#include "clip.h"
#include "ggml.h"
#include "ggml-alloc.h"
+#include "ggml-backend.h"
+
+#ifdef GGML_USE_CUBLAS
+#include "ggml-cuda.h"
+#endif
+
+#ifdef GGML_USE_METAL
+#include "ggml-metal.h"
+#endif
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
-#define CLIP_DEBUG
-
static std::string format(const char * fmt, ...) {
va_list ap;
va_list ap2;
struct ggml_tensor * mm_2_b;
};
-// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
-struct clip_buffer {
- uint8_t * data = NULL;
- size_t size = 0;
-
- void resize(size_t size) {
- delete[] data;
- data = new uint8_t[size];
- this->size = size;
- }
-
- ~clip_buffer() { delete[] data; }
-};
-
struct clip_ctx {
bool has_text_encoder = false;
bool has_vision_encoder = false;
struct gguf_context * ctx_gguf;
// memory buffers to evaluate the model
- clip_buffer buf_compute;
- clip_buffer buf_alloc;
- ggml_allocr * alloc = NULL;
+ ggml_backend_buffer_t params_buffer = NULL;
+ ggml_backend_buffer_t compute_buffer = NULL;
+ ggml_backend_t backend = NULL;
+ ggml_allocr * compute_alloc = NULL;
};
static ggml_cgraph * clip_image_build_graph(const clip_ctx * ctx, const clip_image_f32_batch * imgs) {
if(ctx->has_llava_projector) {
GGML_ASSERT(batch_size == 1);
}
-
- const auto & buf_compute = ctx->buf_compute;
-
struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size,
- /*.mem_buffer =*/ buf_compute.data,
- /*.no_alloc =*/ false,
+ /*.mem_size =*/ GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead(),
+ /*.mem_buffer =*/ NULL,
+ /*.no_alloc =*/ true,
};
- params.no_alloc = true;
-
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size, image_size, 3, batch_size);
- ggml_allocr_alloc(ctx->alloc, inp_raw);
+ ggml_allocr_alloc(ctx->compute_alloc, inp_raw);
- if (!ggml_allocr_is_measure(ctx->alloc)) {
- float * data = (float *)ggml_get_data(inp_raw);
+ if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
+ float * data = (float *)malloc(ggml_nbytes(inp_raw));
for (size_t i = 0; i < imgs->size; i++) {
const int nx = imgs->data[i].nx;
}
}
}
+ ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
+ free(data);
}
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
// concat class_embeddings and patch_embeddings
struct ggml_tensor * embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
- ggml_allocr_alloc(ctx->alloc, embeddings);
- if (!ggml_allocr_is_measure(ctx->alloc)) {
- ggml_set_zero(embeddings);
+ ggml_allocr_alloc(ctx->compute_alloc, embeddings);
+ if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
+ void* zero_mem = malloc(ggml_nbytes(embeddings));
+ memset(zero_mem, 0, ggml_nbytes(embeddings));
+ ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
+ free(zero_mem);
}
- struct ggml_tensor * temp = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, 1, batch_size);
- ggml_allocr_alloc(ctx->alloc, temp);
+ embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
+ embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, ggml_repeat(ctx0, model.class_embedding, temp), embeddings->nb[1],
- embeddings->nb[2], embeddings->nb[3], 0);
- embeddings =
- ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
+ embeddings = ggml_acc(ctx0, embeddings, inp,
+ embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
- ggml_allocr_alloc(ctx->alloc, positions);
- if (!ggml_allocr_is_measure(ctx->alloc)) {
+ ggml_allocr_alloc(ctx->compute_alloc, positions);
+ if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
+ int* positions_data = (int*)malloc(ggml_nbytes(positions));
for (int i = 0; i < num_positions; i++) {
- ggml_set_i32_1d(positions, i, i);
+ positions_data[i] = i;
}
+ ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
+ free(positions_data);
}
embeddings =
- ggml_add(ctx0, embeddings, ggml_repeat(ctx0, ggml_get_rows(ctx0, model.position_embeddings, positions), embeddings));
+ ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
// pre-layernorm
{
embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.pre_ln_w, embeddings), embeddings),
- ggml_repeat(ctx0, model.pre_ln_b, embeddings));
+ embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
// loop over layers
{
cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_w, cur), cur),
- ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
+ cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
+ model.layers[il].ln_1_b);
}
// self-attention
{
struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, cur), ggml_mul_mat(ctx0, model.layers[il].q_w, cur));
+ ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * K =
- ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, cur), ggml_mul_mat(ctx0, model.layers[il].k_w, cur));
+ ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
struct ggml_tensor * V =
- ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, cur), ggml_mul_mat(ctx0, model.layers[il].v_w, cur));
+ ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
}
// attention output
- cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].o_b, cur), ggml_mul_mat(ctx0, model.layers[il].o_w, cur));
+ cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, embeddings);
{
cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_w, cur), cur),
- ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
+ cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_i_b, cur), cur);
+ cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
if (ctx->use_gelu) {
cur = ggml_gelu_inplace(ctx0, cur);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_o_b, cur), cur);
+ cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_allocr_alloc(ctx->alloc, patches);
- if (!ggml_allocr_is_measure(ctx->alloc)) {
- for (int i = 0; i < num_patches; ++i) {
- ggml_set_i32_1d(patches, i, i+1);
+ ggml_allocr_alloc(ctx->compute_alloc, patches);
+ if (!ggml_allocr_is_measure(ctx->compute_alloc)) {
+ int* patches_data = (int*)malloc(ggml_nbytes(patches));
+ for (int i = 0; i < num_positions; i++) {
+ patches_data[i] = i + 1;
}
+ ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
+ free(patches_data);
}
embeddings = ggml_get_rows(ctx0, embeddings, patches);
// mm projection 0
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_0_b, embeddings), embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, ggml_repeat(ctx0, model.mm_2_b, embeddings), embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
}
// build the graph
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
-
struct ggml_context * meta = NULL;
struct gguf_init_params params = {
printf("%s: ftype: %s\n", __func__, ftype_str.c_str());
printf("\n");
}
-
+ const int n_tensors = gguf_get_n_tensors(ctx);
// kv
if (verbosity >= 3) {
const int n_kv = gguf_get_n_kv(ctx);
}
// data
- size_t ctx_size = 0;
+ size_t buffer_size = 0;
{
- const int n_tensors = gguf_get_n_tensors(ctx);
-
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
-
struct ggml_tensor * cur = ggml_get_tensor(meta, name);
- ctx_size += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
size_t tensor_size = ggml_nbytes(cur);
- size_t padded_size = ggml_nbytes_pad(cur);
- ctx_size += padded_size;
+ buffer_size += tensor_size;
if (verbosity >= 3) {
- printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, padded_size=%zu, offset=%zu\n", __func__, i,
- ggml_n_dims(cur), cur->name, tensor_size, padded_size, offset);
+ printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu\n", __func__, i,
+ ggml_n_dims(cur), cur->name, tensor_size, offset);
}
}
}
+ buffer_size += n_tensors * 128 /* CLIP PADDING */;
+
clip_ctx * new_clip = new clip_ctx;
+#ifdef GGML_USE_CUBLAS
+ new_clip->backend = ggml_backend_cuda_init(0);
+ printf("%s: CLIP using CUDA backend\n", __func__);
+#endif
+
+#ifdef GGML_USE_METAL
+ new_clip->backend = ggml_backend_metal_init();
+ printf("%s: CLIP using Metal backend\n", __func__);
+#endif
+
+ if (!new_clip->backend) {
+ new_clip->backend = ggml_backend_cpu_init();
+ printf("%s: CLIP using CPU backend\n", __func__);
+ }
// model size and capabilities
{
printf("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
printf("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
printf("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
- printf("%s: model size: %.2f MB\n", __func__, (ctx_size / 1024.0 / 1024.0));
+ printf("%s: model size: %.2f MB\n", __func__, buffer_size / 1024.0 / 1024.0);
printf("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
}
}
+ printf("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, buffer_size / (1024.0 * 1024.0), n_tensors);
+
// load tensors
{
+ std::vector<uint8_t> read_buf;
struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
+ /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
+ /*.no_alloc =*/ true,
};
new_clip->ctx = ggml_init(params);
return nullptr;
}
- const int n_tensors = gguf_get_n_tensors(ctx);
+ // add tensors to context
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * t = ggml_get_tensor(meta, name);
struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx, t);
ggml_set_name(cur, name);
+ }
+ // alloc memory and offload data
+ new_clip->params_buffer = ggml_backend_alloc_buffer(new_clip->backend, buffer_size);
+ ggml_allocr* alloc = ggml_allocr_new_from_buffer(new_clip->params_buffer);
+ for (int i = 0; i < n_tensors; ++i) {
+ const char * name = gguf_get_tensor_name(ctx, i);
+ struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx, name);
+ ggml_allocr_alloc(alloc, cur);
const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
fin.seekg(offset, std::ios::beg);
if (!fin) {
clip_free(new_clip);
return nullptr;
}
-
- fin.read(reinterpret_cast<char *>(cur->data), ggml_nbytes(t));
+ int num_bytes = ggml_nbytes(cur);
+ if (ggml_backend_is_cpu(new_clip->backend)
+#ifdef GGML_USE_METAL
+ || ggml_backend_is_metal(new_clip->backend)
+#endif
+ ) {
+ // for the CPU and Metal backend, we can read directly into the tensor
+ fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
+ } else {
+ // read into a temporary buffer first, then copy to device memory
+ read_buf.resize(num_bytes);
+ fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
+ ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
+ }
}
-
+ ggml_allocr_free(alloc);
fin.close();
}
// measure mem requirement and allocate
{
- static const size_t tensor_alignment = 32;
- new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead());
- new_clip->alloc = ggml_allocr_new_measure(tensor_alignment);
+ new_clip->compute_alloc = ggml_allocr_new_measure_from_backend(new_clip->backend);
clip_image_f32_batch batch;
batch.size = 1;
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch);
- size_t alloc_size = ggml_allocr_alloc_graph(new_clip->alloc, gf) + tensor_alignment;
- ggml_allocr_free(new_clip->alloc);
- new_clip->buf_alloc.resize(alloc_size);
- new_clip->alloc = ggml_allocr_new(new_clip->buf_alloc.data, new_clip->buf_alloc.size, tensor_alignment);
+ size_t compute_memory_buffer_size = ggml_allocr_alloc_graph(new_clip->compute_alloc, gf);
+ ggml_allocr_free(new_clip->compute_alloc);
+ new_clip->compute_buffer = ggml_backend_alloc_buffer(new_clip->backend, compute_memory_buffer_size);
+ new_clip->compute_alloc = ggml_allocr_new_from_buffer(new_clip->compute_buffer);
- printf("%s: total allocated memory: %.2f MB\n", __func__, (new_clip->buf_compute.size + alloc_size)/1024.0/1024.0);
+ printf("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
}
return new_clip;
}
// reset alloc buffer to clean the memory from previous invocations
- ggml_allocr_reset(ctx->alloc);
+ ggml_allocr_reset(ctx->compute_alloc);
// build the inference graph
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
- ggml_allocr_alloc_graph(ctx->alloc, gf);
+ ggml_allocr_alloc_graph(ctx->compute_alloc, gf);
+
+ if (ggml_backend_is_cpu(ctx->backend)) {
+ ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
+ }
- struct ggml_cplan plan = ggml_graph_plan(gf, n_threads);
- if (plan.work_size > 0) {
- plan.work_data = (uint8_t *)malloc(plan.work_size);
+#ifdef GGML_USE_METAL
+ if (ggml_backend_is_metal(ctx->backend)) {
+ ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
}
+#endif
- ggml_graph_compute(gf, &plan);
+ ggml_backend_graph_compute(ctx->backend, gf);
// the last node is the embedding tensor
-struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
+ struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
// copy the embeddings to the location passed by the user
- memcpy(vec, ggml_get_data_f32(embeddings), ggml_nbytes(embeddings));
-
- if (plan.work_size > 0) {
- free(plan.work_data);
- }
-
+ ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
return true;
}
gguf_free(ctx_out);
{
- printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
- printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
+ printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
+ printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); ++i) {