]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : support InternLM2 (#5184)
authorGuoteng <redacted>
Thu, 1 Feb 2024 09:19:51 +0000 (17:19 +0800)
committerGitHub <redacted>
Thu, 1 Feb 2024 09:19:51 +0000 (11:19 +0200)
* support InternLM2 inference
  * add add_space_prefix KV pair

convert-hf-to-gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/gguf_writer.py
gguf-py/gguf/tensor_mapping.py
llama.cpp

index 6ab7f486ed73e8e5b4362aea3b56c29c0e30d903..4ebab07b3e76754469b8d055b3a94a342ffdcc10 100755 (executable)
@@ -203,6 +203,8 @@ class Model:
             return CodeShellModel
         if model_architecture == "OrionForCausalLM":
             return OrionModel
+        if model_architecture == "InternLM2ForCausalLM":
+            return InternLM2Model
         return Model
 
     def _is_model_safetensors(self) -> bool:
@@ -254,6 +256,8 @@ class Model:
             return gguf.MODEL_ARCH.CODESHELL
         if arch == "OrionForCausalLM":
             return gguf.MODEL_ARCH.ORION
+        if arch == "InternLM2ForCausalLM":
+            return gguf.MODEL_ARCH.INTERNLM2
 
         raise NotImplementedError(f'Architecture "{arch}" not supported!')
 
@@ -1344,6 +1348,154 @@ class CodeShellModel(Model):
                 self.gguf_writer.add_tensor("output.weight", data)
                 print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
 
+
+class InternLM2Model(Model):
+    def set_vocab(self):
+        # (TODO): Is there a better way?
+        # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
+        # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
+        # recognized as an empty string in C++.
+        from sentencepiece import SentencePieceProcessor
+        from sentencepiece import sentencepiece_model_pb2 as model
+
+        tokenizer_path = self.dir_model / 'tokenizer.model'
+
+        tokens: list[bytes] = []
+        scores: list[float] = []
+        toktypes: list[int] = []
+
+        if not tokenizer_path.is_file():
+            print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
+            sys.exit(1)
+
+        sentencepiece_model = model.ModelProto()
+        sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
+        add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
+
+        tokenizer = SentencePieceProcessor(str(tokenizer_path))
+        vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+        for token_id in range(vocab_size):
+            piece = tokenizer.id_to_piece(token_id)
+            text = piece.encode("utf-8")
+            score = tokenizer.get_score(token_id)
+            if text == b"\x00":
+                # (TODO): fixme
+                # Hack here and replace the \x00 characters.
+                print(f"InternLM2 convert token '{text}' to '🐉'!")
+                text = "🐉"
+
+            toktype = SentencePieceTokenTypes.NORMAL
+            if tokenizer.is_unknown(token_id):
+                toktype = SentencePieceTokenTypes.UNKNOWN
+            elif tokenizer.is_control(token_id):
+                toktype = SentencePieceTokenTypes.CONTROL
+            elif tokenizer.is_unused(token_id):
+                toktype = SentencePieceTokenTypes.UNUSED
+            elif tokenizer.is_byte(token_id):
+                toktype = SentencePieceTokenTypes.BYTE
+
+            tokens.append(text)
+            scores.append(score)
+            toktypes.append(toktype)
+
+        added_tokens_file = self.dir_model / 'added_tokens.json'
+        if added_tokens_file.is_file():
+            with open(added_tokens_file, "r", encoding="utf-8") as f:
+                added_tokens_json = json.load(f)
+
+                for key in added_tokens_json:
+                    tokens.append(key.encode("utf-8"))
+                    scores.append(-1000.0)
+                    toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
+
+        self.gguf_writer.add_tokenizer_model("llama")
+        self.gguf_writer.add_token_list(tokens)
+        self.gguf_writer.add_token_scores(scores)
+        self.gguf_writer.add_token_types(toktypes)
+        self.gguf_writer.add_add_space_prefix(add_prefix)
+
+        special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+        special_vocab.add_to_gguf(self.gguf_writer)
+
+    def set_gguf_parameters(self):
+        self.gguf_writer.add_name("InternLM2")
+        self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
+        self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
+        self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
+        self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
+        self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
+        self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
+        self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
+        self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
+
+    def post_write_tensors(self, tensor_map, name, data_torch):
+        old_dtype = data_torch.dtype
+
+        # convert any unsupported data types to float32
+        if data_torch.dtype not in (torch.float16, torch.float32):
+            data_torch = data_torch.to(torch.float32)
+
+        data = data_torch.squeeze().numpy()
+
+        # map tensor names
+        new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+        if new_name is None:
+            print(f"Can not map tensor {name!r}")
+            sys.exit()
+
+        n_dims = len(data.shape)
+        data_dtype = data.dtype
+
+        # if f32 desired, convert any float16 to float32
+        if self.ftype == 0 and data_dtype == np.float16:
+            data = data.astype(np.float32)
+
+        # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+        if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+            data = data.astype(np.float32)
+
+        # if f16 desired, convert any float32 2-dim weight tensors to float16
+        if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+            data = data.astype(np.float16)
+
+        print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+        self.gguf_writer.add_tensor(new_name, data)
+
+    def write_tensors(self):
+        from einops import rearrange
+
+        num_heads = self.hparams.get("num_attention_heads")
+        num_kv_heads = self.hparams.get("num_key_value_heads")
+        hidden_size = self.hparams.get("hidden_size")
+        q_per_kv = num_heads // num_kv_heads
+        head_dim = hidden_size // num_heads
+        num_groups = num_heads // q_per_kv
+
+        block_count = self.hparams["num_hidden_layers"]
+        model_kv = dict(self.get_tensors())
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+        qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
+        for name, data_torch in model_kv.items():
+            # we don't need these
+            if name.endswith(".rotary_emb.inv_freq"):
+                continue
+
+            if re.match(qkv_pattern, name):
+                bid = re.findall(qkv_pattern, name)[0]
+                qkv = data_torch
+                qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
+                q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
+                q = rearrange(q, " o g n i ->  o (g n i)").T
+                k = rearrange(k, " o g n i ->  o (g n i)").T
+                v = rearrange(v, " o g n i ->  o (g n i)").T
+                self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
+                self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
+                self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
+            else:
+                self.post_write_tensors(tensor_map, name, data_torch)
+
+
 ###### CONVERSION LOGIC ######
 
 
index f5c933a4176e425f83d49c2d455d4e63918b7339..ed8e26f83e6a9966928c3a84f29c771304cc747c 100644 (file)
@@ -72,6 +72,7 @@ class Keys:
         PAD_ID        = "tokenizer.ggml.padding_token_id"
         ADD_BOS       = "tokenizer.ggml.add_bos_token"
         ADD_EOS       = "tokenizer.ggml.add_eos_token"
+        ADD_PREFIX    = "tokenizer.ggml.add_space_prefix"
         HF_JSON       = "tokenizer.huggingface.json"
         RWKV          = "tokenizer.rwkv.world"
         CHAT_TEMPLATE = "tokenizer.chat_template"
@@ -102,6 +103,7 @@ class MODEL_ARCH(IntEnum):
     PLAMO     = auto()
     CODESHELL = auto()
     ORION     = auto()
+    INTERNLM2  = auto()
 
 
 class MODEL_TENSOR(IntEnum):
@@ -153,6 +155,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.PLAMO:          "plamo",
     MODEL_ARCH.CODESHELL:      "codeshell",
     MODEL_ARCH.ORION:          "orion",
+    MODEL_ARCH.INTERNLM2:      "internlm2",
 }
 
 TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -446,6 +449,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.INTERNLM2: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_ROT_EMBD,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+    ],
     # TODO
 }
 
index d93aaa877171fa6b5c8f76c16a03ecd95245e03f..16808196e769d11ee9041bdf5f6fca6f7f6a5ba9 100644 (file)
@@ -411,6 +411,9 @@ class GGUFWriter:
     def add_add_eos_token(self, value: bool) -> None:
         self.add_bool(Keys.Tokenizer.ADD_EOS, value)
 
+    def add_add_space_prefix(self, value: bool) -> None:
+        self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
+
     def add_chat_template(self, value: str) -> None:
         self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
 
index de177af1377144c03d8b3c61b4df6f1f9f7e2df5..4f16d85044693910bc459a78dc22e49dc882213e 100644 (file)
@@ -19,6 +19,7 @@ class TensorNameMap:
             "language_model.embedding.word_embeddings",  # persimmon
             "wte",                                       # gpt2
             "transformer.embd.wte",                      # phi2
+            "model.tok_embeddings",                      # internlm2
         ),
 
         # Token type embeddings
@@ -42,7 +43,7 @@ class TensorNameMap:
         MODEL_TENSOR.OUTPUT: (
             "embed_out",                 # gptneox
             "lm_head",                   # gpt2 mpt falcon llama-hf baichuan qwen
-            "output",                    # llama-pth bloom
+            "output",                    # llama-pth bloom internlm2
             "word_embeddings_for_head",  # persimmon
             "lm_head.linear",            # phi2
         ),
@@ -51,7 +52,7 @@ class TensorNameMap:
         MODEL_TENSOR.OUTPUT_NORM: (
             "gpt_neox.final_layer_norm",               # gptneox
             "transformer.ln_f",                        # gpt2 gpt-j falcon
-            "model.norm",                              # llama-hf baichuan
+            "model.norm",                              # llama-hf baichuan internlm2
             "norm",                                    # llama-pth
             "embeddings.LayerNorm",                    # bert
             "transformer.norm_f",                      # mpt
@@ -84,6 +85,7 @@ class TensorNameMap:
             "h.{bid}.ln_1",                                         # gpt2
             "transformer.h.{bid}.ln",                               # phi2
             "model.layers.layers.{bid}.norm",                       # plamo
+            "model.layers.{bid}.attention_norm",                    # internlm2
         ),
 
         # Attention norm 2
@@ -111,6 +113,7 @@ class TensorNameMap:
             "encoder.layer.{bid}.attention.self.query",    # bert
             "transformer.h.{bid}.attn.q_proj",             # gpt-j
             "model.layers.layers.{bid}.self_attn.q_proj",  # plamo
+            "model.layers.{bid}.attention.wq"             # internlm2
         ),
 
         # Attention key
@@ -120,6 +123,7 @@ class TensorNameMap:
             "encoder.layer.{bid}.attention.self.key",      # bert
             "transformer.h.{bid}.attn.k_proj",             # gpt-j
             "model.layers.layers.{bid}.self_attn.k_proj",  # plamo
+            "model.layers.{bid}.attention.wk"             # internlm2
         ),
 
         # Attention value
@@ -129,6 +133,7 @@ class TensorNameMap:
             "encoder.layer.{bid}.attention.self.value",    # bert
             "transformer.h.{bid}.attn.v_proj",             # gpt-j
             "model.layers.layers.{bid}.self_attn.v_proj",  # plamo
+            "model.layers.{bid}.attention.wv"             # internlm2
         ),
 
         # Attention output
@@ -147,6 +152,7 @@ class TensorNameMap:
             "h.{bid}.attn.c_proj",                                       # gpt2
             "transformer.h.{bid}.mixer.out_proj",                        # phi2
             "model.layers.layers.{bid}.self_attn.o_proj",                # plamo
+            "model.layers.{bid}.attention.wo",                           # internlm2
         ),
 
         # Rotary embeddings
@@ -169,6 +175,7 @@ class TensorNameMap:
             "language_model.encoder.layers.{bid}.post_attention_layernorm",  # persimmon
             "model.layers.{bid}.ln2",                                        # yi
             "h.{bid}.ln_2",                                                  # gpt2
+            "model.layers.{bid}.ffn_norm",                                   # internlm2
         ),
 
         MODEL_TENSOR.FFN_GATE_INP: (
@@ -194,6 +201,7 @@ class TensorNameMap:
             "transformer.h.{bid}.mlp.fc1",                            # phi2
             "model.layers.{bid}.mlp.fc1",                             # phi2
             "model.layers.layers.{bid}.mlp.up_proj",                  # plamo
+            "model.layers.{bid}.feed_forward.w3",                     # internlm2
         ),
 
         MODEL_TENSOR.FFN_UP_EXP: (
@@ -212,6 +220,7 @@ class TensorNameMap:
             "layers.{bid}.feed_forward.w1",               # llama-pth
             "transformer.h.{bid}.mlp.w2",                 # qwen
             "model.layers.layers.{bid}.mlp.gate_proj",    # plamo
+            "model.layers.{bid}.feed_forward.w1",         # internlm2
         ),
 
         MODEL_TENSOR.FFN_GATE_EXP: (
@@ -236,6 +245,7 @@ class TensorNameMap:
             "transformer.h.{bid}.mlp.fc2",                            # phi2
             "model.layers.{bid}.mlp.fc2",                             # phi2
             "model.layers.layers.{bid}.mlp.down_proj",                # plamo
+            "model.layers.{bid}.feed_forward.w2",                     # internlm2
         ),
 
         MODEL_TENSOR.FFN_DOWN_EXP: (
index 02b0a485a965309a021796a73a3d4e48021e0992..e8f44c2cbd5f3fe755fc7969de2ccd6e16cffdd4 100644 (file)
--- a/llama.cpp
+++ b/llama.cpp
@@ -204,6 +204,7 @@ enum llm_arch {
     LLM_ARCH_PLAMO,
     LLM_ARCH_CODESHELL,
     LLM_ARCH_ORION,
+    LLM_ARCH_INTERNLM2,
     LLM_ARCH_UNKNOWN,
 };
 
@@ -226,6 +227,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
     { LLM_ARCH_PLAMO,           "plamo"     },
     { LLM_ARCH_CODESHELL,       "codeshell" },
     { LLM_ARCH_ORION,           "orion"     },
+    { LLM_ARCH_INTERNLM2,       "internlm2" },
 };
 
 enum llm_kv {
@@ -278,6 +280,7 @@ enum llm_kv {
     LLM_KV_TOKENIZER_PAD_ID,
     LLM_KV_TOKENIZER_ADD_BOS,
     LLM_KV_TOKENIZER_ADD_EOS,
+    LLM_KV_TOKENIZER_ADD_PREFIX,
     LLM_KV_TOKENIZER_HF_JSON,
     LLM_KV_TOKENIZER_RWKV,
 };
@@ -332,6 +335,7 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
     { LLM_KV_TOKENIZER_PAD_ID,              "tokenizer.ggml.padding_token_id"   },
     { LLM_KV_TOKENIZER_ADD_BOS,             "tokenizer.ggml.add_bos_token"      },
     { LLM_KV_TOKENIZER_ADD_EOS,             "tokenizer.ggml.add_eos_token"      },
+    { LLM_KV_TOKENIZER_ADD_PREFIX,          "tokenizer.ggml.add_space_prefix"   },
     { LLM_KV_TOKENIZER_HF_JSON,             "tokenizer.huggingface.json"        },
     { LLM_KV_TOKENIZER_RWKV,                "tokenizer.rwkv.world"              },
 };
@@ -669,7 +673,23 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
-
+    {
+        LLM_ARCH_INTERNLM2,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
@@ -1377,6 +1397,7 @@ enum e_model {
     MODEL_13B,
     MODEL_14B,
     MODEL_15B,
+    MODEL_20B,
     MODEL_30B,
     MODEL_34B,
     MODEL_40B,
@@ -1618,6 +1639,8 @@ struct llama_vocab {
     id special_suffix_id = 32008;
     id special_eot_id    = 32010;
 
+    bool add_space_prefix = true;
+
     int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
         GGML_ASSERT(token_left.find(' ') == std::string::npos);
         GGML_ASSERT(token_left.find('\n') == std::string::npos);
@@ -2731,6 +2754,7 @@ static const char * llama_model_type_name(e_model type) {
         case MODEL_13B:    return "13B";
         case MODEL_14B:    return "14B";
         case MODEL_15B:    return "15B";
+        case MODEL_20B:    return "20B";
         case MODEL_30B:    return "30B";
         case MODEL_34B:    return "34B";
         case MODEL_40B:    return "40B";
@@ -2743,6 +2767,14 @@ static const char * llama_model_type_name(e_model type) {
         default:           return "?B";
     }
 }
+static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
+    switch (type) {
+        case LLAMA_VOCAB_TYPE_SPM:         return "SPM";
+        case LLAMA_VOCAB_TYPE_BPE:         return "BPE";
+        default:                           return "unknown";
+    }
+}
+
 
 static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
     model.arch = ml.get_arch();
@@ -3006,6 +3038,15 @@ static void llm_load_hparams(
                     default: model.type = e_model::MODEL_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_INTERNLM2:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    case 32: model.type = e_model::MODEL_7B; break;
+                    case 48: model.type = e_model::MODEL_20B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         default: (void)0;
     }
 
@@ -3057,6 +3098,11 @@ static void llm_load_vocab(
             vocab.special_unk_id = 0;
             vocab.special_sep_id = -1;
             vocab.special_pad_id = -1;
+
+            const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
+            if (add_space_prefix_keyidx != -1) {
+                vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
+            } // The default value of add_space_prefix is true.
         } else if (tokenizer_name == "gpt2") {
             vocab.type = LLAMA_VOCAB_TYPE_BPE;
 
@@ -3269,7 +3315,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
     // hparams
     LLAMA_LOG_INFO("%s: format           = %s\n",     __func__, llama_file_version_name(ml.fver));
     LLAMA_LOG_INFO("%s: arch             = %s\n",     __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
-    LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
+    LLAMA_LOG_INFO("%s: vocab type       = %s\n",     __func__, llama_model_vocab_type_name(vocab.type));
     LLAMA_LOG_INFO("%s: n_vocab          = %u\n",     __func__, hparams.n_vocab);
     LLAMA_LOG_INFO("%s: n_merges         = %u\n",     __func__, (int) vocab.bpe_ranks.size());
     LLAMA_LOG_INFO("%s: n_ctx_train      = %u\n",     __func__, hparams.n_ctx_train);
@@ -4018,8 +4064,35 @@ static bool llm_load_tensors(
                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
                     }
                 } break;
+            case LLM_ARCH_INTERNLM2:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab});
+                    }
 
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
 
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                        // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa});
+
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
             default:
                 throw std::runtime_error("unknown architecture");
         }
@@ -6588,6 +6661,126 @@ struct llm_build_context {
 
         return gf;
     }
+
+    struct ggml_cgraph * build_internlm2() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
+        cb(inpL, "inp_embd", -1);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
+        cb(inp_pos, "inp_pos", -1);
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
+        cb(KQ_mask, "KQ_mask", -1);
+
+        // shift the entire K-cache if needed
+        if (do_rope_shift) {
+            llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
+        }
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens), inp_pos,
+                    hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_custom(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
+                    hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+                cb(cur, "kqv_out", il);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, cur,
+                    model.layers[il].ffn_up,   NULL,
+                    model.layers[il].ffn_gate, NULL,
+                    model.layers[il].ffn_down, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = ggml_mul_mat(ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
 };
 
 static struct ggml_cgraph * llama_build_graph(
@@ -6746,6 +6939,10 @@ static struct ggml_cgraph * llama_build_graph(
             {
                 result = llm.build_orion();
             } break;
+        case LLM_ARCH_INTERNLM2:
+            {
+                result = llm.build_internlm2();
+            } break;
         default:
             GGML_ASSERT(false);
     }
@@ -7688,7 +7885,9 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
                         //
                         auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
                         if (&fragment == &fragment_buffer.front()) {
-                            raw_text = " " + raw_text; // prefix with space if the first token is not special
+                            if (vocab.add_space_prefix) {
+                                raw_text = " " + raw_text; // prefix with space if the first token is not special
+                            }
                         }
 
 #ifdef PRETOKENIZERDEBUG