cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
cl_program program_mul_mv_q6_K;
+ cl_program program_mul_mv_mxfp4_f32;
cl_program program_mul_mv_f16_f16;
cl_program program_mul_mv_f16_f32_1row;
cl_program program_mul_mv_f16_f32_l4;
cl_program program_conv_2d_f16_f32;
cl_program program_tsembd;
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
+ cl_program program_mul_mv_id_mxfp4_f32;
cl_program program_mul_mm_f32_f32_l4_lm;
cl_program program_mul_mm_f16_f32_l4_lm;
cl_kernel kernel_convert_block_q4_0_noshuffle;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
+ cl_kernel kernel_mul_mv_mxfp4_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
cl_kernel kernel_conv_2d_f16_f32;
cl_kernel kernel_timestep_embedding;
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
+ cl_kernel kernel_mul_mv_id_mxfp4_f32;
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
cl_kernel kernel_transpose_32;
cl_kernel kernel_transpose_32_16;
cl_kernel kernel_transpose_16;
+ cl_kernel kernel_transpose_16_4x1;
cl_mem A_s_d_max; // max scale buffer size for transpose
cl_mem A_q_d_max; // max weight buffer size for transpose
GGML_LOG_CONT(".");
}
+ // mul_mv_mxfp4_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_mxfp4_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
+#endif
+ backend_ctx->program_mul_mv_mxfp4_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
// mul_mv_f16_f16
{
#ifdef GGML_OPENCL_EMBED_KERNELS
GGML_LOG_CONT(".");
}
+ // mul_mv_id_mxfp4_f32
+ {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+ const std::string kernel_src {
+ #include "mul_mv_id_mxfp4_f32.cl.h"
+ };
+#else
+ const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
+#endif
+ backend_ctx->program_mul_mv_id_mxfp4_f32 =
+ build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+ CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
+ GGML_LOG_CONT(".");
+ }
+
// Adreno kernels
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// transpose
CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
+ CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
GGML_LOG_CONT(".");
}
return true;
} else if (op->src[0]->type == GGML_TYPE_F32) {
return op->src[1]->type == GGML_TYPE_F32;
- } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
+ } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
op->src[0]->type == GGML_TYPE_Q6_K) {
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
return false;
case GGML_OP_MUL_MAT_ID:
- if (op->src[0]->type == GGML_TYPE_Q4_0) {
+ if (op->src[0]->type == GGML_TYPE_Q4_0 ||
+ op->src[0]->type == GGML_TYPE_MXFP4) {
if (op->src[1]->type == GGML_TYPE_F32) {
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
}
// cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
CL_CHECK(err);
- // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
+ bool K_tile_trans = true;
+ if ((K / 32) % 4 != 0){
+ K_tile_trans =false;
+ }
size_t d_size_bytes = M * (K / 32) * 2;
region.origin = 0;
region.size = d_size_bytes;
qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
+ if (K_tile_trans) {
+ img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
+ img_desc_1d.image_width = M * K / 32 / 4;
+ } else {
+ img_fmt_1d = { CL_R, CL_HALF_FLOAT };
+ img_desc_1d.image_width = M * K / 32;
+ }
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4;
img_desc_1d.buffer = extra->d;
d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
CL_CHECK(err);
int width_s = K / 32 / 4;
kernel = backend_ctx->kernel_transpose_16;
+ if (!K_tile_trans) {
+ kernel = backend_ctx->kernel_transpose_16_4x1;
+ width_s = K / 32;
+ }
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
break;
+ case GGML_TYPE_MXFP4: {
+ kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
+
+ if (backend_ctx->gpu_family == INTEL) {
+ nth0 = 16;
+ nth1 = 2;
+ ndst = nth1*2;
+ } else if (backend_ctx->gpu_family == ADRENO) {
+ nth0 = 64;
+ nth1 = 2;
+ ndst = nth1*2;
+ } else {
+ GGML_ASSERT(false && "TODO: Unknown GPU");
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
+ break;
+ }
default:
GGML_ASSERT(false && "not implemented");
}
- if (src0t == GGML_TYPE_Q4_0 ||
+ if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
src0t == GGML_TYPE_Q4_1 ||
src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K) {
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
+ ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
+ cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offset2 = extra2->offset + src2->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
+ const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
+ const cl_ulong nb03 = src0->nb[3];
const int ne10 = src1->ne[0];
const int ne11 = src1->ne[1];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
+ const cl_ulong nb13 = src1->nb[3];
const int ne20 = src2->ne[0];
const int ne21 = src2->ne[1];
break;
}
+ case GGML_TYPE_MXFP4: {
+ kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
+
+ if (backend_ctx->gpu_family == INTEL) {
+ sgs = 16;
+ nsg = 2;
+ ndst = 2;
+ } else if (backend_ctx->gpu_family == ADRENO) {
+ sgs = 64;
+ nsg = 2;
+ ndst = 2;
+ } else {
+ GGML_ASSERT(false && "TODO: Unknown GPU");
+ }
+
+ CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
+ CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
+ CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
+ CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
+ CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
+ CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
+ CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
+ CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
+ CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
+ CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
+ CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
+ CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
+ CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
+ CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
+ CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
+ CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
+ CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
+ CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
+ CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
+ CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
+ CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
+ CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
+
+ break;
+ }
default:
GGML_ASSERT(false && "not implemented");;
}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK_MXFP4 32
+typedef struct {
+ uchar e; // E8M0
+ uchar qs[QK_MXFP4/2];
+} block_mxfp4;
+
+constant static float kvalues_mxfp4_f[16] = {
+ 0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
+};
+
+static inline float e8m0_to_fp32(uchar x) {
+ int bits;
+
+ if (x == 0) {
+ bits = 0x00400000;
+ } else {
+ bits = (uint) x << 23;
+ }
+
+ return as_float(bits);
+}
+
+#ifdef INTEL_GPU
+#define N_R0_MXFP4 2 // number of rows each subgroup works on
+#define N_SG_MXFP4 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_MXFP4 2
+#define N_SG_MXFP4 2
+#define N_SIMDWIDTH 64
+#endif
+
+inline void mul_mv_mxfp4_f32(
+ global char * src0,
+ global char * src1,
+ global char * dst,
+ int ne00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne12,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3,
+ local char * shmem
+) {
+ local float * shmem_f32 = (local float *) shmem;
+ int nb = ne00/QK_MXFP4;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = 0;
+
+ int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
+
+ uint i12 = im%ne12;
+ uint i13 = im/ne12;
+
+ ulong offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global block_mxfp4 * x = (global block_mxfp4 *) (src0 + offset_src0);
+ global float * y = (global float *) (src1 + offset_src1);
+
+ const short ix = get_sub_group_local_id()/2; // 0...15
+ const short it = get_sub_group_local_id()%2; // 0 or 1
+
+ shmem_f32[get_sub_group_local_id()] = kvalues_mxfp4_f[get_sub_group_local_id()%16];
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ float4 yl[4];
+ float sumf[N_R0_MXFP4] = {0.f};
+
+ global float * yb = y + ix * QK_MXFP4 + it * 8;
+
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ global float4 * y4 = (global float4 *)yb;
+ yl[0] = y4[0];
+ yl[1] = y4[4];
+ yl[2] = y4[1];
+ yl[3] = y4[5];
+
+ for (short row = 0; row < N_R0_MXFP4; row++) {
+ global block_mxfp4 * xb = x + row*nb + ib;
+ global uchar * q2 = (global uchar *)(xb->qs + 8*it);
+
+ float4 acc1 = yl[0]*(float4)(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
+ float4 acc2 = yl[1]*(float4)(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
+ float4 acc3 = yl[2]*(float4)(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
+ float4 acc4 = yl[3]*(float4)(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
+
+ acc1 = (acc1 + acc3) + (acc2 + acc4);
+
+ sumf[row] += e8m0_to_fp32(xb->e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
+ }
+
+ yb += (N_SIMDWIDTH/2) * QK_MXFP4;
+ }
+
+ global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
+
+ for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
+ float sum_all = sub_group_reduce_add(sumf[row]);
+ if (get_sub_group_local_id() == 0) {
+ dst_f32[first_row + row] = sum_all;
+ }
+ }
+}
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_id_mxfp4_f32(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global char * src2,
+ ulong offset2,
+ global char * dst,
+ ulong offsetd,
+ int ne00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne11,
+ int ne12,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne20,
+ int ne21,
+ ulong nb21,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3,
+ local char * shmem
+) {
+ src0 = (global char *)((global char *)src0 + offset0);
+ src1 = (global char *)((global char *)src1 + offset1);
+ src2 = (global char *)((global char *)src2 + offset2);
+ dst = (global char *)((global char *)dst + offsetd);
+
+ const int iid1 = get_group_id(2)/ne20;
+ const int idx = get_group_id(2)%ne20;
+
+ int i02 = ((global int *) (src2 + iid1*nb21))[idx];
+
+ int i11 = idx % ne11;
+ int i12 = iid1;
+
+ int i1 = idx;
+ int i2 = i12;
+
+ global char * src0_cur = src0 + i02*nb02;
+ global char * src1_cur = src1 + i11*nb11 + i12*nb12;
+
+ global char * dst_cur = dst + (i1*ne0 + i2*ne1*ne0)*sizeof(float);
+
+ mul_mv_mxfp4_f32(src0_cur, src1_cur, dst_cur,
+ ne00, nb01, nb02, nb03, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shmem);
+}
--- /dev/null
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK_MXFP4 32
+typedef struct {
+ uchar e; // E8M0
+ uchar qs[QK_MXFP4/2];
+} block_mxfp4;
+
+constant static float kvalues_mxfp4_f[16] = {
+ 0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
+};
+
+static inline float e8m0_to_fp32(uchar x) {
+ int bits;
+
+ if (x == 0) {
+ bits = 0x00400000;
+ } else {
+ bits = (uint) x << 23;
+ }
+
+ return as_float(bits);
+}
+
+#ifdef INTEL_GPU
+#define N_R0_MXFP4 2 // number of rows each subgroup works on
+#define N_SG_MXFP4 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_MXFP4 2
+#define N_SG_MXFP4 2
+#define N_SIMDWIDTH 64
+#endif
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_mxfp4_f32(
+ global char * src0,
+ ulong offset0,
+ global char * src1,
+ ulong offset1,
+ global char * dst,
+ ulong offsetd,
+ int ne00,
+ ulong nb01,
+ ulong nb02,
+ ulong nb03,
+ int ne12,
+ ulong nb11,
+ ulong nb12,
+ ulong nb13,
+ int ne0,
+ int ne1,
+ int r2,
+ int r3,
+ local char * shmem
+) {
+ src0 = (global char*)((global char*)src0 + offset0);
+ src1 = (global char*)((global char*)src1 + offset1);
+ dst = (global char*)((global char*)dst + offsetd);
+
+ local float * shmem_f32 = (local float *) shmem;
+ int nb = ne00/QK_MXFP4;
+
+ int r0 = get_group_id(0);
+ int r1 = get_group_id(1);
+ int im = get_group_id(2);
+
+ int first_row = (r0 * N_SG_MXFP4 + get_sub_group_id()) * N_R0_MXFP4;
+
+ uint i12 = im%ne12;
+ uint i13 = im/ne12;
+
+ ulong offset_src0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+ ulong offset_src1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
+
+ global block_mxfp4 * x = (global block_mxfp4 *) (src0 + offset_src0);
+ global float * y = (global float *) (src1 + offset_src1);
+
+ const short ix = get_sub_group_local_id()/2; // 0...15
+ const short it = get_sub_group_local_id()%2; // 0 or 1
+
+ shmem_f32[get_sub_group_local_id()] = kvalues_mxfp4_f[get_sub_group_local_id()%16];
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ float4 yl[4];
+ float sumf[N_R0_MXFP4] = {0.f};
+
+ global float * yb = y + ix * QK_MXFP4 + it * 8;
+
+ for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
+ global float4 * y4 = (global float4 *)yb;
+ yl[0] = y4[0];
+ yl[1] = y4[4];
+ yl[2] = y4[1];
+ yl[3] = y4[5];
+
+ for (short row = 0; row < N_R0_MXFP4; row++) {
+ global block_mxfp4 * xb = x + row*nb + ib;
+ global uchar * q2 = (global uchar *)(xb->qs + 8*it);
+
+ float4 acc1 = yl[0]*(float4)(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
+ float4 acc2 = yl[1]*(float4)(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
+ float4 acc3 = yl[2]*(float4)(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
+ float4 acc4 = yl[3]*(float4)(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
+
+ acc1 = (acc1 + acc3) + (acc2 + acc4);
+
+ sumf[row] += e8m0_to_fp32(xb->e) * ((acc1.s0 + acc1.s1) + (acc1.s2 + acc1.s3));
+ }
+
+ yb += (N_SIMDWIDTH/2) * QK_MXFP4;
+ }
+
+ global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
+
+ for (int row = 0; row < N_R0_MXFP4 && first_row + row < ne0; ++row) {
+ float sum_all = sub_group_reduce_add(sumf[row]);
+ if (get_sub_group_local_id() == 0) {
+ dst_f32[first_row + row] = sum_all;
+ }
+ }
+}