#include <ctime>
#include <sstream>
#include <cstring>
+#include <thread>
+#include <mutex>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
return probs;
}
+float log_softmax(int n_vocab, const float * logits, int tok) {
+ float max_logit = logits[0];
+ for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
+ double sum_exp = 0.0;
+ for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
+ return logits[tok] - max_logit - log(sum_exp);
+}
+
+void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread>& workers,
+ double& nll, double& nll2) {
+
+ std::mutex mutex;
+ int counter = 0;
+ auto compute = [&mutex, &counter, &nll, &nll2, n_vocab, logits, tokens, n_token] () {
+ double local_nll = 0, local_nll2 = 0;
+ while (true) {
+ std::unique_lock<std::mutex> lock(mutex);
+ int i = counter++;
+ if (i >= n_token) {
+ nll += local_nll; nll2 += local_nll2;
+ break;
+ }
+ lock.unlock();
+ double v = -log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
+ local_nll += v;
+ local_nll2 += v*v;
+ }
+ };
+ for (auto& w : workers) w = std::thread(compute);
+ compute();
+ for (auto& w : workers) w.join();
+
+}
+
void perplexity_v2(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
int count = 0;
double nll = 0.0;
+ double nll2 = 0.0;
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
+ std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
+
for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.n_ctx;
const int end = start + params.n_ctx;
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
- for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
- // Calculate probability of next token, given the previous ones.
- const std::vector<float> tok_logits(
- logits.begin() + (j + 0) * n_vocab,
- logits.begin() + (j + 1) * n_vocab);
-
- const float prob = softmax(tok_logits)[tokens[start + j + 1]];
+ const int first = std::min(512, params.n_ctx/2);
+ process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, workers, nll, nll2);
+ count += params.n_ctx - first - 1;
- nll += -std::log(prob);
- ++count;
- }
// perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) {
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
} else {
- printf("%8d %.4lf\n", i*params.n_ctx, std::exp(nll / count));
+ double av = nll/count;
+ double av2 = nll2/count - av*av;
+ if (av2 > 0) av2 = sqrt(av2/(count-1));
+ printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
}
fflush(stdout);
}
printf("\n");
+ nll2 /= count;
+ nll /= count;
+ nll2 -= nll * nll;
+ if (nll2 > 0) {
+ nll2 = sqrt(nll2/(count-1));
+ double ppl = exp(nll);
+ printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
+ } else {
+ printf("Unexpected negative standard deviation of log(prob)\n");
+ }
}
std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,