (auto & sampler_config : sampler_configs) {
+ llama_sampler_free(sampler_config.sampler);
}
llama_free(ctx);
enable_language(CUDA)
+ # TODO: Remove once CCCL 3.2 has been released and bundled with CUDA Toolkit
+ if (GGML_CUDA_CUB_3DOT2)
+ include(FetchContent)
+
+ FetchContent_Declare(
+ CCCL
+ GIT_REPOSITORY https://github.com/nvidia/cccl.git
+ GIT_TAG v3.2.0-rc2
+ GIT_SHALLOW TRUE
+ )
+
+ FetchContent_MakeAvailable(CCCL)
+ endif()
+
# Replace any plain 12X CUDA architectures with their "architecture-specific" equivalents 12Xa.
# 12X is forwards-compatible, 12Xa is not.
# Notably the Blackwell FP4 tensor core instructions are not forwards compatible and therefore need 12Xa.
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas)
else ()
+ if (GGML_CUDA_CUB_3DOT2)
+ target_link_libraries(ggml-cuda PRIVATE CCCL::CCCL)
+ endif()
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "10.1")
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
endif()
endif()
else()
+ if (GGML_CUDA_CUB_3DOT2)
+ target_link_libraries(ggml-cuda PRIVATE CCCL::CCCL)
+ endif()
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas)
endif()
if (NOT MSVC)
list(APPEND CUDA_CXX_FLAGS -Wno-pedantic)
+ else()
+ # CCCL 3.2 onwards will require a cpp-standard-compliant preprocessor for MSVC
+ # https://github.com/NVIDIA/cccl/pull/6827
+ list(APPEND CUDA_CXX_FLAGS /Zc:preprocessor)
endif()
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
}
#ifdef GGML_CUDA_USE_CUB
-static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
- const float * x,
- int * dst,
- const int ncols,
- const int nrows,
- ggml_sort_order order,
- cudaStream_t stream) {
- ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ((size_t) ncols) * nrows);
- ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ((size_t) ncols) * nrows);
+void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
+ const float * x,
+ int * dst,
+ const int ncols,
+ const int nrows,
+ ggml_sort_order order,
+ cudaStream_t stream) {
+ ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ncols * nrows);
+ ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ncols * nrows);
ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
int * temp_indices = temp_indices_alloc.get();
size_t temp_storage_bytes = 0;
if (order == GGML_SORT_ORDER_ASC) {
- DeviceSegmentedRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
- temp_indices, dst, // values (indices)
- ncols * nrows, nrows, // num items, num segments
- d_offsets, d_offsets + 1, 0, sizeof(float) * 8, // all bits
- stream);
+ if (nrows == 1) {
+ DeviceRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
+ temp_indices, dst, // values (indices)
+ ncols, 0, sizeof(float) * 8, stream);
+ } else {
+ DeviceSegmentedSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
+ temp_indices, dst, // values (indices)
+ ncols * nrows, nrows, // num items, num segments
+ d_offsets, d_offsets + 1, stream);
+ }
} else {
- DeviceSegmentedRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
- dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, 0,
- sizeof(float) * 8, stream);
+ if (nrows == 1) {
+ DeviceRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
+ temp_indices, dst, // values (indices)
+ ncols, 0, sizeof(float) * 8, stream);
+ } else {
+ DeviceSegmentedSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
+ dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, stream);
+ }
}
ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
void * d_temp_storage = temp_storage_alloc.get();
if (order == GGML_SORT_ORDER_ASC) {
- DeviceSegmentedRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
- ncols * nrows, nrows, d_offsets, d_offsets + 1, 0, sizeof(float) * 8,
- stream);
+ if (nrows == 1) {
+ DeviceRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
+ temp_indices, dst, // values (indices)
+ ncols, 0, sizeof(float) * 8, stream);
+ } else {
+ DeviceSegmentedSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
+ ncols * nrows, nrows, d_offsets, d_offsets + 1, stream);
+ }
} else {
- DeviceSegmentedRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
- temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
- 0, sizeof(float) * 8, stream);
+ if (nrows == 1) {
+ DeviceRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
+ temp_indices, dst, // values (indices)
+ ncols, 0, sizeof(float) * 8, stream);
+ } else {
+ DeviceSegmentedSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
+ temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
+ stream);
+ }
}
}
#endif // GGML_CUDA_USE_CUB
return n;
}
-static void argsort_f32_i32_cuda_bitonic(const float * x,
- int * dst,
- const int ncols,
- const int nrows,
- ggml_sort_order order,
- cudaStream_t stream) {
+void argsort_f32_i32_cuda_bitonic(const float * x,
+ int * dst,
+ const int ncols,
+ const int nrows,
+ ggml_sort_order order,
+ cudaStream_t stream) {
// bitonic sort requires ncols to be power of 2
const int ncols_pad = next_power_of_2(ncols);
#include "common.cuh"
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+
+#ifdef GGML_CUDA_USE_CUB
+void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
+ const float * x,
+ int * dst,
+ const int ncols,
+ const int nrows,
+ ggml_sort_order order,
+ cudaStream_t stream);
+#endif // GGML_CUDA_USE_CUB
+void argsort_f32_i32_cuda_bitonic(const float * x,
+ int * dst,
+ const int ncols,
+ const int nrows,
+ ggml_sort_order order,
+ cudaStream_t stream);
int device_count;
struct cuda_device_info {
- int cc; // compute capability
- int nsm; // number of streaming multiprocessors
- size_t smpb; // max. shared memory per block
- size_t smpbo; // max. shared memory per block (with opt-in)
- bool integrated; // Device is integrated as opposed to discrete
- bool vmm; // virtual memory support
- size_t vmm_granularity; // granularity of virtual memory
+ int cc; // compute capability
+ int nsm; // number of streaming multiprocessors
+ size_t smpb; // max. shared memory per block
+ size_t smpbo; // max. shared memory per block (with opt-in)
+ bool integrated; // Device is integrated as opposed to discrete
+ bool vmm; // virtual memory support
+ size_t vmm_granularity; // granularity of virtual memory
size_t total_vram;
- int warp_size; // Number of threads in a dispatch
+ int warp_size; // Number of threads in a dispatch
+ bool supports_cooperative_launch; // whether cooperative launch is supported
};
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
#include "ggml.h"
#ifdef GGML_CUDA_USE_CUB
-# include <cub/block/block_scan.cuh>
+# include <cub/cub.cuh>
#endif // GGML_CUDA_USE_CUB
template<typename T, int BLOCK_SIZE>
}
}
+#ifdef GGML_CUDA_USE_CUB
+template <typename T>
+static void cumsum_cub(ggml_cuda_pool & pool,
+ const T * src,
+ T * dst,
+ int64_t ne,
+ cudaStream_t stream) {
+ size_t tmp_size = 0;
+
+ // Query how much temp storage CUDA UnBound (CUB) needs
+ cub::DeviceScan::InclusiveSum(nullptr, // d_temp_storage (null = just query size)
+ tmp_size, // reference to size (will be set by CUB)
+ src, // input pointer
+ dst, // output pointer
+ ne, // number of elements
+ stream // CUDA stream to use
+ );
+
+ ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
+
+ // Perform the inclusive scan
+ cub::DeviceScan::InclusiveSum((void *) tmp_alloc.get(), tmp_size, src, dst, ne, stream);
+}
+#endif // GGML_CUDA_USE_CUB
+
template<typename T>
static void cumsum_cuda(
- const T * src, T * dst,
+ [[maybe_unused]] ggml_backend_cuda_context & ctx, const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
if (is_contiguous) {
use_cub = true;
+ const int64_t nrows = ne01 * ne02 * ne03;
+ // TODO: Compare with DeviceSegmentedScan::InclusiveSegmentedSum for nrows > 1 once InclusiveSegmentedSum is released
+ // Heuristics were determined as part of https://github.com/ggml-org/llama.cpp/pull/17004
+ if (((nrows == 1) && (ne00 > 1024)) || (ne00 / nrows > 4096)) {
+ for (int i=0; i<nrows; i++) {
+ cumsum_cub(ctx.pool(), src + i * ne00, dst + i * ne00, ne00, stream);
+ }
+ return;
+ }
}
#endif // GGML_CUDA_USE_CUB
dim3 grid_dims(ne01, ne02, ne03);
case GGML_TYPE_F32:
{
cumsum_cuda(
- (const float *)src0->data, (float *)dst->data,
+ ctx, (const float *)src0->data, (float *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
#include "ggml-cuda/count-equal.cuh"
#include "ggml-cuda/cpy.cuh"
#include "ggml-cuda/cross-entropy-loss.cuh"
+#include "ggml-cuda/cumsum.cuh"
#include "ggml-cuda/diagmask.cuh"
#include "ggml-cuda/diag.cuh"
#include "ggml-cuda/fattn.cuh"
#include "ggml-cuda/ssm-scan.cuh"
#include "ggml-cuda/sum.cuh"
#include "ggml-cuda/sumrows.cuh"
+#include "ggml-cuda/top-k.cuh"
#include "ggml-cuda/mean.cuh"
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/topk-moe.cuh"
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
+
+#ifndef GGML_USE_MUSA
+ int supports_coop_launch = 0;
+ CUDA_CHECK(cudaDeviceGetAttribute(&supports_coop_launch, cudaDevAttrCooperativeLaunch, id));
+ info.devices[id].supports_cooperative_launch = !!supports_coop_launch;
+#else
+ info.devices[id].supports_cooperative_launch = false;
+#endif // !(GGML_USE_MUSA)
#if defined(GGML_USE_HIP)
info.devices[id].smpbo = prop.sharedMemPerBlock;
case GGML_OP_SUM:
ggml_cuda_op_sum(ctx, dst);
break;
+ case GGML_OP_CUMSUM:
+ ggml_cuda_op_cumsum(ctx, dst);
+ break;
case GGML_OP_SUM_ROWS:
ggml_cuda_op_sum_rows(ctx, dst);
break;
case GGML_OP_SSM_SCAN:
ggml_cuda_op_ssm_scan(ctx, dst);
break;
+ case GGML_OP_TOP_K:
+ ggml_cuda_op_top_k(ctx, dst);
+ break;
case GGML_OP_ARGSORT:
ggml_cuda_op_argsort(ctx, dst);
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
- case GGML_OP_CUMSUM:
- ggml_cuda_op_cumsum(ctx, dst);
- break;
case GGML_OP_TRI:
ggml_cuda_op_tri(ctx, dst);
break;
return true;
case GGML_OP_SUM:
return ggml_is_contiguous_rows(op->src[0]);
+ case GGML_OP_TOP_K:
case GGML_OP_ARGSORT:
#ifndef GGML_CUDA_USE_CUB
return op->src[0]->ne[0] <= 1024;
#include "common.cuh"
#include "ggml.h"
#include "softmax.cuh"
+
+#ifdef GGML_USE_HIP
+#include <hip/hip_cooperative_groups.h>
+#else
+#include <cooperative_groups.h>
+#include <cooperative_groups/reduce.h>
+#endif // GGML_USE_HIP
+
#include <cstdint>
#include <utility>
dst[col] = vals[col] * inv_sum;
}
}
+
+
+// TODO: This is a common pattern used across kernels that could be moved to common.cuh + templated
+static __device__ float two_stage_warp_reduce_max(float val) {
+ val = warp_reduce_max(val);
+ if (blockDim.x > WARP_SIZE) {
+ assert((blockDim.x <= 1024) && (blockDim.x % WARP_SIZE) == 0);
+ __shared__ float local_vals[32];
+ const int warp_id = threadIdx.x / WARP_SIZE;
+ const int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ local_vals[warp_id] = val;
+ }
+ __syncthreads();
+ val = -INFINITY;
+ if (lane_id < (static_cast<int>(blockDim.x) / WARP_SIZE)) {
+ val = local_vals[lane_id];
+ }
+ return warp_reduce_max(val);
+ } else {
+ return val;
+ }
+}
+
+static __device__ float two_stage_warp_reduce_sum(float val) {
+ val = warp_reduce_sum(val);
+ if (blockDim.x > WARP_SIZE) {
+ assert((blockDim.x <= 1024) && (blockDim.x % WARP_SIZE) == 0);
+ __shared__ float local_vals[32];
+ const int warp_id = threadIdx.x / WARP_SIZE;
+ const int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ local_vals[warp_id] = val;
+ }
+ __syncthreads();
+ val = 0.0f;
+ if (lane_id < (static_cast<int>(blockDim.x) / WARP_SIZE)) {
+ val = local_vals[lane_id];
+ }
+ return warp_reduce_sum(val);
+ } else {
+ return val;
+ }
+}
+
+// TODO: Template to allow keeping ncols in registers if they fit
+static __device__ void soft_max_f32_parallelize_cols_single_row(const float * __restrict__ x,
+ float * __restrict__ dst,
+ float * __restrict__ tmp_maxs,
+ float * __restrict__ tmp_sums,
+ const soft_max_params p) {
+ namespace cg = cooperative_groups;
+
+ const cg::grid_group g = cg::this_grid();
+
+ const int tid = threadIdx.x;
+ const int col_start = blockIdx.x * blockDim.x + tid;
+ const int n_elem_per_thread = 4;
+
+ float local_vals[n_elem_per_thread] = { -INFINITY, -INFINITY, -INFINITY, -INFINITY };
+ float local_max = -INFINITY;
+ const int step_size = gridDim.x * blockDim.x;
+
+ // Compute thread-local max
+ for (int col = col_start; col < p.ncols;) {
+#pragma unroll
+ for (int i = 0; i < n_elem_per_thread; i++) {
+ const int idx = col + i * step_size;
+ local_vals[i] = idx < p.ncols ? x[idx] : -INFINITY;
+ }
+#pragma unroll
+ for (int i = 0; i < n_elem_per_thread; i++) {
+ local_max = fmaxf(local_max, local_vals[i]);
+ }
+ col += step_size * n_elem_per_thread;
+ }
+
+ // Compute CTA-level max
+ local_max = two_stage_warp_reduce_max(local_max);
+
+ // Store CTA-level max to GMEM
+ if (tid == 0) {
+ tmp_maxs[blockIdx.x] = local_max;
+ }
+ g.sync();
+
+ // Compute compute global max from CTA-level maxs
+ assert(gridDim.x < blockDim.x); // currently we only support this case
+ if (tid < gridDim.x) {
+ local_max = tmp_maxs[tid];
+ } else {
+ local_max = -INFINITY;
+ }
+ local_max = two_stage_warp_reduce_max(local_max);
+
+ // Compute softmax dividends, accumulate divisor
+ float tmp_expf = 0.0f;
+ for (int col = col_start; col < p.ncols;) {
+#pragma unroll
+ for (int i = 0; i < n_elem_per_thread; i++) {
+ const int idx = col + i * step_size;
+ local_vals[i] = idx < p.ncols ? x[idx] : -INFINITY;
+ }
+#pragma unroll
+ for (int i = 0; i < n_elem_per_thread; i++) {
+ const int idx = col + i * step_size;
+ if (idx < p.ncols) {
+ const float tmp = expf(local_vals[i] - local_max);
+ tmp_expf += tmp;
+ dst[idx] = tmp;
+ }
+ }
+ col += step_size * n_elem_per_thread;
+ }
+
+ // Reduce divisor within CTA
+ tmp_expf = two_stage_warp_reduce_sum(tmp_expf);
+
+ // Store CTA-level sum to GMEM
+ if (tid == 0) {
+ tmp_sums[blockIdx.x] = tmp_expf;
+ }
+ g.sync();
+
+ // Compute global sum from CTA-level sums
+ if (tid < gridDim.x) {
+ tmp_expf = tmp_sums[tid];
+ } else {
+ tmp_expf = 0.0f;
+ }
+ tmp_expf = two_stage_warp_reduce_sum(tmp_expf);
+
+ // Divide dividend by global sum + store data
+ for (int col = col_start; col < p.ncols;) {
+#pragma unroll
+ for (int i = 0; i < n_elem_per_thread; i++) {
+ const int idx = col + i * step_size;
+ local_vals[i] = idx < p.ncols ? dst[idx] : -INFINITY;
+ }
+#pragma unroll
+ for (int i = 0; i < n_elem_per_thread; i++) {
+ const int idx = col + i * step_size;
+ if (idx < p.ncols) {
+ dst[idx] = local_vals[i] / tmp_expf;
+ }
+ }
+ col += step_size * n_elem_per_thread;
+ }
+}
+
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>(x, mask, sinks, dst, p);
}
+__launch_bounds__(8*WARP_SIZE, 1) static __global__ void soft_max_f32_parallelize_cols(const float * __restrict__ x,
+ float * __restrict__ dst,
+ float * __restrict__ tmp_maxs,
+ float * __restrict__ tmp_sums,
+ const soft_max_params p)
+// We loop over all instead of parallelizing across gridDim.y as cooperative groups
+// currently only support synchronizing the complete grid if not launched as a cluster group
+// (which requires CC > 9.0)
+// https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/device-callable-apis.html#grid-synchronization
+// https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/device-callable-apis.html#class-cluster-group
+{
+ for (int rowx = 0; rowx < p.ne01 * p.ne02 * p.ne03; rowx++) {
+ soft_max_f32_parallelize_cols_single_row(x + int64_t(rowx) * p.ncols, dst + int64_t(rowx) * p.ncols, tmp_maxs,
+ tmp_sums, p);
+ }
+}
-template<typename T>
-static void soft_max_f32_cuda(const float * x, const T * mask, const float * sinks, float * dst, const soft_max_params & params, cudaStream_t stream) {
+template <typename T>
+static void soft_max_f32_cuda(const float * x,
+ const T * mask,
+ const float * sinks,
+ float * dst,
+ const soft_max_params & params,
+ cudaStream_t stream,
+ [[maybe_unused]] ggml_backend_cuda_context & ctx) {
int nth = WARP_SIZE;
const int64_t ncols_x = params.ncols;
if (nbytes_shared <= smpbo) {
launch_soft_max_kernels<32, 64, 128, 256, 512, 1024, 2048, 4096>(x, mask, sinks, dst, params, stream, block_dims, block_nums, nbytes_shared);
} else {
- const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
- soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, sinks, dst, params);
+ // Parallelize across SMs for top-p/dist-sampling
+ // The heuristic for parallelizing rows across SMs vs parallelizing single row & looping over all rows was done on the basis of a B6000 GPU and
+ // Can be adapted further for lower-SM-count GPUs, though keeping data in registers should be implemented first as that is the optimal solution.
+ if (ggml_cuda_info().devices[id].supports_cooperative_launch &&
+ ncols_x / (params.ne01 * params.ne02 * params.ne03) > 8192 && mask == nullptr && sinks == nullptr &&
+ params.scale == 1.0f && params.max_bias == 0.0f) {
+ ggml_cuda_pool_alloc<float> tmp_maxs_alloc(ctx.pool(), ggml_cuda_info().devices[id].nsm * sizeof(float));
+ ggml_cuda_pool_alloc<float> tmp_sums_alloc(ctx.pool(), ggml_cuda_info().devices[id].nsm * sizeof(float));
+
+ void * kernel_args[] = { (void *) &x, (void *) &dst, (void *) &tmp_maxs_alloc.ptr,
+ (void *) &tmp_sums_alloc.ptr, (void *) const_cast<soft_max_params *>(¶ms) };
+ CUDA_CHECK(cudaLaunchCooperativeKernel((void *) soft_max_f32_parallelize_cols,
+ dim3(ggml_cuda_info().devices[id].nsm, 1, 1),
+ dim3(WARP_SIZE * 8, 1, 1), kernel_args, 0, stream));
+ } else {
+ const size_t nbytes_shared_low = WARP_SIZE * sizeof(float);
+ soft_max_f32<false, 0, 0>
+ <<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, sinks, dst, params);
+ }
}
}
params.m1 = m1;
if (use_f16) {
- soft_max_f32_cuda(src0_d, (const half *) src1_d, (const float *) src2_d, dst_d, params, stream);
+ soft_max_f32_cuda(src0_d, (const half *) src1_d, (const float *) src2_d, dst_d, params, stream, ctx);
} else {
- soft_max_f32_cuda(src0_d, (const float *) src1_d, (const float *) src2_d, dst_d, params, stream);
+ soft_max_f32_cuda(src0_d, (const float *) src1_d, (const float *) src2_d, dst_d, params, stream, ctx);
}
}
--- /dev/null
+#include "argsort.cuh"
+#include "top-k.cuh"
+
+#ifdef GGML_CUDA_USE_CUB
+# include <cub/cub.cuh>
+# if (CCCL_MAJOR_VERSION >= 3 && CCCL_MINOR_VERSION >= 2)
+# include <cuda/iterator>
+# define CUB_TOP_K_AVAILABLE
+using namespace cub;
+# endif // CCCL_MAJOR_VERSION >= 3 && CCCL_MINOR_VERSION >= 2
+#endif // GGML_CUDA_USE_CUB
+
+#ifdef CUB_TOP_K_AVAILABLE
+
+static void top_k_cub(ggml_cuda_pool & pool,
+ const float * src,
+ int * dst,
+ const int ncols,
+ const int k,
+ cudaStream_t stream) {
+ auto requirements = cuda::execution::require(cuda::execution::determinism::not_guaranteed,
+ cuda::execution::output_ordering::unsorted);
+ auto stream_env = cuda::stream_ref{ stream };
+ auto env = cuda::std::execution::env{ stream_env, requirements };
+
+ auto indexes_in = cuda::make_counting_iterator(0);
+
+ size_t temp_storage_bytes = 0;
+ DeviceTopK::MaxPairs(nullptr, temp_storage_bytes, src, cuda::discard_iterator(), indexes_in, dst, ncols, k,
+ env);
+
+ ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
+ void * d_temp_storage = temp_storage_alloc.get();
+
+ DeviceTopK::MaxPairs(d_temp_storage, temp_storage_bytes, src, cuda::discard_iterator(), indexes_in, dst,
+ ncols, k, env);
+}
+
+#elif defined(GGML_CUDA_USE_CUB) // CUB_TOP_K_AVAILABLE
+
+static int next_power_of_2(int x) {
+ int n = 1;
+ while (n < x) {
+ n *= 2;
+ }
+ return n;
+}
+
+#endif // CUB_TOP_K_AVAILABLE
+
+void ggml_cuda_op_top_k(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const float * src0_d = (const float *) src0->data;
+ int * dst_d = (int *) dst->data;
+ cudaStream_t stream = ctx.stream();
+
+ // are these asserts truly necessary?
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_I32);
+ GGML_ASSERT(ggml_is_contiguous(src0));
+
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
+ const int64_t k = dst->ne[0];
+ ggml_cuda_pool & pool = ctx.pool();
+#ifdef CUB_TOP_K_AVAILABLE
+ // TODO: Switch to `DeviceSegmentedTopK` for multi-row TopK once implemented
+ // https://github.com/NVIDIA/cccl/issues/6391
+ // TODO: investigate if there exists a point where parallelized argsort is faster than sequential top-k
+ for (int i = 0; i < nrows; i++) {
+ top_k_cub(pool, src0_d + i * ncols, dst_d + i * k, ncols, k, stream);
+ }
+#elif defined(GGML_CUDA_USE_CUB) // CUB_TOP_K_AVAILABLE
+ // Fall back to argsort + copy
+ const int ncols_pad = next_power_of_2(ncols);
+ const size_t shared_mem = ncols_pad * sizeof(int);
+ const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
+
+ ggml_cuda_pool_alloc<int> temp_dst_alloc(pool, ncols * nrows);
+ int * tmp_dst = temp_dst_alloc.get();
+
+ if (shared_mem > max_shared_mem || ncols > 1024) {
+ argsort_f32_i32_cuda_cub(pool, src0_d, tmp_dst, ncols, nrows, GGML_SORT_ORDER_DESC, stream);
+ } else {
+ argsort_f32_i32_cuda_bitonic(src0_d, tmp_dst, ncols, nrows, GGML_SORT_ORDER_DESC, stream);
+ }
+ CUDA_CHECK(cudaMemcpy2DAsync(dst_d, k * sizeof(int), tmp_dst, ncols * sizeof(int), k * sizeof(int), nrows,
+ cudaMemcpyDeviceToDevice, stream));
+#else // GGML_CUDA_USE_CUB
+ ggml_cuda_pool_alloc<int> temp_dst_alloc(pool, ncols * nrows);
+ int * tmp_dst = temp_dst_alloc.get();
+ argsort_f32_i32_cuda_bitonic(src0_d, tmp_dst, ncols, nrows, GGML_SORT_ORDER_DESC, stream);
+ CUDA_CHECK(cudaMemcpy2DAsync(dst_d, k * sizeof(int), tmp_dst, ncols * sizeof(int), k * sizeof(int), nrows,
+ cudaMemcpyDeviceToDevice, stream));
+#endif
+}
--- /dev/null
+#include "common.cuh"
+
+void ggml_cuda_op_top_k(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#define cublasSgemm hipblasSgemm
#define cublasStatus_t hipblasStatus_t
#define cublasOperation_t hipblasOperation_t
+#define cudaDevAttrCooperativeLaunch hipDeviceAttributeCooperativeLaunch
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
+#define cudaDeviceGetAttribute hipDeviceGetAttribute
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
#define cudaHostRegisterPortable hipHostRegisterPortable
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly
#define cudaHostUnregister hipHostUnregister
+#define cudaLaunchCooperativeKernel hipLaunchCooperativeKernel
#define cudaLaunchHostFunc hipLaunchHostFunc
#define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaHostRegisterPortable musaHostRegisterPortable
#define cudaHostRegisterReadOnly musaHostRegisterReadOnly
#define cudaHostUnregister musaHostUnregister
+#define cudaLaunchCooperativeKernel musaLaunchCooperativeKernel
#define cudaLaunchHostFunc musaLaunchHostFunc
#define cudaMalloc musaMalloc
#define cudaMallocHost musaMallocHost
bool no_alloc; // only load metadata and simulate memory allocations
};
+ struct llama_sampler_seq_config {
+ llama_seq_id seq_id;
+ struct llama_sampler * sampler;
+ };
+
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
// https://github.com/ggml-org/llama.cpp/pull/7544
struct llama_context_params {
bool kv_unified; // use a unified buffer across the input sequences when computing the attention
// try to disable when n_seq_max > 1 for improved performance when the sequences do not share a large prefix
// ref: https://github.com/ggml-org/llama.cpp/pull/14363
+
+ // [EXPERIMENTAL]
+ // backend sampler chain configuration (make sure the caller keeps the sampler chains alive)
+ // note: the samplers must be sampler chains (i.e. use llama_sampler_chain_init)
+ struct llama_sampler_seq_config * samplers;
+ size_t n_samplers;
};
// model quantization parameters
// otherwise: float[n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
+ //
+ // backend sampling API [EXPERIMENTAL]
+ // note: use only if the llama_context was created with at least one llama_sampler_seq_config
+ //
+
+ // Get the backend sampled token for the ith token.
+ // Returns LLAMA_TOKEN_NULL if no token was sampled.
+ LLAMA_API llama_token llama_get_sampled_token_ith(struct llama_context * ctx, int32_t i);
+
+ // Get the backend sampled probabilites for the ith token
+ // The index matches llama_get_sampled_token_ith().
+ // Returns NULL if no probabilites were generated.
+ LLAMA_API float * llama_get_sampled_probs_ith (struct llama_context * ctx, int32_t i);
+ LLAMA_API uint32_t llama_get_sampled_probs_count_ith(struct llama_context * ctx, int32_t i);
+
+ // Get the backend sampled logits for the ith token
+ // Returns NULL if no logits were sampled.
+ LLAMA_API float * llama_get_sampled_logits_ith (struct llama_context * ctx, int32_t i);
+ LLAMA_API uint32_t llama_get_sampled_logits_count_ith(struct llama_context * ctx, int32_t i);
+
+ // Get the backend sampled candidates (token ids) for the ith token
+ // These are needed to map probability/logit indices to vocab token ids.
+ // Returns NULL if no candidates were sampled.
+ LLAMA_API llama_token * llama_get_sampled_candidates_ith (struct llama_context * ctx, int32_t i);
+ LLAMA_API uint32_t llama_get_sampled_candidates_count_ith(struct llama_context * ctx, int32_t i);
+
//
// Vocab
//
//
// llama_sampler_free(smpl);
//
- // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
- //
typedef void * llama_sampler_context_t;
+ struct llama_sampler_data {
+ struct ggml_tensor * logits;
+ struct ggml_tensor * probs;
+ struct ggml_tensor * sampled;
+ struct ggml_tensor * candidates;
+ };
+
// user code can implement the interface below in order to create custom llama_sampler
struct llama_sampler_i {
const char * (*name) (const struct llama_sampler * smpl); // can be NULL
struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
- // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
- //void (*apply_ggml) (struct llama_sampler * smpl, ...);
+ // [EXPERIMENTAL]
+ // backend sampling interface:
+
+ // return true if the backend supports all ops needed by the sampler
+ // note: call once per sampler
+ bool (*backend_init)(struct llama_sampler * smpl, ggml_backend_buffer_type_t buft);
+
+ // call after .backend_apply()
+ void (*backend_accept)(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct ggml_tensor * selected_token);
+
+ // call after .backend_init()
+ void (*backend_apply)(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data);
+
+ // called before graph execution to set inputs for the current ubatch
+ void (*backend_set_input)(struct llama_sampler * smpl);
};
struct llama_sampler {
- const struct llama_sampler_i * iface;
- llama_sampler_context_t ctx;
+ struct llama_sampler_i * iface;
+
+ llama_sampler_context_t ctx;
};
+ // [EXPERIMENTAL]
+ // attach a sampler to the context
+ // note: prefer initializing the context with llama_context_params.samplers when possible
+ // note: changing the samplers of a context can cause graph reallocations and degraded performance
+ LLAMA_API bool llama_set_sampler(struct llama_context * ctx, llama_seq_id seq_id, struct llama_sampler * smpl);
+
// mirror of llama_sampler_i:
- LLAMA_API struct llama_sampler * llama_sampler_init (const struct llama_sampler_i * iface, llama_sampler_context_t ctx);
+ LLAMA_API struct llama_sampler * llama_sampler_init ( struct llama_sampler_i * iface, llama_sampler_context_t ctx);
LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
// important: takes ownership of the sampler object and will free it when llama_sampler_free is called
LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
- LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
+
+ // return NULL if:
+ // - the sampler is NULL
+ // - the sampler is not a llama_sampler_chain
+ // - the index is out of bounds, unless i == -1
+ // - if i == -1, returns the chain itself (can be used to check if the sampler is a chain)
+ LLAMA_API struct llama_sampler * llama_sampler_chain_get( struct llama_sampler * chain, int32_t i);
+
+ // the total number of samplers in the chain
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
// after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
+ // Initialize backend samplers here so they are part of the sampling graph
+ // before the reserve passes run later in this function. This avoids a later
+ // re-reserve when graph nodes change.
+ if (params.samplers != nullptr && params.n_samplers > 0) {
+ for (size_t i = 0; i < params.n_samplers; ++i) {
+ const auto & config = params.samplers[i];
+
+ if (llama_sampler_chain_get(config.sampler, -1) == nullptr) {
+ throw std::runtime_error("the backend samplers must be of type llama_sampler_chain");
+ }
+
+ if (set_sampler(config.seq_id, config.sampler)) {
+ const int n_samplers = llama_sampler_chain_n(config.sampler);
+
+ LLAMA_LOG_INFO("%s: setting backend sampler for seq_id %d (n = %d)\n", __func__, config.seq_id, n_samplers);
+ }
+ }
+ }
+
auto rope_scaling_type = params.rope_scaling_type;
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
rope_scaling_type = hparams.rope_scaling_type_train;
// graph outputs buffer
{
// resized during inference when a batch uses more outputs
- if (output_reserve(params.n_seq_max) < params.n_seq_max) {
+ // Create a dummy batch for initialization.
+ llama_batch dummy_batch = {};
+ dummy_batch.n_tokens = 0;
+ if (output_reserve(params.n_seq_max, dummy_batch) < params.n_seq_max) {
throw std::runtime_error("failed to reserve initial output buffer");
}
LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg);
}
}
+
+ // Initialize the full vocabulary token ids for backend samplers.
+ {
+ const int n_vocab = model.vocab.n_tokens();
+
+ sampling.token_ids_full_vocab.resize(n_vocab);
+ for (int i = 0; i < n_vocab; ++i) {
+ sampling.token_ids_full_vocab[i] = i;
+ }
+ }
}
llama_context::~llama_context() {
return logits;
}
+int64_t llama_context::output_resolve_row(int32_t i) const {
+ int64_t j = -1;
+
+ // support negative indices (last output row)
+ if (i < 0) {
+ j = n_outputs + i;
+ if (j < 0) {
+ throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs));
+ }
+ } else if ((size_t) i >= output_ids.size()) {
+ throw std::runtime_error(format("out of range [0, %zu)", output_ids.size()));
+ } else {
+ // use output_ids to translate the batch token index into a row number
+ // that holds this token's data.
+ j = output_ids[i];
+ }
+
+ if (j < 0) {
+ // the batch token was not configured to output anything
+ throw std::runtime_error(format("batch.logits[%d] != true", i));
+ }
+
+ if (j >= n_outputs) {
+ throw std::runtime_error(format("corrupt output buffer (j=%" PRId64 ", n_outputs=%d)", j, n_outputs));
+ }
+
+ return j;
+}
+
float * llama_context::get_logits_ith(int32_t i) {
int64_t j = -1;
throw std::runtime_error("no logits");
}
+ // TODO: use output_resolve_row()
if (i < 0) {
j = n_outputs + i;
if (j < 0) {
return embd;
}
+llama_token * llama_context::get_sampled_tokens() const{
+ return sampling.sampled;
+}
+
float * llama_context::get_embeddings_ith(int32_t i) {
int64_t j = -1;
throw std::runtime_error("no embeddings");
}
+ // TODO: use output_resolve_row()
if (i < 0) {
j = n_outputs + i;
if (j < 0) {
return it->second.data();
}
+llama_token llama_context::get_sampled_token_ith(int32_t idx) {
+ output_reorder();
+
+ if (sampling.sampled == nullptr) {
+ return LLAMA_TOKEN_NULL;
+ }
+
+ try {
+ const int64_t row = output_resolve_row(idx);
+ GGML_ASSERT(row < (int64_t) sampling.sampled_size);
+ return sampling.sampled[row];
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid backend sampled token id %d, reason: %s\n", __func__, idx, err.what());
+ return LLAMA_TOKEN_NULL;
+ }
+}
+
+float * llama_context::get_sampled_probs_ith(int32_t idx) {
+ output_reorder();
+
+ if (sampling.probs == nullptr) {
+ return nullptr;
+ }
+
+ try {
+ const int64_t row = output_resolve_row(idx);
+ if ((size_t) row >= sampling.probs_count.size() || sampling.probs_count[row] == 0) {
+ return nullptr;
+ }
+ return sampling.probs + row*model.vocab.n_tokens();
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid backend sampled probs id %d, reason: %s\n", __func__, idx, err.what());
+ return nullptr;
+ }
+}
+
+float * llama_context::get_sampled_logits_ith(int32_t idx) {
+ output_reorder();
+
+ if (sampling.logits == nullptr) {
+ return nullptr;
+ }
+
+ try {
+ const int64_t row = output_resolve_row(idx);
+ if ((size_t) row >= sampling.logits_count.size() || sampling.logits_count[row] == 0) {
+ return nullptr;
+ }
+ return sampling.logits + row*model.vocab.n_tokens();
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid backend sampled logits id %d, reason: %s\n", __func__, idx, err.what());
+ return nullptr;
+ }
+}
+
+const llama_token * llama_context::get_sampled_candidates_ith(int32_t idx) {
+ output_reorder();
+
+ try {
+ const int64_t row = output_resolve_row(idx);
+ if (sampling.candidates != nullptr &&
+ (size_t) row < sampling.candidates_count.size() &&
+ sampling.candidates_count[row] > 0) {
+ return sampling.candidates + row*model.vocab.n_tokens();
+ }
+ } catch (const std::exception & err) {
+ // fallback to full vocab list
+ }
+
+ return sampling.token_ids_full_vocab.data();
+}
+
+size_t llama_context::get_sampled_candidates_count(int32_t idx) {
+ output_reorder();
+
+ if (sampling.candidates == nullptr) {
+ return 0;
+ }
+
+ try {
+ const int64_t row = output_resolve_row(idx);
+ if ((size_t) row >= sampling.candidates_count.size()) {
+ return 0;
+ }
+ return sampling.candidates_count[row];
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid backend sampled candidates count id %d, reason: %s\n", __func__, idx, err.what());
+ return 0;
+ }
+}
+
+size_t llama_context::get_sampled_logits_count(int32_t idx) {
+ output_reorder();
+
+ if (sampling.logits == nullptr) {
+ return model.vocab.n_tokens();
+ }
+
+ try {
+ const int64_t row = output_resolve_row(idx);
+ if ((size_t) row >= sampling.logits_count.size()) {
+ return 0;
+ }
+ return sampling.logits_count[row];
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid backend sampled logits count id %d, reason: %s\n", __func__, idx, err.what());
+ return 0;
+ }
+}
+
+size_t llama_context::get_sampled_probs_count(int32_t idx) {
+ output_reorder();
+
+ if (sampling.probs == nullptr) {
+ return 0;
+ }
+
+ try {
+ const int64_t row = output_resolve_row(idx);
+ if ((size_t) row >= sampling.probs_count.size()) {
+ return 0;
+ }
+ return sampling.probs_count[row];
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("%s: invalid backend sampled probs count id %d, reason: %s\n", __func__, idx, err.what());
+ return 0;
+ }
+}
+
+
void llama_context::attach_threadpool(
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch) {
cparams.warmup = value;
}
+bool llama_context::set_sampler(llama_seq_id seq_id, llama_sampler * sampler) {
+ LLAMA_LOG_DEBUG("%s: seq_id = %d, sampler = %p\n", __func__, (int) seq_id, (void *) sampler);
+
+ const bool can_offload =
+ sampler &&
+ sampler->iface->backend_init &&
+ sampler->iface->backend_apply &&
+ llama_sampler_chain_n(sampler) > 0;
+
+ if (sampler && can_offload) {
+ ggml_backend_buffer_type_t buft = ggml_backend_dev_buffer_type(model.dev_output());
+ auto * host_buft = ggml_backend_dev_host_buffer_type(model.dev_output());
+ if (host_buft) {
+ buft = host_buft;
+ }
+
+ sampler->iface->backend_init(sampler, buft);
+
+ sampling.samplers[seq_id] = sampler;
+
+ return true;
+ }
+
+ if (sampler && !can_offload) {
+ LLAMA_LOG_WARN("%s: sampler '%s' for seq_id = %d, cannot be offloaded to the backend\n", __func__, llama_sampler_name(sampler), seq_id);
+
+ sampling.samplers.erase(seq_id);
+
+ return false;
+ }
+
+ sampling.samplers.erase(seq_id);
+
+ return true;
+}
+
void llama_context::set_adapter_lora(
llama_adapter_lora * adapter,
float scale) {
n_queued_tokens += n_tokens;
// reserve output buffer
- if (output_reserve(n_tokens) < n_tokens) {
+ if (output_reserve(n_tokens, batch_inp) < n_tokens) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
return -2;
};
return 0;
}
+static std::map<llama_seq_id, uint32_t> build_seq_to_output_row(const llama_ubatch & ubatch, uint32_t row_offset) {
+ std::map<llama_seq_id, uint32_t> seq_to_row;
+ // how many output tokens we have seen so far for this ubatch.
+ uint32_t local = 0;
+ for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
+ // skip tokens that are not output.
+ if (!ubatch.output[i]) {
+ continue;
+ }
+
+ const llama_seq_id seq_id = ubatch.seq_id[i][0];
+ // row_offset is the number of output tokens before this ubatch.
+ seq_to_row[seq_id] = row_offset + local;
+ ++local;
+ }
+ return seq_to_row;
+}
+
+static void copy_tensor_async_ints(
+ const std::map<llama_seq_id, ggml_tensor*> & tensor_map,
+ llama_token * sampled,
+ size_t sampled_size,
+ const std::map<llama_seq_id, uint32_t> & seq_to_row,
+ ggml_backend_sched_t sched) {
+ if (sampled == nullptr) {
+ return;
+ }
+
+ for (const auto & [seq_id, tensor] : tensor_map) {
+ auto it = seq_to_row.find(seq_id);
+ if (it == seq_to_row.end()) {
+ continue;
+ }
+
+ const uint32_t row = it->second;
+ GGML_ASSERT(row < sampled_size);
+
+ GGML_ASSERT(ggml_is_contiguous(tensor) && "sampled tokens tensor must be contiguous for async copy");
+
+ ggml_backend_t backend = ggml_backend_sched_get_tensor_backend(sched, tensor);
+ ggml_backend_tensor_get_async(backend, tensor, sampled + row, 0, sizeof(sampled[row]));
+ }
+}
+
+static void copy_tensor_async_floats(
+ const std::map<llama_seq_id, ggml_tensor*> & tensor_map,
+ float * dst,
+ size_t stride,
+ std::vector<uint32_t> & counts,
+ const std::map<llama_seq_id, uint32_t> & seq_to_row,
+ ggml_backend_sched_t sched) {
+ if (dst == nullptr) {
+ return;
+ }
+
+ for (const auto & [seq_id, tensor] : tensor_map) {
+ auto it = seq_to_row.find(seq_id);
+ if (it == seq_to_row.end()) {
+ continue;
+ }
+
+ const uint32_t row = it->second;
+ GGML_ASSERT(row < counts.size());
+
+ GGML_ASSERT(ggml_is_contiguous(tensor) && "logits/probs tensor must be contiguous for async copy");
+
+ ggml_backend_t backend = ggml_backend_sched_get_tensor_backend(sched, tensor);
+ float * row_ptr = dst + (size_t) row * stride;
+ ggml_backend_tensor_get_async(backend, tensor, row_ptr, 0, ggml_nbytes(tensor));
+
+ // Update the actual number of logits/probabilities that were written for this row.
+ counts[row] = ggml_nelements(tensor);
+ }
+}
+
+static void copy_tensor_async_candidates(
+ const std::map<llama_seq_id, ggml_tensor*> & tensor_map,
+ llama_token * dst,
+ size_t stride,
+ std::vector<uint32_t> & counts,
+ const std::map<llama_seq_id, uint32_t> & seq_to_row,
+ ggml_backend_sched_t sched) {
+ if (dst == nullptr) {
+ return;
+ }
+
+ for (const auto & [seq_id, tensor] : tensor_map) {
+ auto it = seq_to_row.find(seq_id);
+ if (it == seq_to_row.end()) {
+ continue;
+ }
+
+ const uint32_t row = it->second;
+ GGML_ASSERT(row < counts.size());
+
+ GGML_ASSERT(ggml_is_contiguous(tensor) && "candidates tensor must be contiguous for async copy");
+
+ ggml_backend_t backend = ggml_backend_sched_get_tensor_backend(sched, tensor);
+ llama_token * row_ptr = dst + (size_t) row * stride;
+ ggml_backend_tensor_get_async(backend, tensor, row_ptr, 0, ggml_nbytes(tensor));
+
+ // Update the actual number of candidates that were written.
+ counts[row] = ggml_nelements(tensor);
+ }
+}
+
int llama_context::decode(const llama_batch & batch_inp) {
GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT
const int64_t n_embd = hparams.n_embd_inp();
// when computing embeddings, all tokens are output
- const bool output_all = cparams.embeddings;
+ const bool output_all = cparams.embeddings;
+ const bool has_samplers = !sampling.samplers.empty();
+
+ const uint32_t n_seq_max = cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max;
- if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, output_all)) {
+ // TODO: avoid this workaround in the future
+ if (has_samplers && batch_inp.logits) {
+ std::vector<int32_t> seq_output_count(n_seq_max, 0);
+
+ for (int32_t i = 0; i < batch_inp.n_tokens; ++i) {
+ if (batch_inp.logits[i] == 0) {
+ continue;
+ }
+
+ const int ns = batch_inp.n_seq_id ? batch_inp.n_seq_id[i] : 1;
+
+ for (int32_t s = 0; s < ns; ++s) {
+ const llama_seq_id seq_id = batch_inp.seq_id ? batch_inp.seq_id[i][s] : 0;
+
+ seq_output_count[seq_id]++;
+ if (seq_output_count[seq_id] > 1) {
+ LLAMA_LOG_ERROR("%s: backend sampling requires at most one output token per sequence (seq_id %d had %d)\n",
+ __func__, seq_id, seq_output_count[seq_id]);
+ return -1;
+ }
+ }
+ }
+ }
+
+ if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, n_seq_max, output_all)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return -1;
}
}
// reserve output buffer
- if (output_reserve(n_outputs_all) < n_outputs_all) {
+ if (output_reserve(n_outputs_all, balloc->get_batch()) < n_outputs_all) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %d outputs\n", __func__, n_outputs_all);
return -2;
};
}
// extract logits
- if (t_logits && n_outputs > 0) {
+ // For multi-sequence batches that mix backend samplers and CPU sampler
+ // this is currently inefficient as we copy all logits even for the
+ // backend sampled tokens.
+ if (logits && t_logits && n_outputs > 0) {
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits);
GGML_ASSERT(backend_res != nullptr);
GGML_ASSERT(logits != nullptr);
}
// extract embeddings
- if (t_embd && n_outputs > 0) {
+ if (embd && t_embd && n_outputs > 0) {
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
GGML_ASSERT(backend_embd != nullptr);
}
}
+ // This flag indicates whether a backend sampler has actually sampled a specific
+ // token, or if it has produced probabilites. If true, we can skip the normal copying of logits and embeddings.
+ const bool has_sampled = !res->t_sampled.empty() || !res->t_sampled_probs.empty() || !res->t_sampled_logits.empty();
+
+ if (has_samplers && has_sampled) {
+ const auto seq_to_output_row = build_seq_to_output_row(ubatch, n_outputs_prev);
+ const auto stride = n_vocab;
+
+ // async copy the sampling data from the backend to the host
+ copy_tensor_async_ints(res->t_sampled, sampling.sampled, sampling.sampled_size, seq_to_output_row, sched.get());
+
+ copy_tensor_async_floats (res->t_sampled_logits, sampling.logits, stride, sampling.logits_count, seq_to_output_row, sched.get());
+ copy_tensor_async_floats (res->t_sampled_probs, sampling.probs, stride, sampling.probs_count, seq_to_output_row, sched.get());
+ copy_tensor_async_candidates(res->t_candidates, sampling.candidates, stride, sampling.candidates_count, seq_to_output_row, sched.get());
+ }
+
n_outputs_prev += n_outputs;
} while (mctx->next());
// output
//
-uint32_t llama_context::output_reserve(int32_t n_outputs) {
+uint32_t llama_context::output_reserve(int32_t n_outputs, const llama_batch & batch) {
const auto & hparams = model.hparams;
const auto & vocab = model.vocab;
has_embd = true;
}
- logits_size = has_logits ? n_vocab*n_outputs_max : 0;
- embd_size = has_embd ? n_embd*n_outputs_max : 0;
+ // Check which sampling modes are needed for the current batch.
+ // TODO: avoid this branching by working with the worst-case
+ bool has_sampling = false;
+ bool cpu_logits = false;
+
+ if (batch.logits) {
+ for (int32_t i = 0; i < batch.n_tokens; i++) {
+ if (!batch.logits[i]) {
+ continue;
+ }
+ for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
+ llama_seq_id seq_id = batch.seq_id[i][j];
+ if (sampling.samplers.find(seq_id) != sampling.samplers.end()) {
+ has_sampling = true;
+ } else {
+ cpu_logits = true;
+ }
+ }
+ }
+ } else {
+ // When batch.logits is nullptr (when loading state with a dummy batch),
+ // allocate CPU logits.
+ cpu_logits = true;
+ }
+
+ size_t backend_float_count = 0;
+ size_t backend_token_count = 0;
+
+ // Allocate CPU logits buffer only if needed by sequences in this batch
+ logits_size = (has_logits && cpu_logits) ? n_vocab*n_outputs_max : 0;
+ embd_size = has_embd ? n_embd*n_outputs_max : 0;
+
+ // TODO: avoid this branching by working with the worst-case
+ if (!has_sampling) {
+ sampling.logits_size = 0;
+ sampling.probs_size = 0;
+ sampling.sampled_size = 0;
+ sampling.candidates_size = 0;
+ } else {
+ sampling.logits_size = n_vocab*n_outputs_max;
+ sampling.probs_size = n_vocab*n_outputs_max;
+ sampling.sampled_size = n_outputs_max;
+ sampling.candidates_size = n_vocab*n_outputs_max;
+
+ backend_float_count = sampling.logits_size + sampling.probs_size;
+ backend_token_count = sampling.sampled_size + sampling.candidates_size;
+ }
if (output_ids.empty()) {
// init, never resized afterwards
}
const size_t prev_size = buf_output ? ggml_backend_buffer_get_size(buf_output.get()) : 0;
- const size_t new_size = (logits_size + embd_size) * sizeof(float);
+ const size_t new_size =
+ (logits_size + embd_size + backend_float_count) * sizeof(float) +
+ ( backend_token_count) * sizeof(llama_token);
// alloc only when more than the current capacity is required
// TODO: also consider shrinking the buffer
if (buf_output) {
#ifndef NDEBUG
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
- LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
+ LLAMA_LOG_DEBUG("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
synchronize();
+
+ // TODO: not needed?
buf_output = nullptr;
logits = nullptr;
embd = nullptr;
float * output_base = (float *) ggml_backend_buffer_get_base(buf_output.get());
- logits = has_logits ? output_base : nullptr;
- embd = has_embd ? output_base + logits_size : nullptr;
+ logits = nullptr;
+ embd = nullptr;
+
+ size_t offset = 0;
+ uint8_t * base = (uint8_t *) output_base;
+
+ logits = (has_logits && cpu_logits) ? output_base : nullptr;
+ offset += logits_size * sizeof(float);
+
+ embd = has_embd ? (float *) (base + offset) : nullptr;
+ offset += embd_size * sizeof(float);
+
+ sampling.logits = nullptr;
+ sampling.probs = nullptr;
+ sampling.sampled = nullptr;
+ sampling.candidates = nullptr;
+
+ if (has_sampling) {
+ sampling.logits = (float *) (base + offset);
+ offset += sampling.logits_size * sizeof(float);
+
+ sampling.probs = (float *) (base + offset);
+ offset += sampling.probs_size * sizeof(float);
+
+ sampling.sampled = (llama_token *) (base + offset);
+ offset += sampling.sampled_size * sizeof(llama_token);
+
+ sampling.candidates = (llama_token *) (base + offset);
+ offset += sampling.candidates_size * sizeof(llama_token);
+
+ // The count vectors keep track of the actual number of logits/probs/candidates
+ // copied from the backend for each output row.
+
+ sampling.logits_count.resize(n_outputs_max);
+ sampling.probs_count.resize(n_outputs_max);
+ sampling.candidates_count.resize(n_outputs_max);
+
+ std::fill(sampling.logits_count.begin(), sampling.logits_count.end(), 0);
+ std::fill(sampling.probs_count.begin(), sampling.probs_count.end(), 0);
+ std::fill(sampling.candidates_count.begin(), sampling.candidates_count.end(), 0);
+
+ std::fill_n(sampling.sampled, sampling.sampled_size, LLAMA_TOKEN_NULL);
+ }
// set all ids as invalid (negative)
std::fill(output_ids.begin(), output_ids.end(), -1);
std::swap(embd[i0*n_embd + k], embd[i1*n_embd + k]);
}
}
+
+ if (sampling.logits && sampling.logits_size > 0) {
+ for (uint64_t k = 0; k < n_vocab; ++k) {
+ std::swap(sampling.logits[i0*n_vocab + k], sampling.logits[i1*n_vocab + k]);
+ }
+ }
+
+ if (sampling.probs && sampling.probs_size > 0) {
+ for (uint64_t k = 0; k < n_vocab; ++k) {
+ std::swap(sampling.probs[i0*n_vocab + k], sampling.probs[i1*n_vocab + k]);
+ }
+ }
+
+ if (sampling.candidates && sampling.candidates_size > 0) {
+ for (uint64_t k = 0; k < n_vocab; ++k) {
+ std::swap(sampling.candidates[i0*n_vocab + k], sampling.candidates[i1*n_vocab + k]);
+ }
+ }
+
+ if (sampling.sampled && sampling.sampled_size > 0) {
+ std::swap(sampling.sampled[i0], sampling.sampled[i1]);
+ }
+
+ if (!sampling.logits_count.empty()) {
+ std::swap(sampling.logits_count[i0], sampling.logits_count[i1]);
+ }
+
+ if (!sampling.probs_count.empty()) {
+ std::swap(sampling.probs_count[i0], sampling.probs_count[i1]);
+ }
+
+ if (!sampling.candidates_count.empty()) {
+ std::swap(sampling.candidates_count[i0], sampling.candidates_count[i1]);
+ }
}
output_swaps.clear();
llama_batch_allocr balloc(model.hparams.n_pos_per_embd());
llama_ubatch ubatch = balloc.ubatch_reserve(n_tokens/n_seqs, n_seqs);
+ // set one output token per sequence in order to activate all backend samplers
+ std::vector<llama_seq_id> seq_ids(n_seqs);
+ for (uint32_t i = 0; i < n_seqs; ++i) {
+ seq_ids[i] = i;
+ ubatch.n_seq_id[i] = 1;
+ ubatch.seq_id[i] = &seq_ids[i];
+ ubatch.output[i] = true;
+ }
+
auto * res = gf_res_reserve.get();
const auto gparams = graph_params(res, ubatch, mctx, LLM_GRAPH_TYPE_DEFAULT);
llm_graph_result * res,
const llama_ubatch & ubatch,
const llama_memory_context_i * mctx,
- llm_graph_type gtype) const {
+ llm_graph_type gtype) const {
return {
/*.arch =*/ model.arch,
/*.hparams =*/ model.hparams,
/*.loras =*/ &loras,
/*.mctx =*/ mctx,
/*.cross =*/ &cross,
+ /*.samplers =*/ sampling.samplers,
/*.n_outputs =*/ n_outputs,
/*.cb =*/ graph_get_cb(),
/*.res =*/ res,
}
}
+ // TODO: handle sampling buffers and samplers state ?
+ // https://github.com/ggml-org/llama.cpp/pull/17004
+
if (memory != nullptr) {
LLAMA_LOG_DEBUG("%s: - writing memory module\n", __func__);
memory->state_write(io);
auto n_outputs = this->n_outputs;
io.read_to(&n_outputs, sizeof(n_outputs));
- if (n_outputs > output_reserve(n_outputs)) {
+ // Create a dummy batch for state loading.
+ llama_batch dummy_batch = {};
+ dummy_batch.n_tokens = 0;
+ if (n_outputs > output_reserve(n_outputs, dummy_batch)) {
throw std::runtime_error("could not reserve outputs");
}
}
}
+ // TODO: handle sampling buffers and samplers state ?
+ // https://github.com/ggml-org/llama.cpp/pull/17004
+
if (memory) {
LLAMA_LOG_DEBUG("%s: - reading memory module\n", __func__);
}
// reserve output buffer
- if (output_reserve(n_outputs_all) < n_outputs_all) {
+ if (output_reserve(n_outputs_all, balloc->get_batch()) < n_outputs_all) {
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %d outputs\n", __func__, n_outputs_all);
GGML_ABORT("TODO: handle this error");
};
/*.op_offload =*/ true,
/*.swa_full =*/ true,
/*.kv_unified =*/ false,
+ /*.sampler =*/ nullptr,
+ /*.n_sampler =*/ 0,
};
return result;
float * llama_get_logits_ith(llama_context * ctx, int32_t i) {
ctx->synchronize();
- return ctx->get_logits_ith(i);
+ float * res = nullptr;
+
+ res = ctx->get_sampled_logits_ith(i);
+
+ if (!res) {
+ res = ctx->get_logits_ith(i);
+ }
+
+ return res;
}
float * llama_get_embeddings(llama_context * ctx) {
return ctx->get_embeddings_seq(seq_id);
}
+bool llama_set_sampler(llama_context * ctx, llama_seq_id seq_id, llama_sampler * smpl) {
+ return ctx->set_sampler(seq_id, smpl);
+}
+
+llama_token llama_get_sampled_token_ith(llama_context * ctx, int32_t i) {
+ ctx->synchronize();
+
+ return ctx->get_sampled_token_ith(i);
+}
+
+float * llama_get_sampled_probs_ith(llama_context * ctx, int32_t i) {
+ ctx->synchronize();
+
+ return ctx->get_sampled_probs_ith(i);
+}
+
+float * llama_get_sampled_logits_ith(llama_context * ctx, int32_t i) {
+ ctx->synchronize();
+
+ return ctx->get_sampled_logits_ith(i);
+}
+
+llama_token * llama_get_sampled_candidates_ith(llama_context * ctx, int32_t i) {
+ ctx->synchronize();
+
+ return const_cast<llama_token *>(ctx->get_sampled_candidates_ith(i));
+}
+
+uint32_t llama_get_sampled_candidates_count_ith(llama_context * ctx, int32_t i) {
+ ctx->synchronize();
+
+ return static_cast<uint32_t>(ctx->get_sampled_candidates_count(i));
+}
+
+uint32_t llama_get_sampled_logits_count_ith(llama_context * ctx, int32_t i) {
+ ctx->synchronize();
+
+ return static_cast<uint32_t>(ctx->get_sampled_logits_count(i));
+}
+
+uint32_t llama_get_sampled_probs_count_ith(llama_context * ctx, int32_t i) {
+ ctx->synchronize();
+
+ return static_cast<uint32_t>(ctx->get_sampled_probs_count(i));
+}
+
// llama adapter API
int32_t llama_set_adapter_lora(
float * get_embeddings_ith(int32_t i);
float * get_embeddings_seq(llama_seq_id seq_id);
+ llama_token * get_sampled_tokens() const;
+ llama_token get_sampled_token_ith(int32_t idx);
+
+ float * get_sampled_logits_ith(int32_t idx);
+ size_t get_sampled_logits_count(int32_t idx);
+
+ float * get_sampled_probs_ith(int32_t idx);
+ size_t get_sampled_probs_count(int32_t idx);
+
+ const llama_token * get_sampled_candidates_ith(int32_t idx);
+ size_t get_sampled_candidates_count(int32_t idx);
+
void attach_threadpool(
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
- uint32_t output_reserve(int32_t n_outputs);
+ uint32_t output_reserve(int32_t n_outputs, const llama_batch & batch);
void output_reorder();
+ // map the output row index `i` to batch index
+ int64_t output_resolve_row(int32_t i) const;
+
//
// graph
//
ggml_cgraph * graph_reserve(
uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only = false, size_t * sizes = nullptr);
+ bool set_sampler(llama_seq_id seq_id, llama_sampler * sampler);
+
private:
llm_graph_params graph_params(
llm_graph_result * res,
size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr;
+ // TODO: simplify
+ struct sampling_info {
+ std::map<llama_seq_id, llama_sampler *> samplers;
+
+ float * logits = nullptr;
+ size_t logits_size = 0;
+
+ llama_token * sampled = nullptr;
+ size_t sampled_size = 0;
+
+ float * probs = nullptr;
+ size_t probs_size = 0;
+
+ llama_token * candidates = nullptr;
+ size_t candidates_size = 0;
+
+ std::vector<uint32_t> logits_count;
+ std::vector<uint32_t> probs_count;
+ std::vector<uint32_t> candidates_count;
+
+ std::vector<llama_token> token_ids_full_vocab;
+ };
+
+ sampling_info sampling;
+
// sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
#include <cassert>
#include <cmath>
#include <cstring>
+#include <unordered_set>
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
if (ubatch->token) {
return res;
}
+void llm_graph_input_sampling::set_input(const llama_ubatch * ubatch) {
+ // set the inputs only for the active samplers in the current ubatch
+ std::unordered_set<llama_seq_id> active_samplers;
+ for (uint32_t i = 0; i < ubatch->n_tokens; i++) {
+ if (ubatch->output[i]) {
+ llama_seq_id seq_id = ubatch->seq_id[i][0];
+ active_samplers.insert(seq_id);
+ }
+ }
+
+ for (auto seq_id : active_samplers) {
+ if (samplers.find(seq_id) == samplers.end()) {
+ continue;
+ }
+
+ auto & sampler = samplers[seq_id];
+
+ if (sampler->iface->backend_set_input) {
+ sampler->iface->backend_set_input(sampler);
+ }
+ }
+}
+
+bool llm_graph_input_sampling::can_reuse(const llm_graph_params & params) {
+ if (samplers.size() != params.samplers.size()) {
+ return false;
+ }
+
+ for (const auto & [seq_id, sampler] : params.samplers) {
+ if (samplers[seq_id] != sampler) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
//
// llm_graph_result
//
t_logits = nullptr;
t_embd = nullptr;
t_embd_pooled = nullptr;
+ t_sampled.clear();
+ t_sampled_probs.clear();
+ t_sampled_logits.clear();
+ t_candidates.clear();
params = {};
}
}
+void llm_graph_result::set_outputs() {
+ if (t_logits != nullptr) {
+ ggml_set_output(t_logits);
+ }
+ if (t_embd != nullptr) {
+ ggml_set_output(t_embd);
+ }
+ if (t_embd_pooled != nullptr) {
+ ggml_set_output(t_embd_pooled);
+ }
+ for (auto & [seq_id, t] : t_sampled) {
+ if (t != nullptr) {
+ ggml_set_output(t);
+ }
+ }
+ for (auto & [seq_id, t] : t_sampled_probs) {
+ if (t != nullptr) {
+ ggml_set_output(t);
+ }
+ }
+ for (auto & [seq_id, t] : t_sampled_logits) {
+ if (t != nullptr) {
+ ggml_set_output(t);
+ }
+ }
+ for (auto & [seq_id, t] : t_candidates) {
+ if (t != nullptr) {
+ ggml_set_output(t);
+ }
+ }
+}
+
bool llm_graph_result::can_reuse(const llm_graph_params & params) {
if (!this->params.allow_reuse(params)) {
if (debug > 1) {
loras (params.loras),
mctx (params.mctx),
cross (params.cross),
+ samplers (params.samplers),
cb_func (params.cb),
res (params.res),
ctx0 (res->get_ctx()),
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask);
+ ggml_set_name(inp->self_kq_mask, "self_kq_mask");
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
+ ggml_set_name(inp->self_kq_mask_cnv, "self_kq_mask_cnv");
}
{
inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask_swa);
+ ggml_set_name(inp->self_kq_mask_swa, "self_kq_mask_swa");
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
+ ggml_set_name(inp->self_kq_mask_swa_cnv, "self_kq_mask_swa_cnv");
}
return (llm_graph_input_attn_kv_iswa *) res->add_input(std::move(inp));
ggml_build_forward_expand(gf, cur);
}
+void llm_graph_context::build_sampling() const {
+ if (samplers.empty() || !res->t_logits) {
+ return;
+ }
+
+ auto inp_sampling = std::make_unique<llm_graph_input_sampling>(samplers);
+ res->add_input(std::move(inp_sampling));
+
+ std::map<llama_seq_id, int32_t> seq_to_logit_row;
+ int32_t logit_row_idx = 0;
+
+ for (uint32_t i = 0; i < ubatch.n_tokens; i++) {
+ if (ubatch.output[i]) {
+ llama_seq_id seq_id = ubatch.seq_id[i][0];
+ seq_to_logit_row[seq_id] = logit_row_idx;
+ logit_row_idx++;
+ }
+ }
+
+ // res->t_logits will contain logits for all tokens that want the logits calculated (logits=1 or output=1)
+ GGML_ASSERT(res->t_logits != nullptr && "missing t_logits tensor");
+
+ // add a dummy row of logits
+ // this trick makes the graph static, regardless of which samplers are activated
+ // this is important in order to minimize graph reallocations
+ // TODO: use `ggml_build_forward_select()` when available (https://github.com/ggml-org/llama.cpp/pull/18550)
+ ggml_tensor * logits_t = ggml_pad(ctx0, res->t_logits, 0, 1, 0, 0);
+
+ for (const auto & [seq_id, sampler] : samplers) {
+ const auto it = seq_to_logit_row.find(seq_id);
+
+ // inactive samplers always work on the first row
+ const auto row_idx = seq_to_logit_row.find(seq_id) != seq_to_logit_row.end() ? it->second : 0;
+
+ ggml_tensor * logits_seq = ggml_view_1d(ctx0, logits_t, logits_t->ne[0], row_idx * logits_t->nb[1]);
+ ggml_format_name(logits_seq, "logits_seq_%d", seq_id);
+
+ struct llama_sampler_data data = {
+ /*.logits =*/ logits_seq,
+ /*.probs =*/ nullptr,
+ /*.sampled =*/ nullptr,
+ /*.candidates =*/ nullptr,
+ };
+
+ assert(sampler->iface->backend_apply);
+ sampler->iface->backend_apply(sampler, ctx0, gf, &data);
+
+ if (data.sampled != nullptr) {
+ res->t_sampled[seq_id] = data.sampled;
+ ggml_build_forward_expand(gf, data.sampled);
+ }
+
+ if (data.probs != nullptr) {
+ res->t_sampled_probs[seq_id] = data.probs;
+ ggml_build_forward_expand(gf, data.probs);
+ }
+
+ if (data.logits != nullptr) {
+ res->t_sampled_logits[seq_id] = data.logits;
+ ggml_build_forward_expand(gf, data.logits);
+ }
+
+ if (data.candidates != nullptr) {
+ res->t_candidates[seq_id] = data.candidates;
+ ggml_build_forward_expand(gf, data.candidates);
+ }
+ }
+
+ // TODO: Call llama_sampler_accept_ggml after all samplers have been applied.
+ /*
+ for (const auto & [seq_id, sampler] : samplers) {
+ if (auto it = res->t_sampled.find(seq_id); it != res->t_sampled.end()) {
+ ggml_tensor * selected_token = it->second;
+ if (selected_token != nullptr) {
+ llama_sampler_accept_ggml(sampler, ctx0, gf, selected_token);
+ }
+ }
+ }
+ */
+}
+
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
// TODO move to hparams if a T5 variant appears that uses a different value
const int64_t max_distance = 128;
#include <memory>
#include <set>
#include <functional>
+#include <map>
struct ggml_cgraph;
struct ggml_context;
const llama_memory_hybrid_context * mctx;
};
+class llm_graph_input_sampling : public llm_graph_input_i {
+public:
+ llm_graph_input_sampling(std::map<llama_seq_id, llama_sampler *> samplers) :
+ samplers(std::move(samplers)) { }
+ virtual ~llm_graph_input_sampling() = default;
+
+ void set_input(const llama_ubatch * ubatch) override;
+ bool can_reuse(const llm_graph_params & params) override;
+
+ std::map<llama_seq_id, llama_sampler *> samplers;
+};
+
//
// llm_graph_result
//
const llama_memory_context_i * mctx;
const llama_cross * cross;
+ std::map<llama_seq_id, llama_sampler *> samplers;
+
+ static bool samplers_equal(
+ const std::map<llama_seq_id, llama_sampler *> & lhs,
+ const std::map<llama_seq_id, llama_sampler *> & rhs) {
+ if (lhs.size() != rhs.size()) {
+ return false;
+ }
+ for (const auto & [seq_id, sampler] : lhs) {
+ auto it = rhs.find(seq_id);
+ if (it == rhs.end() || it->second != sampler) {
+ return false;
+ }
+ }
+ return true;
+ }
+
uint32_t n_outputs;
llm_graph_cb cb;
return false;
}
+ if (n_outputs != other.n_outputs) {
+ return false;
+ }
+
+ if (!samplers_equal(samplers, other.samplers)) {
+ return false;
+ }
+
+ if (samplers.size() > 0) {
+ if (!ubatch.data || !other.ubatch.data) {
+ return false;
+ }
+
+ // check that the outputs are the same for all samplers
+ for (uint32_t i = 0; i < ubatch.n_tokens; ++i) {
+ if (ubatch.output[i] != other.ubatch.output[i] ||
+ ubatch.seq_id[i][0] != other.ubatch.seq_id[i][0]) {
+ return false;
+ }
+ }
+ }
+
return
cparams.embeddings == other.cparams.embeddings &&
cparams.causal_attn == other.cparams.causal_attn &&
- arch == other.arch &&
- gtype == other.gtype &&
- cvec == other.cvec &&
- loras == other.loras &&
- cross == other.cross &&
- n_outputs == other.n_outputs;
+ arch == other.arch &&
+ gtype == other.gtype &&
+ cvec == other.cvec &&
+ loras == other.loras &&
+ cross == other.cross;
}
};
void reset();
void set_inputs(const llama_ubatch * ubatch);
+ void set_outputs();
// try to update the existing graph result using the new graph parameters in order to reuse it
// this can only be done if we determine that the resulting graph using the new graph parameters
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;
+ std::map<llama_seq_id, ggml_tensor*> t_sampled_logits;
+ std::map<llama_seq_id, ggml_tensor*> t_candidates;
+ std::map<llama_seq_id, ggml_tensor*> t_sampled;
+ std::map<llama_seq_id, ggml_tensor*> t_sampled_probs;
+
std::vector<llm_graph_input_ptr> inputs;
ggml_context_ptr ctx_compute;
const llama_memory_context_i * mctx;
const llama_cross * cross;
+ std::map<llama_seq_id, llama_sampler *> samplers;
+
const llm_graph_cb & cb_func;
llm_graph_result * res;
ggml_tensor * cls_out,
ggml_tensor * cls_out_b) const;
+ //
+ // sampling (backend sampling)
+ //
+
+ void build_sampling() const;
+
//
// dense (out)
//
// add on pooling layer
llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
+ // add backend sampling layers (if any)
+ llm->build_sampling();
+
// if the gguf model was converted with --sentence-transformers-dense-modules
// there will be two additional dense projection layers
// dense linear projections are applied after pooling
// TODO: move reranking logic here and generalize
llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);
+ llm->res->set_outputs();
+
return llm->res->get_gf();
}
#include "llama-vocab.h"
#include "llama-grammar.h"
+#include "ggml-cpp.h"
+
#include <array>
#include <algorithm>
#include <cassert>
// llama_sampler API
-struct llama_sampler * llama_sampler_init(const struct llama_sampler_i * iface, llama_sampler_context_t ctx) {
+struct llama_sampler * llama_sampler_init(
+ struct llama_sampler_i * iface,
+ llama_sampler_context_t ctx) {
return new llama_sampler {
/* .iface = */ iface,
/* .ctx = */ ctx,
delete smpl;
}
+// empty sampler
+
+struct llama_sampler_empty {
+ const char * name;
+};
+
+static struct llama_sampler * llama_sampler_init_empty(const char * name);
+
+static const char * llama_sampler_empty_name(const struct llama_sampler * smpl) {
+ auto * ctx = (llama_sampler_empty *) smpl->ctx;
+ return ctx->name;
+}
+
+static void llama_sampler_empty_accept(struct llama_sampler * smpl, llama_token token) {
+ GGML_UNUSED(smpl);
+ GGML_UNUSED(token);
+}
+
+static void llama_sampler_empty_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
+ GGML_UNUSED(smpl);
+ GGML_UNUSED(cur_p);
+}
+
+static void llama_sampler_empty_reset(struct llama_sampler * smpl) {
+ GGML_UNUSED(smpl);
+}
+
+static struct llama_sampler * llama_sampler_empty_clone(const struct llama_sampler * smpl) {
+ auto * ctx = (llama_sampler_empty *) smpl->ctx;
+ return llama_sampler_init_empty(ctx->name);
+}
+
+static void llama_sampler_empty_free(struct llama_sampler * smpl) {
+ delete (llama_sampler_empty *) smpl->ctx;
+}
+
+static bool llama_sampler_empty_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ GGML_UNUSED(smpl);
+ GGML_UNUSED(buft);
+
+ return true;
+}
+
+static void llama_sampler_empty_backend_accept(
+ struct llama_sampler * smpl,
+ ggml_context * ctx,
+ ggml_cgraph * gf,
+ struct ggml_tensor * selected_token) {
+ GGML_UNUSED(smpl);
+ GGML_UNUSED(ctx);
+ GGML_UNUSED(gf);
+ GGML_UNUSED(selected_token);
+}
+
+static void llama_sampler_empty_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ GGML_UNUSED(smpl);
+ GGML_UNUSED(ctx);
+ GGML_UNUSED(gf);
+ GGML_UNUSED(data);
+}
+
+static void llama_sampler_empty_backend_set_input(struct llama_sampler * smpl) {
+ GGML_UNUSED(smpl);
+}
+
+static struct llama_sampler_i llama_sampler_empty_i = {
+ /* .name = */ llama_sampler_empty_name,
+ /* .accept = */ llama_sampler_empty_accept,
+ /* .apply = */ llama_sampler_empty_apply,
+ /* .reset = */ llama_sampler_empty_reset,
+ /* .clone = */ llama_sampler_empty_clone,
+ /* .free = */ llama_sampler_empty_free,
+ /* .backend_init = */ llama_sampler_empty_backend_init,
+ /* .backend_accept = */ llama_sampler_empty_backend_accept,
+ /* .backend_apply = */ llama_sampler_empty_backend_apply,
+ /* .backend_set_input = */ llama_sampler_empty_backend_set_input,
+};
+
+struct llama_sampler * llama_sampler_init_empty(const char * name) {
+ return llama_sampler_init(
+ /* .iface = */ &llama_sampler_empty_i,
+ /* .ctx = */ new llama_sampler_empty {
+ /* .name = */ name,
+ }
+ );
+}
+
+// common backend sampler functionality
+//
+// +name : means that the sampler is support and will run on the backend
+// -name : means that a ggml operator is not supported by the backend
+//
+struct llama_sampler_backend {
+ llama_sampler_backend(const char * name) : name(name), name_ext(name), is_init(false), support(false) {}
+
+ const char * get_name() {
+ if (!is_init) {
+ return name.c_str();
+ }
+
+ if (support) {
+ name_ext = "+" + name;
+ } else {
+ name_ext = "-" + name;
+ }
+
+ return name_ext.c_str();
+ }
+
+ void init(bool support) {
+ GGML_ASSERT(this->is_init == false);
+
+ this->is_init = true;
+ this->support = support;
+ }
+
+private:
+ std::string name;
+ std::string name_ext;
+
+ bool is_init;
+ bool support;
+};
+
+// check if all ggml ops used by the sampler are supported by the backend
+static bool llama_sampler_backend_support(
+ llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * device = ggml_backend_buft_get_device(buft);
+ if (!device) {
+ // CPU backend always supported
+ return true;
+ }
+
+ ggml_init_params params = {
+ /*.mem_size =*/ 128*ggml_tensor_overhead() + ggml_graph_overhead(),
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
+ };
+
+ ggml_context_ptr ctx_ptr { ggml_init(params) };
+ if (!ctx_ptr) {
+ throw std::runtime_error(format("failed to create ggml context"));
+ }
+
+ ggml_context * ctx = ctx_ptr.get();
+
+ const int64_t n = 1024*1024;
+
+ llama_sampler_data data = {
+ /*.logits = */ ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n),
+ /*.probs = */ nullptr,
+ /*.sampled = */ nullptr,
+ /*.candidates = */ ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n),
+ };
+
+ ggml_cgraph * gf = ggml_new_graph(ctx);
+
+ smpl->iface->backend_apply(smpl, ctx, gf, &data);
+
+ if (data.logits) {
+ ggml_build_forward_expand(gf, data.logits);
+ }
+
+ if (data.probs) {
+ ggml_build_forward_expand(gf, data.probs);
+ }
+
+ if (data.sampled) {
+ ggml_build_forward_expand(gf, data.sampled);
+ }
+
+ if (data.candidates) {
+ ggml_build_forward_expand(gf, data.candidates);
+ }
+
+ for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
+ struct ggml_tensor * op = ggml_graph_node(gf, i);
+
+ if (!ggml_backend_dev_supports_op(device, op)) {
+ LLAMA_LOG_WARN("%s: device '%s' does not have support for op %s needed for sampler '%s'\n",
+ __func__, ggml_backend_dev_name(device), ggml_op_name(op->op), smpl->iface->name(smpl));
+
+ return false;
+ }
+ }
+
+ return true;
+}
+
// sampler chain
static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
time_meas tm(chain->t_sample_us, chain->params.no_perf);
- for (auto * smpl : chain->samplers) {
- llama_sampler_accept(smpl, token);
+ for (auto & smpl : chain->samplers) {
+ llama_sampler_accept(smpl.ptr, token);
}
chain->n_sample++;
time_meas tm(chain->t_sample_us, chain->params.no_perf);
- for (auto * smpl : chain->samplers) {
- llama_sampler_apply(smpl, cur_p);
+ bool is_backend = chain->is_init;
+
+ for (auto & smpl : chain->samplers) {
+ if (is_backend && smpl.is_backend) {
+ continue;
+ }
+
+ is_backend = false;
+
+ if (smpl.ptr->iface->apply == nullptr) {
+ continue;
+ }
+
+ llama_sampler_apply(smpl.ptr, cur_p);
}
}
static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
- for (auto * smpl : chain->samplers) {
- llama_sampler_reset(smpl);
+ for (auto & smpl : chain->samplers) {
+ llama_sampler_reset(smpl.ptr);
}
}
auto * result = llama_sampler_chain_init(chain_src->params);
- for (auto * smpl : chain_src->samplers) {
- llama_sampler_chain_add(result, llama_sampler_clone(smpl));
+ for (const auto & smpl : chain_src->samplers) {
+ llama_sampler_chain_add(result, llama_sampler_clone(smpl.ptr));
}
return result;
static void llama_sampler_chain_free(struct llama_sampler * smpl) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
- for (auto * smpl : chain->samplers) {
- llama_sampler_free(smpl);
+ for (auto & smpl : chain->samplers) {
+ llama_sampler_free(smpl.ptr);
}
delete chain;
}
+static bool llama_sampler_chain_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * chain = (llama_sampler_chain *) smpl->ctx;
+
+ GGML_ASSERT(chain->is_init == false && "llama_sampler_chain_backend_init() called twice");
+
+ chain->is_init = true;
+
+ bool res = true;
+
+ for (auto & smpl : chain->samplers) {
+ bool res_cur = true;
+
+ // to be able to run a sampler on the backend, it has to:
+ // - have the .backend_init() API implemented
+ // - return true during .backend_init()
+ if (smpl.ptr->iface->backend_init) {
+ if (!smpl.ptr->iface->backend_init(smpl.ptr, buft)) {
+ res_cur = false;
+ }
+ } else {
+ res_cur = false;
+ }
+
+ smpl.is_backend = res_cur;
+
+ res = res && res_cur;
+ }
+
+ return res;
+}
+
+static void llama_sampler_chain_backend_accept(
+ struct llama_sampler * smpl,
+ ggml_context * ctx,
+ ggml_cgraph * gf,
+ struct ggml_tensor * selected_token) {
+ auto * chain = (llama_sampler_chain *) smpl->ctx;
+
+ for (auto & smpl : chain->samplers) {
+ if (!smpl.is_backend) {
+ break;
+ }
+
+ if (smpl.ptr->iface->backend_accept) {
+ smpl.ptr->iface->backend_accept(smpl.ptr, ctx, gf, selected_token);
+ }
+ }
+}
+
+static void llama_sampler_chain_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ auto * chain = (llama_sampler_chain *) smpl->ctx;
+
+ GGML_ASSERT(chain->is_init && "llama_sampler_chain_backend_init() not called");
+
+ for (auto & smpl : chain->samplers) {
+ if (!smpl.is_backend) {
+ break;
+ }
+
+ if (smpl.ptr->iface->backend_apply) {
+ smpl.ptr->iface->backend_apply(smpl.ptr, ctx, gf, data);
+ }
+ }
+}
+
+static void llama_sampler_chain_backend_set_input(struct llama_sampler * smpl) {
+ auto * chain = (llama_sampler_chain *) smpl->ctx;
+
+ for (auto & smpl : chain->samplers) {
+ if (!smpl.is_backend) {
+ break;
+ }
+
+ if (smpl.ptr->iface->backend_set_input) {
+ smpl.ptr->iface->backend_set_input(smpl.ptr);
+ }
+ }
+}
+
static struct llama_sampler_i llama_sampler_chain_i = {
- /* .name = */ llama_sampler_chain_name,
- /* .accept = */ llama_sampler_chain_accept,
- /* .apply = */ llama_sampler_chain_apply,
- /* .reset = */ llama_sampler_chain_reset,
- /* .clone = */ llama_sampler_chain_clone,
- /* .free = */ llama_sampler_chain_free,
+ /* .name = */ llama_sampler_chain_name,
+ /* .accept = */ llama_sampler_chain_accept,
+ /* .apply = */ llama_sampler_chain_apply,
+ /* .reset = */ llama_sampler_chain_reset,
+ /* .clone = */ llama_sampler_chain_clone,
+ /* .free = */ llama_sampler_chain_free,
+ /* .backend_init = */ llama_sampler_chain_backend_init,
+ /* .backend_accept = */ llama_sampler_chain_backend_accept,
+ /* .backend_apply = */ llama_sampler_chain_backend_apply,
+ /* .backend_set_input = */ llama_sampler_chain_backend_set_input,
};
struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
/* .iface = */ &llama_sampler_chain_i,
/* .ctx = */ new llama_sampler_chain {
/* .params = */ params,
+ /* .is_init = */ false,
/* .samplers = */ {},
/* .cur = */ {},
/* .t_sample_us = */ 0,
}
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
- const auto * logits = llama_get_logits_ith(ctx, idx);
+ const llama_token sampled_token = llama_get_sampled_token_ith (ctx, idx);
+ const float * sampled_probs = llama_get_sampled_probs_ith (ctx, idx);
+ const float * sampled_logits = llama_get_sampled_logits_ith (ctx, idx);
+ const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx);
+
+ // If a backend sampler has already sampled a token, return it.
+ if (sampled_token != LLAMA_TOKEN_NULL) {
+ LLAMA_LOG_DEBUG("%s: Backend sampler selected token for idx %d. Skipping CPU samplers\n", __func__, idx);
+ return sampled_token;
+ }
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
}
auto & cur = *cur_ptr;
- cur.resize(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
+
+ if (sampled_probs) {
+ const uint32_t sampled_probs_count = llama_get_sampled_probs_count_ith(ctx, idx);
+ cur.resize(sampled_probs_count);
+ for (uint32_t i = 0; i < sampled_probs_count; ++i) {
+ cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], sampled_probs[i]};
+ }
+ } else if (sampled_logits) {
+ const uint32_t sampled_logits_count = llama_get_sampled_logits_count_ith(ctx, idx);
+ cur.resize(sampled_logits_count);
+ for (llama_token i = 0; i < (int)sampled_logits_count; i++) {
+ cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], 0.0f};
+ }
+ } else {
+ const auto * logits = llama_get_logits_ith(ctx, idx);
+ GGML_ASSERT(logits != nullptr);
+ cur.resize(n_vocab);
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
+ }
}
llama_token_data_array cur_p = {
return token;
}
+
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
auto * p = (llama_sampler_chain *) chain->ctx;
- p->samplers.push_back(smpl);
+ p->samplers.push_back({
+ /* .is_backend = */ false,
+ /* .ptr = */ smpl,
+ });
}
-struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
+struct llama_sampler * llama_sampler_chain_get(struct llama_sampler * chain, int32_t i) {
+ if (chain == nullptr) {
+ return nullptr;
+ }
+
+ if (chain->iface != &llama_sampler_chain_i) {
+ return nullptr;
+ }
+
+ if (i == -1) {
+ return chain;
+ }
+
const auto * p = (const llama_sampler_chain *) chain->ctx;
if (i < 0 || (size_t) i >= p->samplers.size()) {
return nullptr;
}
- return p->samplers[i];
+ return p->samplers[i].ptr;
}
struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
return nullptr;
}
- auto * result = p->samplers[i];
+ auto * result = p->samplers[i].ptr;
p->samplers.erase(p->samplers.begin() + i);
return result;
// greedy
-static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
- return "greedy";
+struct llama_sampler_greedy : public llama_sampler_backend {
+};
+
+static const char * llama_sampler_greedy_name(const struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_greedy *) smpl->ctx;
+ return sctx->get_name();
+}
+
+static void llama_sampler_greedy_reset(struct llama_sampler * smpl) {
+ auto * ctx = (llama_sampler_greedy *) smpl->ctx;
+ GGML_UNUSED(ctx);
+}
+
+static struct llama_sampler * llama_sampler_greedy_clone(const struct llama_sampler * smpl) {
+ const auto * ctx = (const llama_sampler_greedy *) smpl->ctx;
+ auto * result = llama_sampler_init_greedy();
+
+ // copy the state
+ {
+ auto * result_ctx = (llama_sampler_greedy *) result->ctx;
+
+ GGML_UNUSED(ctx);
+ GGML_UNUSED(result_ctx);
+ }
+
+ return result;
+}
+
+static void llama_sampler_greedy_free(struct llama_sampler * smpl) {
+ delete (llama_sampler_greedy *) smpl->ctx;
}
static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
}
}
+static bool llama_sampler_greedy_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_greedy *) smpl->ctx;
+
+ const bool res = llama_sampler_backend_support(smpl, buft);
+
+ sctx->init(res);
+
+ return res;
+}
+
+static void llama_sampler_greedy_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ GGML_UNUSED(gf);
+ GGML_UNUSED(smpl);
+
+ struct ggml_tensor * curl = ggml_argmax(ctx, data->logits);
+ ggml_set_name(curl, "greedy_argmax");
+
+ data->sampled = curl;
+}
+
static struct llama_sampler_i llama_sampler_greedy_i = {
- /* .name = */ llama_sampler_greedy_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_greedy_apply,
- /* .reset = */ nullptr,
- /* .clone = */ nullptr,
- /* .free = */ nullptr,
+ /* .name = */ llama_sampler_greedy_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_greedy_apply,
+ /* .reset = */ llama_sampler_greedy_reset,
+ /* .clone = */ llama_sampler_greedy_clone,
+ /* .free = */ llama_sampler_greedy_free,
+ /* .backend_init = */ llama_sampler_greedy_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_greedy_backend_apply,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_greedy() {
return llama_sampler_init(
/* .iface = */ &llama_sampler_greedy_i,
- /* .ctx = */ nullptr
+ /* .ctx = */ new llama_sampler_greedy {
+ ("greedy"),
+ }
);
}
// dist
-struct llama_sampler_dist {
+struct llama_sampler_dist : public llama_sampler_backend {
const uint32_t seed;
uint32_t seed_cur;
std::mt19937 rng;
+
+ // backend input
+ struct ggml_tensor * inp_uniform;
+
+ ggml_context_ptr inp_ctx;
+ ggml_backend_buffer_ptr inp_buf;
};
-static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
- return "dist";
+static const char * llama_sampler_dist_name(const struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_dist *) smpl->ctx;
+ return sctx->get_name();
}
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
#endif
}
+static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
+ auto * ctx = (llama_sampler_dist *) smpl->ctx;
+ ctx->seed_cur = get_rng_seed(ctx->seed);
+ ctx->rng.seed(ctx->seed_cur);
+}
+
static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
auto * result = llama_sampler_init_dist(ctx->seed);
return result;
}
-static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
- auto * ctx = (llama_sampler_dist *) smpl->ctx;
- ctx->seed_cur = get_rng_seed(ctx->seed);
- ctx->rng.seed(ctx->seed_cur);
-}
-
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
delete (llama_sampler_dist *) smpl->ctx;
}
+static bool llama_sampler_dist_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_dist *) smpl->ctx;
+
+ // allocate inputs
+ {
+ ggml_init_params params = {
+ /*.mem_size =*/ ggml_tensor_overhead(),
+ /*.mem_buffer =*/ nullptr,
+ /*.no_alloc =*/ true,
+ };
+
+ sctx->inp_ctx.reset(ggml_init(params));
+
+ // Create the uniform random scalar input tensor. This will be set by
+ // llama_sampler_dist_backend_set_input after this graph is built.
+ sctx->inp_uniform = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_F32, 1);
+ ggml_set_name (sctx->inp_uniform, "uniform");
+ ggml_set_input(sctx->inp_uniform);
+
+ // Allocate all tensors from our context to the backend
+ sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft));
+
+ ggml_backend_buffer_clear(sctx->inp_buf.get(), 0);
+ }
+
+ const bool res = llama_sampler_backend_support(smpl, buft);
+
+ sctx->init(res);
+
+ if (!res) {
+ sctx->inp_ctx.reset(nullptr);
+ sctx->inp_buf.reset(nullptr);
+ }
+
+ return res;
+}
+
+static void llama_sampler_dist_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ GGML_UNUSED(gf);
+ auto * sctx = (llama_sampler_dist *) smpl->ctx;
+
+ struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits);
+ ggml_set_name(probs, "dist_probs");
+
+ struct ggml_tensor * cumsum = ggml_cumsum(ctx, probs);
+ ggml_set_name(cumsum, "dist_cumsum");
+
+ // The uniform tensor has a random value and we subtract this tensor with
+ // the cumsum tensor (the uniform tensor will be broadcasted by ggml_sub).
+ // Recall that each entry in cumsum is the cumulative probability up to that
+ // index so values stay negative while the cumulative total is below the
+ // random value, and become zero/positive once the threshold is crossed.
+ struct ggml_tensor * diff = ggml_sub(ctx, cumsum, sctx->inp_uniform);
+ ggml_set_name(diff, "dist_cumsum");
+
+ // The ggml_step function produces a tensor where entries are 1 if the
+ // corresponding entry in diff is > 0, and 0 otherwise. So all values up to
+ // the index where the cumulative probability exceeds the random value are 0,
+ // and all entries after that are 1.
+ struct ggml_tensor * mask = ggml_step(ctx, diff);
+ ggml_set_name(mask, "dist_mask");
+
+ // Taking the sum of the mask gives us the sum of elements after the threshold
+ // we are interested in.
+ struct ggml_tensor * idxf = ggml_sum(ctx, mask);
+ ggml_set_name(idxf, "dist_index_f32");
+
+ // Use ggml_scale_bias to scale the index value by -1 and then add the size
+ // of the mask to that value so we get the correct index ((-1 * idxf) + n).
+ struct ggml_tensor * idx = ggml_cast(ctx, ggml_scale_bias(ctx, idxf, -1.0f, mask->ne[0]), GGML_TYPE_I32);
+ ggml_set_name(idx, "dist_index_i32");
+
+ // Map back to original vocab ids if a candidates tensor is available.
+ struct ggml_tensor * sampled_token = idx;
+ if (data->candidates != nullptr) {
+ struct ggml_tensor * candidates = ggml_reshape_2d(ctx, data->candidates, 1, ggml_nelements(data->candidates));
+
+ sampled_token = ggml_get_rows(ctx, candidates, idx);
+ ggml_set_name(sampled_token, "dist_sampled_token");
+ }
+
+ data->sampled = sampled_token;
+ data->probs = probs;
+}
+
+static void llama_sampler_dist_backend_set_input(struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_dist *) smpl->ctx;
+ GGML_ASSERT(sctx->inp_uniform != nullptr);
+
+ // We sample in double precision and cast to float to match rnd numbers of
+ // llama_dampler_dist which uses double precision (sampling from
+ // std::uniform_real_distribution<double> and
+ // std::uniform_real_distribution<float> with same rng will produce
+ // different sequences).
+ std::uniform_real_distribution<double> dist(0.0f, 1.0f);
+ const float rnd = dist(sctx->rng);
+
+ ggml_backend_tensor_set(sctx->inp_uniform, &rnd, 0, sizeof(float));
+}
+
static struct llama_sampler_i llama_sampler_dist_i = {
- /* .name = */ llama_sampler_dist_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_dist_apply,
- /* .reset = */ llama_sampler_dist_reset,
- /* .clone = */ llama_sampler_dist_clone,
- /* .free = */ llama_sampler_dist_free,
+ /* .name = */ llama_sampler_dist_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_dist_apply,
+ /* .reset = */ llama_sampler_dist_reset,
+ /* .clone = */ llama_sampler_dist_clone,
+ /* .free = */ llama_sampler_dist_free,
+ /* .backend_init = */ llama_sampler_dist_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_dist_backend_apply,
+ /* .backend_set_input = */ llama_sampler_dist_backend_set_input,
};
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
return llama_sampler_init(
/* .iface = */ &llama_sampler_dist_i,
/* .ctx = */ new llama_sampler_dist {
- /* .seed = */ seed,
- /* .seed_cur = */ seed_cur,
- /* .rng = */ std::mt19937(seed_cur),
+ ("dist"),
+ /* .seed = */ seed,
+ /* .seed_cur = */ seed_cur,
+ /* .rng = */ std::mt19937(seed_cur),
+ /* .inp_uniform = */ nullptr,
+ /* .inp_ctx = */ nullptr,
+ /* .inp_buf = */ nullptr,
}
);
}
// top-k
-struct llama_sampler_top_k {
+struct llama_sampler_top_k : public llama_sampler_backend {
const int32_t k;
};
-static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
- return "top-k";
+static const char * llama_sampler_top_k_name(const struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_top_k *) smpl->ctx;
+ return sctx->get_name();
}
static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
delete (llama_sampler_top_k *) smpl->ctx;
}
+static bool llama_sampler_top_k_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_top_k *) smpl->ctx;
+
+ const bool res = llama_sampler_backend_support(smpl, buft);
+
+ sctx->init(res);
+
+ return res;
+}
+
+static void llama_sampler_top_k_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ auto * sctx = (llama_sampler_top_k *) smpl->ctx;
+
+ struct ggml_tensor * top_k = ggml_top_k(ctx, data->logits, sctx->k);
+ ggml_set_name(top_k, "top_k");
+
+ if (data->candidates) {
+ struct ggml_tensor * candidates_rows = ggml_reshape_2d(ctx, data->candidates, 1, data->candidates->ne[0]);
+ data->candidates = ggml_get_rows(ctx, candidates_rows, top_k);
+ data->candidates = ggml_reshape_1d(ctx, data->candidates, sctx->k);
+ ggml_set_name(data->candidates, "top_k_candidates");
+ } else {
+ data->candidates = top_k;
+ }
+
+ struct ggml_tensor * logits_rows = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]);
+ struct ggml_tensor * top_k_rows = ggml_get_rows(ctx, logits_rows, top_k);
+ data->logits = ggml_reshape_1d(ctx, top_k_rows, sctx->k);
+ ggml_set_name(top_k_rows, "top_k_rows");
+
+ GGML_UNUSED(gf);
+}
+
static struct llama_sampler_i llama_sampler_top_k_i = {
- /* .name = */ llama_sampler_top_k_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_top_k_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_top_k_clone,
- /* .free = */ llama_sampler_top_k_free,
+ /* .name = */ llama_sampler_top_k_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_top_k_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_top_k_clone,
+ /* .free = */ llama_sampler_top_k_free,
+ /* .backend_init = */ llama_sampler_top_k_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_top_k_backend_apply,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
+ const bool is_empty = (k <= 0);
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?top-k");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_k_i,
/* .ctx = */ new llama_sampler_top_k {
+ ("top-k"),
/* .k = */ k,
}
);
// top-p
-struct llama_sampler_top_p {
+struct llama_sampler_top_p : public llama_sampler_backend {
const float p;
const size_t min_keep;
std::vector<llama_token_data> buf_sort;
};
-static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
- return "top-p";
+static const char * llama_sampler_top_p_name(const struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_top_p *) smpl->ctx;
+ return sctx->get_name();
}
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
delete (llama_sampler_top_p *) smpl->ctx;
}
+static bool llama_sampler_top_p_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_top_p *) smpl->ctx;
+
+ const bool res = llama_sampler_backend_support(smpl, buft);
+
+ sctx->init(res);
+
+ return res;
+}
+
+static void llama_sampler_top_p_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ auto * sctx = (llama_sampler_top_p *) smpl->ctx;
+
+ auto ggml_sort = [ctx](struct ggml_tensor * a, struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_nrows(a) == 1);
+ struct ggml_tensor * a_reshaped = ggml_reshape_2d(ctx, a, 1, a->ne[0]);
+ struct ggml_tensor * a_sorted = ggml_get_rows(ctx, a_reshaped, b);
+ return ggml_reshape_1d(ctx, a_sorted, a->ne[0]);
+ };
+
+ // Get the sorted logits in descending order.
+ struct ggml_tensor * sorted_idx = ggml_argsort(ctx, data->logits, GGML_SORT_ORDER_DESC);
+ ggml_set_name(sorted_idx, "top_p_sorted_idx");
+
+ // Do the sorting via reshape + get_rows
+ struct ggml_tensor * sorted_logits = ggml_sort(data->logits, sorted_idx);
+ ggml_set_name(sorted_logits, "top_p_sorted_logits");
+
+ struct ggml_tensor * softmax = ggml_soft_max(ctx, sorted_logits);
+ ggml_set_name(softmax, "top_p_softmax");
+
+ // If candidates are provided, sort them as well. Otherwise, set sorted indices as candidates.
+ if (data->candidates) {
+ data->candidates = ggml_sort(data->candidates, sorted_idx);
+ } else {
+ data->candidates = sorted_idx;
+ }
+ ggml_set_name(data->candidates, "top_p_candidates");
+
+ // Compute Cumulative Distribution Function (CDF) by means of GGML_OP_CUMSUM.
+ struct ggml_tensor * cdf = ggml_cumsum(ctx, softmax);
+ ggml_set_name(cdf, "top_p_cdf");
+
+ // Invert CDF and add top-p value so that ggml_step yields 1 for values we want to keep
+ struct ggml_tensor * cdf_scaled = ggml_scale_bias(ctx, cdf, -1.0f, sctx->p);
+ ggml_set_name(cdf_scaled, "top_p_cdf_scaled");
+
+ struct ggml_tensor * mask = ggml_step(ctx, cdf_scaled);
+ ggml_set_name(mask, "top_p_mask");
+
+ // Taking the sum of the mask gives us the sum of elements after the threshold
+ // we are interested in.
+ struct ggml_tensor * idxf = ggml_sum(ctx, mask);
+ ggml_set_name(idxf, "top_p_index_f32");
+
+ // prevent out-of-bounds access
+ idxf = ggml_clamp(ctx, idxf, 0.0f, mask->ne[0] - 1);
+
+ // construct ones tensor to set the value in the mask
+ struct ggml_tensor * ones = ggml_scale_bias(ctx, idxf, 0.0f, 1.0f);
+ ggml_set_name(ones, "top_p_ones");
+
+ // Make top-p inclusive (i.e. return all values such that cum_sum/cdf >= p)
+ struct ggml_tensor * mask_reshaped = ggml_reshape_2d(ctx, mask, 1, mask->ne[0]);
+
+ mask_reshaped = ggml_set_rows(ctx, mask_reshaped, ones, ggml_cast(ctx, idxf, GGML_TYPE_I32));
+ mask = ggml_reshape_1d(ctx, mask_reshaped, mask->ne[0]);
+
+ // Use ggml_scale_bias (output = (a * s) + b) which in this case becomes:
+ // top_p_bias = (mask * 1e9f) - 1e9f.
+ // So entries in the mask that we want to discard will become -1e9f, and
+ // others will be 0 (meaning that will not effect the logits).
+ const float large_val = 1e9f;
+ struct ggml_tensor * top_p_bias = ggml_scale_bias(ctx, mask, large_val, -large_val);
+ ggml_set_name(top_p_bias, "top_p_bias");
+
+ data->logits = ggml_add(ctx, sorted_logits, top_p_bias);
+ ggml_set_name(data->logits, "top_p_logits");
+
+ GGML_UNUSED(gf);
+}
+
static struct llama_sampler_i llama_sampler_top_p_i = {
- /* .name = */ llama_sampler_top_p_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_top_p_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_top_p_clone,
- /* .free = */ llama_sampler_top_p_free,
+ /* .name = */ llama_sampler_top_p_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_top_p_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_top_p_clone,
+ /* .free = */ llama_sampler_top_p_free,
+ /* .backend_init = */ llama_sampler_top_p_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_top_p_backend_apply,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
+ const bool is_empty = p >= 1.0f;
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?top-p");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_p_i,
/* .ctx = */ new llama_sampler_top_p {
+ ("top-p"),
/* .p = */ p,
/* .min_keep = */ min_keep,
/* .buf_sort = */ {},
// min-p
-struct llama_sampler_min_p {
+struct llama_sampler_min_p : public llama_sampler_backend {
const float p;
const size_t min_keep;
};
-static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
- return "min-p";
+static const char * llama_sampler_min_p_name(const struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_min_p *) smpl->ctx;
+ return sctx->get_name();
}
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
delete (llama_sampler_min_p *) smpl->ctx;
}
+static bool llama_sampler_min_p_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_min_p *) smpl->ctx;
+
+ const bool res = llama_sampler_backend_support(smpl, buft);
+
+ sctx->init(res);
+
+ return res;
+}
+
+static void llama_sampler_min_p_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ auto * sctx = (llama_sampler_min_p *) smpl->ctx;
+
+ struct ggml_tensor * max_idx = ggml_argmax(ctx, data->logits);
+ ggml_set_name(max_idx, "max_idx");
+
+ struct ggml_tensor * logits_rows = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]);
+ ggml_set_name(logits_rows, "logits_rows");
+
+ struct ggml_tensor * max_logit = ggml_get_rows(ctx, logits_rows, max_idx);
+ ggml_set_name(max_logit, "max_logit");
+
+ // Calculate the threshold value.
+ struct ggml_tensor * threshold = ggml_scale_bias(ctx, max_logit, 1.0f, logf(sctx->p));
+ ggml_set_name(threshold, "min_p_threshold");
+
+ // Subtract the threshold from logits.
+ struct ggml_tensor * sub = ggml_sub(ctx, data->logits, threshold);
+
+ // Create a mask where logits below the threshold are 0 (discard),
+ // and others are 1 (keep).
+ struct ggml_tensor * mask = ggml_step(ctx, sub);
+ ggml_set_name(mask, "min_p_mask");
+
+ // Use ggml_scale_bias (output = (a * s) + b) which in this case becomes:
+ // min_p_bias = (mask * 1e9f) - 1e9f.
+ // So entries in the mask that we want to discard will become -1e9f, and
+ // others will be 0 (meaning that will not effect the logits).
+ const float large_val = 1e9f;
+ struct ggml_tensor * min_p_bias = ggml_scale_bias(ctx, mask, large_val, -large_val);
+ ggml_set_name(min_p_bias, "min_p_bias");
+
+ // Add the min_p bias to the logits.
+ data->logits = ggml_add(ctx, data->logits, min_p_bias);
+ ggml_set_name(data->logits, "min_p_logits");
+
+ GGML_UNUSED(gf);
+}
+
static struct llama_sampler_i llama_sampler_min_p_i = {
- /* .name = */ llama_sampler_min_p_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_min_p_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_min_p_clone,
- /* .free = */ llama_sampler_min_p_free,
+ /* .name = */ llama_sampler_min_p_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_min_p_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_min_p_clone,
+ /* .free = */ llama_sampler_min_p_free,
+ /* .backend_init = */ llama_sampler_min_p_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_min_p_backend_apply,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
+ const bool is_empty = (p <= 0.0f);
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?min-p");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_min_p_i,
/* .ctx = */ new llama_sampler_min_p {
+ ("min-p"),
/* .p = */ p,
/* .min_keep = */ min_keep,
}
}
static struct llama_sampler_i llama_sampler_typical_i = {
- /* .name = */ llama_sampler_typical_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_typical_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_typical_clone,
- /* .free = */ llama_sampler_typical_free,
+ /* .name = */ llama_sampler_typical_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_typical_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_typical_clone,
+ /* .free = */ llama_sampler_typical_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
+ const bool is_empty = (p >= 1.0f);
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?typical");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_typical_i,
/* .ctx = */ new llama_sampler_typical {
// temp
-struct llama_sampler_temp {
+struct llama_sampler_temp : public llama_sampler_backend {
const float temp;
};
-static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
- return "temp";
+static const char * llama_sampler_temp_name(const struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_temp *) smpl->ctx;
+ return sctx->get_name();
}
static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
delete (llama_sampler_temp *) smpl->ctx;
}
+static void llama_sampler_backend_temp_sampling(
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data,
+ float temp) {
+ if (temp <= 0.0f) {
+ // Find the most probable token index.
+ struct ggml_tensor * max_idx = ggml_argmax(ctx, data->logits);
+ ggml_set_name(max_idx, "temp_max_idx");
+
+ if (data->candidates) {
+ struct ggml_tensor * candidates_rows = ggml_reshape_2d(ctx, data->candidates, 1, data->candidates->ne[0]);
+ data->candidates = ggml_get_rows(ctx, candidates_rows, max_idx);
+ } else {
+ data->candidates = max_idx;
+ }
+
+ struct ggml_tensor * logits_rows = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]);
+ data->logits = ggml_get_rows(ctx, logits_rows, max_idx);
+
+ return;
+ }
+
+ data->logits = ggml_scale(ctx, data->logits, 1.0f / temp);
+
+ GGML_UNUSED(gf);
+}
+
+static bool llama_sampler_temp_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_temp *) smpl->ctx;
+
+ const bool res = llama_sampler_backend_support(smpl, buft);
+
+ sctx->init(res);
+
+ return res;
+}
+
+static void llama_sampler_temp_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ auto * sctx = (llama_sampler_temp *) smpl->ctx;
+ llama_sampler_backend_temp_sampling(ctx, gf, data, sctx->temp);
+}
+
static struct llama_sampler_i llama_sampler_temp_i = {
- /* .name = */ llama_sampler_temp_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_temp_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_temp_clone,
- /* .free = */ llama_sampler_temp_free,
+ /* .name = */ llama_sampler_temp_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_temp_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_temp_clone,
+ /* .free = */ llama_sampler_temp_free,
+ /* .backend_init = */ llama_sampler_temp_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_temp_backend_apply,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_temp(float temp) {
+ const bool is_empty = temp == 1.0f;
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?temp");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_temp_i,
/* .ctx = */ new llama_sampler_temp {
+ ("temp"),
/*.temp = */ temp,
}
);
// temp-ext
-struct llama_sampler_temp_ext {
+struct llama_sampler_temp_ext : public llama_sampler_backend {
const float temp;
const float delta;
const float exponent;
};
-static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
- return "temp-ext";
+static const char * llama_sampler_temp_ext_name(const struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_temp_ext *) smpl->ctx;
+ return sctx->get_name();
}
static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
delete (llama_sampler_temp_ext *) smpl->ctx;
}
+static bool llama_sampler_temp_ext_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_temp_ext *) smpl->ctx;
+
+ const bool res = llama_sampler_backend_support(smpl, buft);
+
+ sctx->init(res);
+
+ return res;
+}
+
+static void llama_sampler_temp_ext_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ auto * sctx = (llama_sampler_temp_ext *) smpl->ctx;
+
+ // Revert to standard temperature scaling if delta or temp are non-positive.
+ if (sctx->delta <= 0.0f || sctx->temp <= 0.0f) {
+ llama_sampler_backend_temp_sampling(ctx, gf, data, sctx->temp);
+ return;
+ }
+
+ // Calculate min_temp, max_temp, and max_entropy.
+ const float min_temp = std::max(0.0f, sctx->temp - sctx->delta);
+ const float max_temp = sctx->temp + sctx->delta;
+ const float max_entropy = logf(data->logits->ne[0]);
+
+ // Calculate the probabilities.
+ struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits);
+ ggml_set_name(probs, "temp_ext_softmax_probs");
+
+ // Clamp probabilities to avoid log(0) which would give -inf
+ struct ggml_tensor * probs_clamped = ggml_clamp(ctx, probs, 1e-10f, 1.0f);
+ ggml_set_name(probs_clamped, "temp_ext_probs_clamped");
+
+ // Calculate the entropy, entropy = -Σ(p * log(p)).
+ struct ggml_tensor * log_probs = ggml_log(ctx, probs_clamped);
+ struct ggml_tensor * p_log_p = ggml_mul(ctx, probs_clamped, log_probs);
+ struct ggml_tensor * sum_p_log_p = ggml_sum(ctx, p_log_p);
+ struct ggml_tensor * entropy = ggml_scale(ctx, sum_p_log_p, -1.0f);
+ ggml_set_name(log_probs, "temp_ext_log_probs");
+ ggml_set_name(p_log_p, "temp_ext_p_log_p");
+ ggml_set_name(sum_p_log_p, "temp_ext_sum_p_log_p");
+ ggml_set_name(entropy, "temp_ext_entropy");
+
+ // Normalize the entropy, norm_entropy = entropy / max_entropy
+ struct ggml_tensor * norm_entropy = ggml_scale(ctx, entropy, 1.0f / max_entropy);
+ ggml_set_name(norm_entropy, "temp_ext_norm_entropy");
+
+ // Calculate the dynamic temperature:
+ // dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent);
+ //
+ // Calculate powf(normalized_entropy, exponent) as
+ // norm_entropy^exponent = exp(exponent * log(norm_entropy))
+ struct ggml_tensor * log_norm_entropy = ggml_log(ctx, norm_entropy);
+ struct ggml_tensor * scaled_log = ggml_scale(ctx, log_norm_entropy, sctx->exponent);
+ struct ggml_tensor * pow_entropy = ggml_exp(ctx, scaled_log);
+ // With pow_entropy computed we can now compute dyn_temp, scaling by
+ // (max_temp - min_temp) and then adding min_temp.
+ struct ggml_tensor * dyn_temp = ggml_scale_bias(ctx, pow_entropy, max_temp - min_temp, min_temp);
+ ggml_set_name(log_norm_entropy, "temp_ext_log_norm_entropy");
+ ggml_set_name(scaled_log, "temp_ext_scaled_log");
+ ggml_set_name(pow_entropy, "temp_ext_pow_entropy");
+ ggml_set_name(dyn_temp, "temp_ext_dyn_temp");
+
+ // Scale the logits by the dynamic temperature
+ struct ggml_tensor * scaled_logits = ggml_div(ctx, data->logits, dyn_temp);
+ ggml_set_name(scaled_logits, "temp_ext_scaled_logits");
+
+ data->logits = scaled_logits;
+}
+
static struct llama_sampler_i llama_sampler_temp_ext_i = {
- /* .name = */ llama_sampler_temp_ext_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_temp_ext_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_temp_ext_clone,
- /* .free = */ llama_sampler_temp_ext_free,
+ /* .name = */ llama_sampler_temp_ext_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_temp_ext_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_temp_ext_clone,
+ /* .free = */ llama_sampler_temp_ext_free,
+ /* .backend_init = */ llama_sampler_temp_ext_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_temp_ext_backend_apply,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
- return llama_sampler_init(
+ const bool is_empty = temp == 1.0f && delta <= 0.0f;
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?temp-ext");
+ }
+
+ auto * res = llama_sampler_init(
/* .iface = */ &llama_sampler_temp_ext_i,
/* .ctx = */ new llama_sampler_temp_ext {
+ ("temp-ext"),
/* .temp = */ temp,
/* .delta = */ delta,
/* .exponent = */ exponent,
}
);
+
+ return res;
}
// xtc
}
static struct llama_sampler_i llama_sampler_xtc_i = {
- /* .name = */ llama_sampler_xtc_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sample_xtc_apply,
- /* .reset = */ llama_sampler_xtc_reset,
- /* .clone = */ llama_sampler_xtc_clone,
- /* .free = */ llama_sampler_xtc_free,
+ /* .name = */ llama_sampler_xtc_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sample_xtc_apply,
+ /* .reset = */ llama_sampler_xtc_reset,
+ /* .clone = */ llama_sampler_xtc_clone,
+ /* .free = */ llama_sampler_xtc_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
- auto seed_cur = get_rng_seed(seed);
+ const bool is_empty = (p <= 0.0f || t > 0.5f);
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?xtc");
+ }
+
+ const auto seed_cur = get_rng_seed(seed);
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_xtc_i,
/* .ctx = */ new llama_sampler_xtc {
}
static struct llama_sampler_i llama_sampler_mirostat_i = {
- /* .name = */ llama_sampler_mirostat_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_mirostat_apply,
- /* .reset = */ llama_sampler_mirostat_reset,
- /* .clone = */ llama_sampler_mirostat_clone,
- /* .free = */ llama_sampler_mirostat_free,
+ /* .name = */ llama_sampler_mirostat_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_mirostat_apply,
+ /* .reset = */ llama_sampler_mirostat_reset,
+ /* .clone = */ llama_sampler_mirostat_clone,
+ /* .free = */ llama_sampler_mirostat_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
- auto seed_cur = get_rng_seed(seed);
+ const auto seed_cur = get_rng_seed(seed);
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_mirostat_i,
/* .ctx = */ new llama_sampler_mirostat {
}
static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
- /* .name = */ llama_sampler_mirostat_v2_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_mirostat_v2_apply,
- /* .reset = */ llama_sampler_mirostat_v2_reset,
- /* .clone = */ llama_sampler_mirostat_v2_clone,
- /* .free = */ llama_sampler_mirostat_v2_free,
+ /* .name = */ llama_sampler_mirostat_v2_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_mirostat_v2_apply,
+ /* .reset = */ llama_sampler_mirostat_v2_reset,
+ /* .clone = */ llama_sampler_mirostat_v2_clone,
+ /* .free = */ llama_sampler_mirostat_v2_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
}
static struct llama_sampler_i llama_sampler_grammar_i = {
- /* .name = */ llama_sampler_grammar_name,
- /* .accept = */ llama_sampler_grammar_accept_impl,
- /* .apply = */ llama_sampler_grammar_apply,
- /* .reset = */ llama_sampler_grammar_reset,
- /* .clone = */ llama_sampler_grammar_clone,
- /* .free = */ llama_sampler_grammar_free,
+ /* .name = */ llama_sampler_grammar_name,
+ /* .accept = */ llama_sampler_grammar_accept_impl,
+ /* .apply = */ llama_sampler_grammar_apply,
+ /* .reset = */ llama_sampler_grammar_reset,
+ /* .clone = */ llama_sampler_grammar_clone,
+ /* .free = */ llama_sampler_grammar_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
static struct llama_sampler * llama_sampler_init_grammar_impl(
}
static struct llama_sampler_i llama_sampler_penalties_i = {
- /* .name = */ llama_sampler_penalties_name,
- /* .accept = */ llama_sampler_penalties_accept,
- /* .apply = */ llama_sampler_penalties_apply,
- /* .reset = */ llama_sampler_penalties_reset,
- /* .clone = */ llama_sampler_penalties_clone,
- /* .free = */ llama_sampler_penalties_free,
+ /* .name = */ llama_sampler_penalties_name,
+ /* .accept = */ llama_sampler_penalties_accept,
+ /* .apply = */ llama_sampler_penalties_apply,
+ /* .reset = */ llama_sampler_penalties_reset,
+ /* .clone = */ llama_sampler_penalties_clone,
+ /* .free = */ llama_sampler_penalties_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_penalties(
float penalty_present) {
penalty_last_n = std::max(penalty_last_n, 0);
+ const bool is_empty = (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f));
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?penalties");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_penalties_i,
/* .ctx = */ new llama_sampler_penalties {
for (size_t i = 0; i < cur_p->size; ++i) {
// Only count non-negative infinity values
if (cur_p->data[i].logit != -INFINITY) {
- if (cur_p->data[i].logit > max) {
- max = cur_p->data[i].logit;
- }
+ max = std::max(max, cur_p->data[i].logit);
logits_sum += cur_p->data[i].logit;
valid_count++;
}
}
static struct llama_sampler_i llama_sampler_top_n_sigma_i = {
- /* .name = */ llama_sampler_top_n_sigma_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_top_n_sigma_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_top_n_sigma_clone,
- /* .free = */ llama_sampler_top_n_sigma_free,
+ /* .name = */ llama_sampler_top_n_sigma_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_top_n_sigma_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_top_n_sigma_clone,
+ /* .free = */ llama_sampler_top_n_sigma_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_top_n_sigma(float n) {
+ const bool is_empty = (n <= 0.0f);
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?top-n-sigma");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_n_sigma_i,
/* .ctx = */ new llama_sampler_top_n_sigma {
}
static struct llama_sampler_i llama_sampler_dry_i = {
- /* .name = */ llama_sampler_dry_name,
- /* .accept = */ llama_sampler_dry_accept,
- /* .apply = */ llama_sampler_dry_apply,
- /* .reset = */ llama_sampler_dry_reset,
- /* .clone = */ llama_sampler_dry_clone,
- /* .free = */ llama_sampler_dry_free,
+ /* .name = */ llama_sampler_dry_name,
+ /* .accept = */ llama_sampler_dry_accept,
+ /* .apply = */ llama_sampler_dry_apply,
+ /* .reset = */ llama_sampler_dry_reset,
+ /* .clone = */ llama_sampler_dry_clone,
+ /* .free = */ llama_sampler_dry_free,
+ /* .backend_init = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ nullptr,
+ /* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t n_ctx_train, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0);
+ if (!dry_enabled) {
+ return llama_sampler_init_empty("?dry");
+ }
+
if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) {
// Process sequence breakers
for (size_t i = 0; i < num_breakers; ++i) {
// logit-bias
-struct llama_sampler_logit_bias {
+struct llama_sampler_logit_bias : public llama_sampler_backend {
const int32_t n_vocab;
const std::vector<llama_logit_bias> logit_bias;
std::vector<llama_logit_bias> to_search;
+
+ struct ggml_tensor * inp_logit_bias;
+ struct ggml_tensor * inp_logit_idxs;
+
+ ggml_context_ptr inp_ctx;
+ ggml_backend_buffer_ptr inp_buf;
};
-static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
- return "logit-bias";
+static const char * llama_sampler_logit_bias_name(const struct llama_sampler * smpl) {
+ auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;
+ return ctx->get_name();
}
static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
delete (llama_sampler_logit_bias *) smpl->ctx;
}
+static void llama_sampler_logit_bias_backend_apply(
+ struct llama_sampler * smpl,
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct llama_sampler_data * data) {
+ GGML_UNUSED(gf);
+ GGML_UNUSED(ctx);
+
+ auto * sctx = (llama_sampler_logit_bias *) smpl->ctx;
+ if (sctx->logit_bias.empty()) {
+ return;
+ }
+
+ ggml_tensor * cur = ggml_fill(ctx, data->logits, 0.0f);
+
+ cur = ggml_reshape_2d(ctx, cur, 1, ggml_nelements(cur));
+ cur = ggml_set_rows(ctx, cur, sctx->inp_logit_bias, sctx->inp_logit_idxs);
+ cur = ggml_reshape_1d(ctx, cur, ggml_nelements(cur));
+
+ data->logits = ggml_add(ctx, data->logits, cur);
+}
+
+static void llama_sampler_logit_bias_backend_set_input(struct llama_sampler * smpl) {
+ auto * sctx = (llama_sampler_logit_bias *) smpl->ctx;
+ if (sctx->logit_bias.empty()) {
+ return;
+ }
+
+ GGML_ASSERT(sctx->inp_logit_bias != nullptr);
+ GGML_ASSERT(sctx->inp_logit_idxs != nullptr);
+
+ const size_t n = sctx->logit_bias.size();
+
+ std::vector<float> data_logit_bias(n, 0.0f);
+ std::vector<int32_t> data_logit_idxs(n, 0);
+ for (size_t i = 0; i < n; ++i) {
+ const auto & lb = sctx->logit_bias[i];
+ GGML_ASSERT(lb.token >= 0 && lb.token < (int32_t) sctx->n_vocab);
+ data_logit_bias[i] = lb.bias;
+ data_logit_idxs[i] = lb.token;
+ }
+
+ ggml_backend_tensor_set(sctx->inp_logit_bias, data_logit_bias.data(), 0, ggml_nbytes(sctx->inp_logit_bias));
+ ggml_backend_tensor_set(sctx->inp_logit_idxs, data_logit_idxs.data(), 0, ggml_nbytes(sctx->inp_logit_idxs));
+}
+
+static bool llama_sampler_logit_bias_backend_init(
+ struct llama_sampler * smpl,
+ ggml_backend_buffer_type_t buft) {
+ auto * sctx = (llama_sampler_logit_bias *) smpl->ctx;
+
+ sctx->init(true);
+
+ if (sctx->logit_bias.empty()) {
+ return true;
+ }
+
+ ggml_init_params params = {
+ /*.mem_size =*/ 2*ggml_tensor_overhead(),
+ /*.mem_buffer =*/ nullptr,
+ /*.no_alloc =*/ true,
+ };
+
+ sctx->inp_ctx.reset(ggml_init(params));
+
+ const size_t n = sctx->logit_bias.size();
+
+ sctx->inp_logit_bias = ggml_new_tensor_2d(sctx->inp_ctx.get(), GGML_TYPE_F32, 1, n);
+ ggml_set_name(sctx->inp_logit_bias, "logit_bias");
+ ggml_set_input(sctx->inp_logit_bias);
+
+ sctx->inp_logit_idxs = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_I32, n);
+ ggml_set_name(sctx->inp_logit_idxs, "logit_idxs");
+ ggml_set_input(sctx->inp_logit_idxs);
+
+ // Allocate all tensors from our context to the backend
+ sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft));
+
+ ggml_backend_buffer_clear(sctx->inp_buf.get(), 0);
+
+ return true;
+}
+
static struct llama_sampler_i llama_sampler_logit_bias_i = {
- /* .name = */ llama_sampler_logit_bias_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_logit_bias_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_logit_bias_clone,
- /* .free = */ llama_sampler_logit_bias_free,
+ /* .name = */ llama_sampler_logit_bias_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_logit_bias_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_logit_bias_clone,
+ /* .free = */ llama_sampler_logit_bias_free,
+ /* .backend_init = */ llama_sampler_logit_bias_backend_init,
+ /* .backend_accept = */ nullptr,
+ /* .backend_apply = */ llama_sampler_logit_bias_backend_apply,
+ /* .backend_set_input = */ llama_sampler_logit_bias_backend_set_input,
};
struct llama_sampler * llama_sampler_init_logit_bias(
int32_t n_vocab,
int32_t n_logit_bias,
const llama_logit_bias * logit_bias) {
+ const bool is_empty = n_logit_bias <= 0;
+
+ if (is_empty) {
+ return llama_sampler_init_empty("?logit-bias");
+ }
+
return llama_sampler_init(
/* .iface = */ &llama_sampler_logit_bias_i,
/* .ctx = */ new llama_sampler_logit_bias {
- /* .n_vocab = */ n_vocab,
- /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
- /* .to_search = */ {},
+ ("logit-bias"),
+ /* .n_vocab = */ n_vocab,
+ /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
+ /* .to_search = */ {},
+ /* .inp_logit_bias = */ nullptr,
+ /* .inp_logit_idxs = */ nullptr,
+ /* .inp_ctx = */ nullptr,
+ /* .inp_buf = */ nullptr,
}
);
}
}
static struct llama_sampler_i llama_sampler_infill_i = {
- /* .name = */ llama_sampler_infill_name,
- /* .accept = */ nullptr,
- /* .apply = */ llama_sampler_infill_apply,
- /* .reset = */ nullptr,
- /* .clone = */ llama_sampler_infill_clone,
- /* .free = */ llama_sampler_infill_free,
+ /* .name = */ llama_sampler_infill_name,
+ /* .accept = */ nullptr,
+ /* .apply = */ llama_sampler_infill_apply,
+ /* .reset = */ nullptr,
+ /* .clone = */ llama_sampler_infill_clone,
+ /* .free = */ llama_sampler_infill_free,
+ /* .backend_apply = */ nullptr,
+ /* .backend_accept = */ nullptr,
+ /* .backend_set_input = */ nullptr,
+ /* .backend_init = */ nullptr,
};
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
if (smpl->iface == &llama_sampler_chain_i) {
const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
- const uint32_t seed = llama_sampler_get_seed(*it);
+ const uint32_t seed = llama_sampler_get_seed(it->ptr);
if (seed != LLAMA_DEFAULT_SEED) {
return seed;
}
struct llama_sampler_chain {
llama_sampler_chain_params params;
- std::vector<struct llama_sampler *> samplers;
+ // has .backend_init() been called?
+ bool is_init = false;
+
+ struct info {
+ bool is_backend;
+
+ llama_sampler * ptr;
+ };
+
+ std::vector<info> samplers;
// pre-allocated buffer for llama_sampler_sample to avoid repeated allocations
std::vector<llama_token_data> cur;
};
struct llama_sampler * llama_sampler_init_dry_testing(
- int32_t context_size,
- float dry_multiplier,
- float dry_base,
- int32_t dry_allowed_length,
- int32_t dry_penalty_last_n,
- const std::vector<std::vector<llama_token>>& seq_breakers);
+ int32_t context_size,
+ float dry_multiplier,
+ float dry_base,
+ int32_t dry_allowed_length,
+ int32_t dry_penalty_last_n,
+ const std::vector<std::vector<llama_token>> & seq_breakers);
struct llama_sampler_chain_params llama_sampler_chain_default_params() {
struct llama_sampler_chain_params result = {
- /*.no_perf =*/ true,
+ /*.no_perf =*/ true,
};
return result;
llama_build_and_test(test-gguf.cpp)
llama_build_and_test(test-backend-ops.cpp)
-llama_build_and_test(test-model-load-cancel.cpp LABEL "model")
-llama_build_and_test(test-autorelease.cpp LABEL "model")
+llama_build_and_test(test-model-load-cancel.cpp LABEL "model")
+llama_build_and_test(test-autorelease.cpp LABEL "model")
+llama_build_and_test(test-backend-sampler.cpp LABEL "model")
+
+llama_test(test-backend-sampler NAME test-backend-sampler-greedy ARGS --test greedy)
+llama_test(test-backend-sampler NAME test-backend-sampler-temp ARGS --test temp)
+llama_test(test-backend-sampler NAME test-backend-sampler-top_k ARGS --test top_k)
+llama_test(test-backend-sampler NAME test-backend-sampler-dist ARGS --test dist)
+llama_test(test-backend-sampler NAME test-backend-sampler-dist-and-cpu ARGS --test dist_and_cpu)
+llama_test(test-backend-sampler NAME test-backend-sampler-logit-bias ARGS --test logit_bias)
+llama_test(test-backend-sampler NAME test-backend-sampler-mul_seq ARGS --test multi_sequence)
+llama_test(test-backend-sampler NAME test-backend-sampler-set-sampler ARGS --test set_sampler)
# Test for state restore with fragmented KV cache
# Requires a model, uses same args pattern as test-thread-safety
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200000, 1, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200000, 4, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {643251, 3, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
for (float max_bias : {0.0f, 8.0f}) {
for (float scale : {1.0f, 0.1f}) {
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
}
+ for (int n = 1; n < 5; ++n) {
+ for (int k = 1; k <= n; ++k) {
+ test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {n, 2, 1, 3}, k, true));
+ }
+ }
for (int i = 0; i < 20; ++i) {
for (int k : {1, 2, 3, 7, 15, 100, 500, 1023, 9999}) {
if (k <= 1<<i) {
test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
+ test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 20481, 4, 1, 1 }));
test_cases.emplace_back(new test_xielu());
}
}
+ for (int col : {8192, 16384, 32768, 65536, 131072, 262144, 524288}) {
+ for (int rows : {1, 4, 16}){
+ test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {col, rows, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
+ }
+ }
+
test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
}
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
+ test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
+ test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {200000, 1, 1, 1}));
+ test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {200000, 16, 1, 1}));
test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2, 1, 1, 1}, 1));
for (auto k : {1, 10, 40, 400}) {
}
}
+ for (auto nrows : {1, 4, 8, 16}) {
+ for (auto cols : {128, 1024, 4096, 8192, 16384, 32768, 65536, 131072, 200000, 2000000}) {
+ test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, {cols, nrows, 1, 1}));
+ }
+ }
+
// Examples from granite-4.0-h-1b/ggml-model-Q8_0.gguf
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {515, 3328, 1, 1}, {4, 3328, 1, 1})); // prefill
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 3328, 1, 1}, {4, 3328, 1, 1})); // generate
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 512, 1)); // prefill
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 1, 1)); // generate
-
return test_cases;
}
--- /dev/null
+#include "ggml.h"
+#include "llama.h"
+#include "llama-cpp.h"
+#include "get-model.h"
+#include "common.h"
+
+#ifdef NDEBUG
+#undef NDEBUG
+#endif
+
+#include <algorithm>
+#include <cstdlib>
+#include <cstring>
+#include <iostream>
+#include <fstream>
+#include <map>
+#include <string>
+#include <unordered_map>
+#include <vector>
+
+struct backend_cli_args {
+ const char * model = nullptr;
+ const char * test = nullptr;
+ const char * device = "cpu";
+};
+
+struct test_model_context {
+ llama_model_ptr model;
+ llama_context_ptr ctx;
+ int n_vocab = 0;
+
+ std::unordered_map<llama_seq_id, int32_t> seq_positions;
+ std::unordered_map<llama_seq_id, int32_t> last_batch_info;
+
+ bool load_model(const backend_cli_args & args) {
+ if (model) {
+ return true;
+ }
+
+ llama_backend_init();
+
+ auto mparams = llama_model_default_params();
+
+ ggml_backend_dev_t devs[2];
+ if (std::string_view(args.device) == "gpu") {
+ ggml_backend_dev_t gpu = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
+ if (gpu == nullptr) {
+ fprintf(stderr, "Error: GPU requested but not available\n");
+ return false;
+ }
+ devs[0] = gpu;
+ devs[1] = nullptr; // null terminator
+ mparams.devices = devs;
+ mparams.n_gpu_layers = 999;
+ } else if (std::string_view(args.device) == "cpu") {
+ ggml_backend_dev_t cpu = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
+ devs[0] = cpu;
+ devs[1] = nullptr; // null terminator
+ mparams.devices = devs;
+ }
+
+ fprintf(stderr, "Using device: %s\n", ggml_backend_dev_name(devs[0]));
+
+ model.reset(llama_model_load_from_file(args.model, mparams));
+
+ if (!model) {
+ fprintf(stderr, "Warning: failed to load model '%s', skipping test\n", args.model);
+ return false;
+ }
+ n_vocab = llama_vocab_n_tokens(get_vocab());
+ fprintf(stderr, "Vocabulary size: %d\n", n_vocab);
+
+ return true;
+ }
+
+ bool setup(const backend_cli_args & args, std::vector<llama_sampler_seq_config> & configs, int32_t n_seq_max = -1) {
+ if (!model) {
+ load_model(args);
+ }
+
+ if (ctx) {
+ return true;
+ }
+
+ llama_context_params cparams = llama_context_default_params();
+ cparams.n_ctx = 512;
+ cparams.n_batch = 512;
+ cparams.samplers = configs.data();
+ cparams.n_samplers = configs.size();
+
+ // If n_seq_max is not specified, calculate it from configs
+ if (n_seq_max < 0) {
+ int32_t max_seq_id = 0;
+ for (const auto & config : configs) {
+ max_seq_id = std::max(config.seq_id, max_seq_id);
+ }
+ cparams.n_seq_max = max_seq_id + 1;
+ } else {
+ cparams.n_seq_max = n_seq_max;
+ }
+
+ ctx.reset(llama_init_from_model(model.get(), cparams));
+ if (!ctx) {
+ fprintf(stderr, "Warning: failed to create context, skipping test\n");
+ return false;
+ }
+ llama_set_warmup(ctx.get(), false);
+
+ return true;
+ }
+
+ bool decode(const std::map<llama_seq_id, std::string> & prompts) {
+ if (!ctx) {
+ fprintf(stderr, "Error: context not initialized, call setup() first\n");
+ return false;
+ }
+
+ last_batch_info.clear();
+ llama_batch batch = llama_batch_init(512, 0, prompts.size());
+
+ auto vocab = get_vocab();
+ for (const auto & [seq_id, prompt] : prompts) {
+ std::vector<llama_token> tokens;
+ tokens.push_back(llama_vocab_bos(vocab));
+
+ std::vector<llama_token> prompt_tokens(32);
+ int n_tokens = llama_tokenize(vocab, prompt.c_str(), prompt.length(),
+ prompt_tokens.data(), prompt_tokens.size(),
+ false, false);
+ if (n_tokens < 0) {
+ fprintf(stderr, "Warning: tokenization failed for seq_id %d\n", seq_id);
+ llama_batch_free(batch);
+ return false;
+ }
+
+ for (int i = 0; i < n_tokens; i++) {
+ tokens.push_back(prompt_tokens[i]);
+ }
+
+ if (seq_positions.find(seq_id) == seq_positions.end()) {
+ seq_positions[seq_id] = 0;
+ }
+
+ int32_t start_pos = seq_positions[seq_id];
+ for (size_t i = 0; i < tokens.size(); i++) {
+ common_batch_add(batch, tokens[i], start_pos + i, { seq_id }, i == tokens.size() - 1);
+ }
+
+ seq_positions[seq_id] = start_pos + tokens.size();
+ }
+
+
+ printf("Batch contents:\n");
+ printf("n_tokens: %d\n", batch.n_tokens);
+ for (int i = 0; i < batch.n_tokens; i++) {
+ printf("token[%d]: tok=%-5d, pos=%d, n_seq_id=%d, seq_ids=[", i, batch.token[i], batch.pos[i], batch.n_seq_id[i]);
+
+ for (int j = 0; j < batch.n_seq_id[i]; j++) {
+ printf("%d%s", batch.seq_id[i][j], j < batch.n_seq_id[i]-1 ? ", " : "");
+ }
+ printf("], logits=%d\n", batch.logits[i]);
+ }
+
+ if (llama_decode(ctx.get(), batch) != 0) {
+ fprintf(stderr, "Warning: llama_decode failed\n");
+ llama_batch_free(batch);
+ return false;
+ }
+
+ // Build mapping from seq id to batch token idx
+ for (int i = 0; i < batch.n_tokens; i++) {
+ if (batch.logits[i]) {
+ llama_seq_id seq_id = batch.seq_id[i][0];
+ last_batch_info[seq_id] = i;
+ }
+ }
+
+ llama_batch_free(batch);
+ return true;
+ }
+
+ int32_t idx_for_seq(llama_seq_id seq_id) {
+ auto it = last_batch_info.find(seq_id);
+ if (it == last_batch_info.end()) {
+ fprintf(stderr, "Error: no batch index found for seq_id %d\n", seq_id);
+ return -1;
+ }
+ return it->second;
+ }
+
+ void update_batch_info(const llama_batch & batch) {
+ last_batch_info.clear();
+ for (int i = 0; i < batch.n_tokens; i++) {
+ if (batch.logits[i]) {
+ llama_seq_id cur_seq = batch.seq_id[i][0];
+ last_batch_info[cur_seq] = i;
+ }
+ }
+ }
+
+ bool decode_token(llama_token token, llama_seq_id seq_id = 0) {
+ if (ctx == nullptr) {
+ fprintf(stderr, "Error: context not initialized, call setup() first\n");
+ return false;
+ }
+
+ llama_batch batch = llama_batch_init(1, 0, 1);
+ int32_t pos = seq_positions[seq_id];
+ common_batch_add(batch, token, pos, { seq_id }, true);
+
+ if (llama_decode(ctx.get(), batch) != 0) {
+ fprintf(stderr, "Warning: llama_decode failed for token %d in seq %d\n", token, seq_id);
+ llama_batch_free(batch);
+ return false;
+ }
+
+ update_batch_info(batch);
+
+ seq_positions[seq_id]++;
+ llama_batch_free(batch);
+ return true;
+ }
+
+ bool decode_tokens(const std::map<llama_seq_id, llama_token> & seq_tokens) {
+ if (ctx == nullptr) {
+ fprintf(stderr, "Error: context not initialized, call setup() first\n");
+ return false;
+ }
+
+ llama_batch batch = llama_batch_init(seq_tokens.size(), 0, seq_tokens.size());
+
+ for (const auto & [seq_id, token] : seq_tokens) {
+ int32_t pos = seq_positions[seq_id];
+ common_batch_add(batch, token, pos, { seq_id }, true);
+ }
+
+ if (llama_decode(ctx.get(), batch) != 0) {
+ fprintf(stderr, "Warning: llama_decode failed for batch tokens\n");
+ llama_batch_free(batch);
+ return false;
+ }
+
+ for (const auto & [seq_id, _] : seq_tokens) {
+ seq_positions[seq_id]++;
+ }
+
+ update_batch_info(batch);
+
+ llama_batch_free(batch);
+ return true;
+ }
+
+ std::string token_to_piece(llama_token token, bool special) {
+ std::string piece;
+ piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
+ const int n_chars = llama_token_to_piece(get_vocab(), token, &piece[0], piece.size(), 0, special);
+ if (n_chars < 0) {
+ piece.resize(-n_chars);
+ int check = llama_token_to_piece(get_vocab(), token, &piece[0], piece.size(), 0, special);
+ GGML_ASSERT(check == -n_chars);
+ }
+ else {
+ piece.resize(n_chars);
+ }
+
+ return piece;
+ }
+
+ void reset() {
+ ctx.reset();
+ seq_positions.clear();
+ last_batch_info.clear();
+ }
+
+ const llama_vocab * get_vocab() const {
+ return model ? llama_model_get_vocab(model.get()) : nullptr;
+ }
+
+};
+
+static void test_backend_greedy_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int seq_id = 0;
+
+ struct llama_sampler_chain_params backend_sampler_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_sampler_params));
+
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_greedy());
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Some"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ printf("greedy sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+
+ token = llama_get_sampled_token_ith(test_ctx.ctx.get(), -1);
+ printf("greedy sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+
+ for (int i = 0; i < 10; i++) {
+ int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), loop_idx);
+ printf("Generation step %d: token id:%d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
+ if (!test_ctx.decode_token(token, 0)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+ }
+}
+
+static void test_backend_top_k_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int seq_id = 0;
+ const int32_t k = 8;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_top_k(k));
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Hello"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
+ uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+ for (size_t i = 0; i < n_logits; ++i) {
+ printf("top_k logit[%zu] = %.6f\n", i, logits[i]);
+ }
+
+ llama_token * candidates = llama_get_sampled_candidates_ith(test_ctx.ctx.get(), batch_idx);
+ uint32_t n_candidates = llama_get_sampled_candidates_count_ith(test_ctx.ctx.get(), batch_idx);
+ for (size_t i = 0; i < n_candidates; ++i) {
+ printf("top_k candidate[%zu] = %d : %s\n", i, candidates[i],
+ test_ctx.token_to_piece(candidates[i], false).c_str());
+ }
+
+ // Sample using CPU sampler for verification that it is possible to do hybrid
+ // sampling, first top_k on the backend and then dist on the CPU.
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ GGML_ASSERT(chain->iface->backend_apply != nullptr);
+
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+
+ printf("backend top-k hybrid sampling test PASSED\n");
+}
+
+static void test_backend_temp_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+
+ {
+ const float temp_0 = 0.8f;
+ struct llama_sampler_chain_params backend_chain_params_0 = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain_0(llama_sampler_chain_init(backend_chain_params_0));
+ llama_sampler_chain_add(backend_sampler_chain_0.get(), llama_sampler_init_temp(temp_0));
+
+ const float temp_1 = 0.1f;
+ struct llama_sampler_chain_params backend_chain_params_1 = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain_1(llama_sampler_chain_init(backend_chain_params_1));
+ llama_sampler_chain_add(backend_sampler_chain_1.get(), llama_sampler_init_temp(temp_1));
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { 0, backend_sampler_chain_0.get() },
+ { 1, backend_sampler_chain_1.get() }
+ };
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{0, "Some where over the"}, {1, "Once upon a"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ // Verfify sequence 0
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(0);
+ int n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+ GGML_ASSERT(n_logits == test_ctx.n_vocab);
+
+ // Sample from sequence 0 using CPU sampler
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
+
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("Sequence 0 sampled token id:%d, string: '%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ }
+
+
+ // Verfify sequence 1
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(1);
+
+ // Sample from sequence 1 using CPU sampler
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
+
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("Sequence 1 sampled token id:%d, string: '%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ }
+ }
+
+ // lambda to testing non-positive temperature values.
+ auto test_argmax_temp = [&](float temp) {
+ printf("\nTesting temperature = %.1f\n", temp);
+
+ test_ctx.reset();
+
+ int seq_id = 0;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp(temp));
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { seq_id, backend_sampler_chain.get() },
+ };
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Once"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+ GGML_ASSERT(n_logits == 1);
+ };
+
+ test_argmax_temp(0.0f);
+ test_argmax_temp(-1.0f);
+
+ printf("backend temp sampling test PASSED\n");
+
+}
+
+static void test_backend_temp_ext_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ {
+ int seq_id = 0;
+ const float temp = 0.8f;
+ const float delta = 0.5f;
+ const float exponent = 1.5f;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp_ext(temp, delta, exponent));
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { seq_id, backend_sampler_chain.get() },
+ };
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Once upon a"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ // Verify sequence 0
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+ int n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+ GGML_ASSERT(n_logits == test_ctx.n_vocab);
+ }
+ }
+
+ test_ctx.reset();
+
+ // lambda to testing non-positive temp/delta/exponent values.
+ auto test_argmax_temp = [&](float temp, float delta, float exponent) {
+ printf("\nTesting temperature = %.1f, delta = %1.f, exponent = %1.f\n", temp, delta, exponent);
+
+ test_ctx.reset();
+
+ int seq_id = 0;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp_ext(temp, delta, exponent));
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { seq_id, backend_sampler_chain.get() },
+ };
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Once"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+
+ if (temp <= 0.0f && delta >= 0.0f) {
+ GGML_ASSERT(n_logits == 1);
+ } else {
+ GGML_ASSERT(n_logits == (uint32_t) test_ctx.n_vocab);
+ }
+ };
+
+ test_argmax_temp(0.0f, 0.3f, 1.0f); // Greedy (temp=0)
+ test_argmax_temp(-1.0f, 0.3f, 2.0f); // Greedy (temp<0)
+ test_argmax_temp(0.8f, 0.0f, 2.0f); // Temperature scaling
+
+ printf("backend temp_ext sampling test PASSED\n");
+
+}
+
+static void test_backend_min_p_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int seq_id = 0;
+ const float p = 0.1;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_min_p(p, 0));
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Hello"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
+ uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+
+ // Print the logits that are above the min-p threshold
+ std::vector<float> filtered_logits;
+ for (size_t i = 0; i < n_logits; ++i) {
+ if (logits[i] > -1e9f) {
+ filtered_logits.push_back(logits[i]);
+ //printf("min_p logit[%zu] = %.6f\n", i, logits[i]);
+ }
+ }
+ GGML_ASSERT(filtered_logits.size() < (size_t) test_ctx.n_vocab);
+
+ // Sample using CPU sampler for verification to inspect they are reasonable
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(88));
+
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("min-p cpu sampled token id:%d, string: '%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+
+ // Decode and sampler 10 more tokens
+ for (int i = 0; i < 10; i++) {
+ int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), loop_idx);
+ printf("min-p gen step %d: token id :%5.d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
+ if (!test_ctx.decode_token(token, 0)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+ }
+
+ printf("min-p sampling test PASSED\n");
+}
+
+static void test_backend_top_p_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int seq_id = 0;
+ const float p = 0.9;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_top_p(p, 0));
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Hello"}})) {
+ return;
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
+ uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+
+ // Print the logits that are above the min-p threshold
+ std::vector<float> filtered_logits;
+ for (size_t i = 0; i < n_logits; ++i) {
+ if (logits[i] > -1e9f) {
+ filtered_logits.push_back(logits[i]);
+ }
+ }
+ GGML_ASSERT(filtered_logits.size() < (size_t) test_ctx.n_vocab);
+ GGML_ASSERT(filtered_logits.size() > 0);
+
+ // Sample using CPU sampler for verification to inspect they are reasonable
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(88));
+
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("top-p cpu sampled token id:%d, string: '%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+
+ // Decode and sampler 10 more tokens
+ for (int i = 0; i < 10; i++) {
+ int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), loop_idx);
+ printf("top-p gen step %d: token id :%5.d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
+ test_ctx.decode_token(token, 0);
+ }
+
+ printf("top-p sampling test PASSED\n");
+}
+
+static void test_backend_multi_sequence_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
+ llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
+ llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_greedy());
+
+ struct llama_sampler_chain_params chain_params_1 = llama_sampler_chain_default_params();
+ llama_sampler_ptr sampler_chain_1(llama_sampler_chain_init(chain_params_1));
+ llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_temp(0.8f));
+ llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_greedy());
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { 0, sampler_chain_0.get() },
+ { 1, sampler_chain_1.get() }
+ };
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ std::map<llama_seq_id, std::string> prompts = {
+ {0, "Hello"},
+ {1, "Some"}
+ };
+
+ if (!test_ctx.decode(prompts)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ // Verfiy sequence 0
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(0);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("Seq 0 sampled token id=%d, string='%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ }
+
+ // Verify sequence 1
+ {
+ int32_t batch_idx= test_ctx.idx_for_seq(1);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("Seq 1 sampled token id=%d, string='%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ }
+
+ // Generate tokens for each sequence
+ printf("\nMulti-sequence generation:\n");
+ for (int step = 0; step < 4; step++) {
+ std::map<llama_seq_id, llama_token> tokens;
+
+ for (llama_seq_id seq_id : {0, 1}) {
+ int32_t idx = test_ctx.idx_for_seq(seq_id);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf(" Seq %d, step %d: token id=%d, string='%s'\n", seq_id, step, token, token_str.c_str());
+ tokens[seq_id] = token;
+ }
+
+ // Decode all tokens in a single batch
+ if (!test_ctx.decode_tokens(tokens)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+ }
+
+ printf("backend multi-sequence sampling test PASSED\n");
+}
+
+static void test_backend_dist_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int seq_id = 189;
+ const int32_t seed = 88;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Some"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ printf("dist sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ //GGML_ASSERT(llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx) == nullptr);
+
+ token = llama_get_sampled_token_ith(test_ctx.ctx.get(), -1);
+ printf("dist sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+
+ printf("backend dist sampling test PASSED\n");
+}
+
+static void test_backend_dist_sampling_and_cpu(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int seq_id = 0;
+ const int32_t seed = 88;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Some"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ // Sample using CPU sampler
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
+
+ llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ llama_token cpu_token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ printf("dist & cpu sampled id:%d, string:'%s'\n", cpu_token, test_ctx.token_to_piece(cpu_token, false).c_str());
+ GGML_ASSERT(backend_token == cpu_token);
+
+ printf("backend dist & cpu sampling test PASSED\n");
+}
+
+static void test_backend_logit_bias_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ // Calling load_model to ensure vocab is loaded and can be accessed
+ if (!test_ctx.load_model(args)) {
+ return;
+ }
+
+ const int seq_id = 0;
+
+ // Create the logit biases vector.
+ std::vector<llama_logit_bias> logit_bias;
+
+ // Get the token for the piece "World".
+ const std::string piece = "World";
+ std::vector<llama_token> tokens(16);
+ llama_tokenize(test_ctx.get_vocab(), piece.c_str(), piece.size(), tokens.data(), tokens.size(), false, false);
+ llama_token bias_token = tokens[0];
+ logit_bias.push_back({ bias_token, +100.0f });
+ printf("biasing token piece '%s' -> token id %d\n", piece.c_str(), bias_token);
+
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_logit_bias(
+ llama_vocab_n_tokens(test_ctx.get_vocab()),
+ logit_bias.size(),
+ logit_bias.data()));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(88));
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { seq_id, backend_sampler_chain.get() },
+ };
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Hello"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), test_ctx.idx_for_seq(seq_id));
+ const std::string backend_token_str = test_ctx.token_to_piece(backend_token, false);
+ printf("logit bias sampled token = %d, string='%s'\n", backend_token, backend_token_str.c_str());
+ GGML_ASSERT(backend_token == bias_token);
+
+ printf("backend logit bias sampling test PASSED\n");
+}
+
+// This test verifies that it is possible to have two different backend sampler,
+// one that uses the backend dist sampler, and another that uses CPU dist sampler.
+static void test_backend_mixed_sampling(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
+ llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
+ llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_dist(88));
+
+ int k = 40;
+ struct llama_sampler_chain_params chain_params_1 = llama_sampler_chain_default_params();
+ llama_sampler_ptr sampler_chain_1(llama_sampler_chain_init(chain_params_1));
+ llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_top_k(k));
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { 0, sampler_chain_0.get() },
+ { 1, sampler_chain_1.get() }
+ };
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ std::map<llama_seq_id, std::string> prompts = {
+ {0, "Hello"},
+ {1, "Some"}
+ };
+
+ if (!test_ctx.decode(prompts)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ // Verfiy sequence 0 that used the dist backend sampler.
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(0);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("sampled token id=%d, string='%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ //GGML_ASSERT(llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx) == nullptr);
+ //GGML_ASSERT(llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx) == 0);
+ }
+
+ // Verfiy sequence 1 that used the top-k backend sampler.
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(1);
+ float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
+ GGML_ASSERT(logits != nullptr);
+ size_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
+ GGML_ASSERT(n_logits == (size_t) k);
+ GGML_ASSERT(llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx) == LLAMA_TOKEN_NULL);
+ }
+
+ printf("backend mixed sampling test PASSED\n");
+}
+
+static void test_backend_set_sampler(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int32_t seed = 88;
+ const int seq_id = 0;
+ struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ if (!test_ctx.decode({{seq_id, "Hello"}})) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
+
+ // Sample using backend sampler configured above
+ llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ const std::string backend_token_str = test_ctx.token_to_piece(backend_token, false);
+ printf("dist sampled token = %d, string='%s'\n", backend_token, backend_token_str.c_str());
+
+ // Now clear the backend sampler for this sequence.
+ llama_set_sampler(test_ctx.ctx.get(), seq_id, nullptr);
+ printf("Cleared backend sampler for seq_id %d\n", seq_id);
+
+ // Sample using CPU sampler
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
+
+ std::map<llama_seq_id, llama_token> tokens = { { seq_id, backend_token}, };
+ if (!test_ctx.decode_tokens(tokens)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ // Should not have any sampled token or probs after clearing the backend sampler.
+ const int32_t idx = test_ctx.idx_for_seq(seq_id);
+ GGML_ASSERT(llama_get_sampled_token_ith(test_ctx.ctx.get(), idx) == LLAMA_TOKEN_NULL);
+ GGML_ASSERT(llama_get_sampled_probs_ith(test_ctx.ctx.get(), idx) == nullptr);
+
+ // Sample the token using the CPU sampler chain.
+ llama_token token2 = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), seq_id);
+ const std::string token2_str = test_ctx.token_to_piece(token2, false);
+ printf("CPU sampled token after clearing backend sampler: id=%d, string='%s'\n", token2, token2_str.c_str());
+ std::map<llama_seq_id, llama_token> tokens2 = { { seq_id, token2}, };
+
+ // Set a new backend sampler for the sequence.
+ struct llama_sampler_chain_params new_backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr new_backend_sampler_chain(llama_sampler_chain_init(new_backend_chain_params));
+ llama_sampler_chain_add(new_backend_sampler_chain.get(), llama_sampler_init_top_k(20));
+ llama_sampler_chain_add(new_backend_sampler_chain.get(), llama_sampler_init_dist(seed));
+ llama_set_sampler(test_ctx.ctx.get(), seq_id, new_backend_sampler_chain.get());
+
+ if (!test_ctx.decode_tokens(tokens2)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ llama_token new_backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), test_ctx.idx_for_seq(seq_id));
+ const std::string new_backend_token_str = test_ctx.token_to_piece(new_backend_token, false);
+ printf("dist sampled token = %d, string='%s'\n", new_backend_token, new_backend_token_str.c_str());
+
+ printf("backend set sampler test PASSED\n");
+}
+
+static void test_backend_cpu_mixed_batch(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ // Sequence 0 uses backend sampling
+ struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
+ llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
+ llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_dist(88));
+
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {
+ { 0, sampler_chain_0.get() },
+ };
+
+ // We need 2 sequences: seq 0 with backend sampling, seq 1 with CPU sampling
+ if (!test_ctx.setup(args, backend_sampler_configs, 2)) {
+ return;
+ }
+
+ std::map<llama_seq_id, std::string> prompts = {
+ {0, "Hello"}, // Will use backend sampling
+ {1, "Some"} // Will use CPU sampling
+ };
+
+ if (!test_ctx.decode(prompts)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ // Verify sequence 0 (backend sampled)
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(0);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("Seq 0 (backend) sampled token id=%d, string='%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ }
+
+ // Verify sequence 1 (CPU sampled)
+ {
+ int32_t batch_idx = test_ctx.idx_for_seq(1);
+
+ llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ GGML_ASSERT(backend_token == LLAMA_TOKEN_NULL);
+
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_greedy());
+
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("Seq 1 (CPU) sampled token id=%d, string='%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ }
+
+ // Clear/remove the backend sampler, and sample again
+ {
+ // clear the backend sampler for seq 0 so that there are no backend
+ // samplers.
+ llama_set_sampler(test_ctx.ctx.get(), 0, nullptr);
+
+ // Create a CPU sampler and verify we can sampler from it.
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(chain.get(), llama_sampler_init_greedy());
+
+ int32_t batch_idx = test_ctx.idx_for_seq(1);
+ llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
+ if (!test_ctx.decode_token(token, 1)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+ }
+
+ // Set a backend sampler so that we can verify that it can be reset
+ {
+ struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr sampler_chain(llama_sampler_chain_init(chain_params));
+ llama_sampler_chain_add(sampler_chain.get(), llama_sampler_init_dist(88));
+
+ llama_set_sampler(test_ctx.ctx.get(), 0, sampler_chain.get());
+
+ if (!test_ctx.decode_token(3834, 0)) {
+ GGML_ASSERT(false && "Failed to decode token");
+ }
+
+ int32_t batch_idx = test_ctx.idx_for_seq(0);
+ llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
+ const std::string token_str = test_ctx.token_to_piece(token, false);
+ printf("re-added backend sampled token id=%d, string='%s'\n", token, token_str.c_str());
+ GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
+ }
+
+ printf("backend-cpu mixed batch test PASSED\n");
+}
+
+static void test_backend_max_outputs(const backend_cli_args & args) {
+ test_model_context test_ctx;
+
+ const int seq_id = 0;
+ const int32_t seed = 88;
+ llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
+ llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
+ llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
+ std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
+
+ if (!test_ctx.setup(args, backend_sampler_configs)) {
+ return;
+ }
+
+ llama_batch batch = llama_batch_init(512, 0, 1);
+ std::string prompt = "Hello";
+
+ std::vector<llama_token> tokens;
+ tokens.push_back(llama_vocab_bos(test_ctx.get_vocab()));
+
+ std::vector<llama_token> prompt_tokens(32);
+ int n_tokens = llama_tokenize(test_ctx.get_vocab(), prompt.c_str(), prompt.length(),
+ prompt_tokens.data(), prompt_tokens.size(),
+ false, false);
+ for (int i = 0; i < n_tokens; i++) {
+ tokens.push_back(prompt_tokens[i]);
+ }
+
+ for (size_t i = 0; i < tokens.size(); i++) {
+ // set all tokens as output to trigger error
+ common_batch_add(batch, tokens[i], i, { seq_id }, true);
+ }
+
+ printf(">>> test_max_outputs expected error start:\n");
+ const int ret = llama_decode(test_ctx.ctx.get(), batch);
+ GGML_ASSERT(ret != 0 && "llama_decode should not succeed multiple outputs per sequence");
+ printf("<<< test_max_outputs expected error end.\n");
+ llama_batch_free(batch);
+
+ printf("backend max outputs test PASSED\n");
+}
+
+struct backend_test_case {
+ const char * name;
+ void (*fn)(const backend_cli_args &);
+ bool enabled_by_default;
+};
+
+static const backend_test_case BACKEND_TESTS[] = {
+ { "greedy", test_backend_greedy_sampling, true },
+ { "logit_bias", test_backend_logit_bias_sampling, true },
+ { "temp", test_backend_temp_sampling, true },
+ { "temp_ext", test_backend_temp_ext_sampling, true },
+ { "top_k", test_backend_top_k_sampling, true },
+ { "multi_sequence", test_backend_multi_sequence_sampling, true },
+ { "dist", test_backend_dist_sampling, true },
+ { "dist_and_cpu", test_backend_dist_sampling_and_cpu, true },
+ { "set_sampler", test_backend_set_sampler, true },
+ { "max_outputs", test_backend_max_outputs, true },
+ { "mixed", test_backend_mixed_sampling, true },
+ { "min_p", test_backend_min_p_sampling, true },
+ { "cpu_mixed", test_backend_cpu_mixed_batch, true },
+ { "top_p", test_backend_top_p_sampling, true },
+};
+
+static backend_cli_args parse_backend_cli(int argc, char ** argv) {
+ backend_cli_args out;
+
+ for (int i = 1; i < argc; ++i) {
+ const char * arg = argv[i];
+
+ if (std::strcmp(arg, "--test") == 0) {
+ if (i + 1 >= argc) {
+ fprintf(stderr, "--test expects a value\n");
+ exit(EXIT_FAILURE);
+ }
+ out.test = argv[++i];
+ continue;
+ }
+ if (std::strncmp(arg, "--test=", 7) == 0) {
+ out.test = arg + 7;
+ continue;
+ }
+ if (std::strcmp(arg, "--model") == 0) {
+ if (i + 1 >= argc) {
+ fprintf(stderr, "--model expects a value\n");
+ exit(EXIT_FAILURE);
+ }
+ out.model = argv[++i];
+ continue;
+ }
+ if (std::strncmp(arg, "--model=", 8) == 0) {
+ out.model = arg + 8;
+ continue;
+ }
+ if (std::strcmp(arg, "--device") == 0) {
+ if (i + 1 >= argc) {
+ fprintf(stderr, "--device expects a value (cpu or gpu)\n");
+ exit(EXIT_FAILURE);
+ }
+ out.device = argv[++i];
+ continue;
+ }
+ if (std::strncmp(arg, "--device=", 9) == 0) {
+ out.device = arg + 9;
+ continue;
+ }
+ if (!out.model) {
+ out.model = arg;
+ continue;
+ }
+
+ fprintf(stderr, "Unexpected argument: %s\n", arg);
+ exit(EXIT_FAILURE);
+ }
+
+ if (std::strcmp(out.device, "cpu") != 0 && std::strcmp(out.device, "gpu") != 0) {
+ fprintf(stderr, "Invalid device '%s'. Must be 'cpu' or 'gpu'\n", out.device);
+ exit(EXIT_FAILURE);
+ }
+
+ return out;
+}
+
+static std::vector<const backend_test_case *> collect_tests_to_run(const char * requested) {
+ std::vector<const backend_test_case *> selected;
+
+ if (requested != nullptr) {
+ for (const auto & test : BACKEND_TESTS) {
+ if (std::strcmp(test.name, requested) == 0) {
+ selected.push_back(&test);
+ break;
+ }
+ }
+ if (selected.empty()) {
+ fprintf(stderr, "Unknown test '%s'. Available tests:\n", requested);
+ for (const auto & test : BACKEND_TESTS) {
+ fprintf(stderr, " %s\n", test.name);
+ }
+ exit(EXIT_FAILURE);
+ }
+ } else {
+ for (const auto & test : BACKEND_TESTS) {
+ if (test.enabled_by_default) {
+ selected.push_back(&test);
+ }
+ }
+ }
+
+ if (selected.empty()) {
+ fprintf(stderr, "No backend sampling tests selected. Use --test=<name> to pick one.\n");
+ }
+
+ return selected;
+}
+
+static void run_tests(const std::vector<const backend_test_case *> & tests, const backend_cli_args & args) {
+ for (const auto * test : tests) {
+ fprintf(stderr, "\n=== %s ===\n", test->name);
+ test->fn(args);
+ }
+}
+
+
+int main(int argc, char ** argv) {
+ backend_cli_args args = parse_backend_cli(argc, argv);
+
+ if (args.model == nullptr) {
+ args.model = get_model_or_exit(1, argv);
+ }
+
+ std::ifstream file(args.model);
+ if (!file.is_open()) {
+ fprintf(stderr, "no model '%s' found\n", args.model);
+ return EXIT_FAILURE;
+ }
+
+ fprintf(stderr, "using '%s'\n", args.model);
+
+ ggml_time_init();
+
+ const std::vector<const backend_test_case *> tests = collect_tests_to_run(args.test);
+ if (!tests.empty()) {
+ run_tests(tests, args);
+ }
+
+ return 0;
+}
std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
std::vector<llama_token_data> cur;
- const auto * logits = llama_get_logits_ith(ctx, idx);
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
+ const auto * logits = llama_get_logits_ith(ctx, idx);
+ const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx);
- const int n_vocab = llama_vocab_n_tokens(vocab);
+ const int n_logits = llama_get_sampled_logits_count_ith(ctx, idx);
- cur.resize(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
+ cur.resize(n_logits);
+ if (sampled_ids) {
+ for (int i = 0; i < n_logits; i++) {
+ cur[i] = llama_token_data{sampled_ids[i], logits[i], 0.0f};
+ }
+ } else {
+ for (llama_token token_id = 0; token_id < n_logits; token_id++) {
+ cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
+ }
}
// sort tokens by logits
return false;
}
+ const bool need_logits = task.params.sampling.n_probs > 0;
+
+ bool backend_sampling = true;
+
+ backend_sampling &= task.params.sampling.backend_sampling;
+
+ // TODO: speculative decoding requires multiple samples per batch - not supported yet
+ backend_sampling &= !(slot.ctx_dft && task.params.speculative.n_max > 0);
+
+ // TODO: getting post/pre sampling logits is not yet supported with backend sampling
+ backend_sampling &= !need_logits;
+
+ // TODO: tmp until backend sampling is fully implemented
+ if (backend_sampling) {
+ llama_set_sampler(ctx, slot.id, common_sampler_get(slot.smpl.get()));
+ } else {
+ llama_set_sampler(ctx, slot.id, nullptr);
+ }
+
SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl.get()).c_str());
}
{"speculative.p_min", speculative.p_min},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
+ {"backend_sampling", sampling.backend_sampling},
{"lora", lora},
};
}
{"speculative.p_min", speculative.p_min},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
+ {"backend_sampling", sampling.backend_sampling},
{"lora", lora},
};
}
params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
+ params.sampling.backend_sampling = json_value(data, "backend_sampling", defaults.sampling.backend_sampling);
params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
key: 'samplers',
label: 'Samplers',
type: 'input'
+ },
+ {
+ key: 'backend_sampling',
+ label: 'Backend sampling',
+ type: 'checkbox'
}
]
},
autoMicOnEmpty: false,
// make sure these default values are in sync with `common.h`
samplers: 'top_k;typ_p;top_p;min_p;temperature',
+ backend_sampling: false,
temperature: 0.8,
dynatemp_range: 0.0,
dynatemp_exponent: 1.0,
'When copying a message with text attachments, combine them into a single plain text string instead of a special format that can be pasted back as attachments.',
samplers:
'The order at which samplers are applied, in simplified way. Default is "top_k;typ_p;top_p;min_p;temperature": top_k->typ_p->top_p->min_p->temperature',
+ backend_sampling:
+ 'Enable backend-based samplers. When enabled, supported samplers run on the accelerator backend for faster sampling.',
temperature:
'Controls the randomness of the generated text by affecting the probability distribution of the output tokens. Higher = more random, lower = more focused.',
dynatemp_range:
dry_penalty_last_n,
// Other parameters
samplers,
+ backend_sampling,
custom,
timings_per_token,
// Config options
: samplers;
}
+ if (backend_sampling !== undefined) requestBody.backend_sampling = backend_sampling;
+
if (timings_per_token !== undefined) requestBody.timings_per_token = timings_per_token;
if (custom) {
if (hasValue(currentConfig.dry_penalty_last_n))
apiOptions.dry_penalty_last_n = Number(currentConfig.dry_penalty_last_n);
if (currentConfig.samplers) apiOptions.samplers = currentConfig.samplers;
+ if (currentConfig.backend_sampling)
+ apiOptions.backend_sampling = currentConfig.backend_sampling;
if (currentConfig.custom) apiOptions.custom = currentConfig.custom;
return apiOptions;
reasoning_in_content: boolean;
thinking_forced_open: boolean;
samplers: string[];
+ backend_sampling: boolean;
'speculative.n_max': number;
'speculative.n_min': number;
'speculative.p_min': number;
dry_penalty_last_n?: number;
// Sampler configuration
samplers?: string[];
+ backend_sampling?: boolean;
// Custom parameters (JSON string)
custom?: Record<string, unknown>;
timings_per_token?: boolean;
reasoning_in_content: boolean;
thinking_forced_open: boolean;
samplers: string[];
+ backend_sampling: boolean;
'speculative.n_max': number;
'speculative.n_min': number;
'speculative.p_min': number;
dry_penalty_last_n?: number;
// Sampler configuration
samplers?: string | string[];
+ backend_sampling?: boolean;
// Custom parameters
custom?: string;
timings_per_token?: boolean;