]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
mpt : implement backwards compatiblity with duped output tensor (#6139)
authorJared Van Bortel <redacted>
Mon, 18 Mar 2024 16:49:02 +0000 (12:49 -0400)
committerGitHub <redacted>
Mon, 18 Mar 2024 16:49:02 +0000 (12:49 -0400)
llama.cpp

index b8bef6dafe735ea4acac1be8d44459eba4f20ab1..1a9fe0c4d2ceada350e1c5f70d3089b4bc024f17 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -540,6 +540,7 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
         {
             { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
             { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output"},
             { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
             { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
             { LLM_TENSOR_ATTN_QKV,        "blk.%d.attn_qkv" },
@@ -4300,9 +4301,9 @@ static bool llm_load_tensors(
                     {
                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd});
-                        if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
-                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,     "weight"), {n_embd, n_vocab});
-                        } else {
+
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
+                        if (!model.output) {
                             model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
                             ml.n_created--; // artificial tensor
                             ml.size_data += ggml_nbytes(model.output);
@@ -4507,10 +4508,12 @@ static bool llm_load_tensors(
                         model.output_norm   = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
                         model.output_norm_b = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "bias"),   {n_embd}, false);
 
-                        // same as tok_embd, duplicated to allow offloading
-                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab});
-                        ml.n_created--; // artificial tensor
-                        ml.size_data += ggml_nbytes(model.output);
+                        model.output        = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, false);
+                        if (!model.output) {
+                            model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
+                            ml.n_created--; // artificial tensor
+                            ml.size_data += ggml_nbytes(model.output);
+                        }
                     }
 
                     for (int i = 0; i < n_layer; ++i) {