+// defines MAP_ANONYMOUS
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+
#include "ggml-alloc.h"
#include "ggml.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
+#ifdef __has_include
+ #if __has_include(<unistd.h>)
+ #include <unistd.h>
+ #if defined(_POSIX_MAPPED_FILES)
+ #include <sys/types.h>
+ #include <sys/mman.h>
+ #endif
+ #endif
+#endif
+
+#if defined(_WIN32)
+ #define WIN32_LEAN_AND_MEAN
+ #ifndef NOMINMAX
+ #define NOMINMAX
+ #endif
+ #include <windows.h>
+ #include <memoryapi.h>
+#endif
+
+
#define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
}
#endif
-
-static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
+static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(alloc);
}
+// check if a tensor is allocated by this buffer
+static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
+ void * ptr = tensor->data;
+ return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
+}
+
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
#ifdef GGML_ALLOCATOR_DEBUG
GGML_ASSERT(ggml_is_view(tensor) == false); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
#endif
- size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
+ size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
-static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
+static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
void * ptr = tensor->data;
- if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
+ if (ggml_allocr_is_own(alloc, tensor) == false) {
// the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it
return;
}
- size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
+ size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
return alloc;
}
-// address and size of the buffer when measuring
-// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
-static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
-#if defined(__ARM_NEON) && !defined(__aarch64__)
-// 32-bit
-// TODO: Use for 32-bit x86 as well
-static const size_t MEASURE_MAX_SIZE = (1ULL<<32) - 1; // 4 GB
+// OS specific functions to allocate and free uncommitted virtual memory
+static void * alloc_vmem(size_t size) {
+#if defined(_WIN32)
+ return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
+#elif defined(_POSIX_MAPPED_FILES)
+ return mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
#else
-// 64-bit
-static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
+ // use a fixed address for other platforms
+ uintptr_t base_addr = (uintptr_t)-size - 0x100;
+ return (void *)base_addr;
#endif
+}
+
+static void free_vmem(void * base_addr, size_t size) {
+#if defined(_WIN32)
+ VirtualFree(base_addr, 0, MEM_RELEASE);
+ UNUSED(size);
+#elif defined(_POSIX_MAPPED_FILES)
+ munmap(base_addr, size);
+#else
+ // nothing to do
+ UNUSED(base_addr);
+ UNUSED(size);
+#endif
+}
+
+// allocate uncommitted virtual memory to measure the size of the graph
+static void alloc_measure_vmem(void ** base_addr, size_t * size) {
+ // 1TB for 64-bit, 1GB for 32-bit
+ *size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<40;
+ do {
+ *base_addr = alloc_vmem(*size);
+ if (*base_addr != NULL) {
+ AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
+ return;
+ }
+ // try again with half the size
+ *size /= 2;
+ } while (*size > 0);
+
+ GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
+}
+
+static void free_measure_vmem(void * base_addr, size_t size) {
+ free_vmem(base_addr, size);
+}
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
+ void * base_addr;
+ size_t size;
+
+ alloc_measure_vmem(&base_addr, &size);
+
*alloc = (struct ggml_allocr){
- /*.data = */ MEASURE_BASE_ADDR,
- /*.size = */ MEASURE_MAX_SIZE,
+ /*.data = */ base_addr,
+ /*.size = */ size,
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
}
void ggml_allocr_free(struct ggml_allocr * alloc) {
+ if (alloc->measure) {
+ free_measure_vmem(alloc->data, alloc->size);
+ }
free(alloc);
}
}
// if the node's data is external, then we cannot re-use it
- if ((char *) parent->data < (char *) alloc->data ||
- (char *) parent->data >= ((char *) alloc->data + alloc->size)) {
+ if (ggml_allocr_is_own(alloc, parent) == false) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue;
}
}
}
-static size_t ggml_allocator_alloc_graph_tensors_n(
+static size_t ggml_allocr_alloc_graph_tensors_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
AT_PRINTF("\n");
}
-
// update parents
// update immediately if there is no parse_seq
// update only at barriers if there is parse_seq
- if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
+ if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
int update_end = alloc->parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
- ggml_allocator_free_tensor(alloc, view_src);
+ ggml_allocr_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
- ggml_allocator_free_tensor(alloc, parent);
+ ggml_allocr_free_tensor(alloc, parent);
}
}
}
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
- ggml_allocator_free_tensor(alloc, output);
+ ggml_allocr_free_tensor(alloc, output);
}
}
}
}
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
- return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
+ return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
}