]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
model: add Ernie 4.5 MoE support (#14658)
authorPiotr Wilkin (ilintar) <redacted>
Thu, 17 Jul 2025 21:15:32 +0000 (23:15 +0200)
committerGitHub <redacted>
Thu, 17 Jul 2025 21:15:32 +0000 (23:15 +0200)
* Add Ernie4.5 MoE

* Fix Flake errors.

* Properly encode/decode MoE layer step

* Correct tensor mappings (.weight)

* Pass and read n_ff_exp

* n_ff_shexp calculation and further minor changes

* Rope fixes.

* .gitignore fix

* Add unit32 cast for Linux builds

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <redacted>
* Further fixes from code review

* Fix trailing whitespace

* Reenable missing experts error

* Code style from code review

Co-authored-by: Sigbjørn Skjæret <redacted>
* Fix non-MoE regression

Co-authored-by: Sigbjørn Skjæret <redacted>
---------

Co-authored-by: Sigbjørn Skjæret <redacted>
convert_hf_to_gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-model.cpp
src/llama-model.h

index d802524bba4a0ca5fed1d232b4d10027d0cdd6c1..3f35a310e21a023179fd48f137a245a90fdeeeeb 100755 (executable)
@@ -2861,7 +2861,8 @@ class Ernie4_5Model(TextModel):
     def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
         num_heads = self.hparams["num_attention_heads"]
         num_kv_heads = self.hparams["num_key_value_heads"]
-        head_dim = self.hparams["head_dim"]
+        if (head_dim := self.hparams.get("head_dim")) is None:
+            head_dim = self.hparams["hidden_size"] // num_heads
 
         if "ernie." in name:
             name = name.replace("ernie.", "model.")
@@ -2894,6 +2895,92 @@ class Ernie4_5Model(TextModel):
         return [(self.map_tensor_name(name), data_torch)]
 
 
+@ModelBase.register("Ernie4_5_MoeForCausalLM")
+class Ernie4_5MoeModel(Ernie4_5Model):
+    model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
+    _experts: list[dict[str, Tensor]] | None = None
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self._experts = [{} for _ in range(self.block_count)]
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
+        self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
+        self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
+        self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
+        self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
+        if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
+            self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
+        if (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
+            self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # Modify correction bias name as in DeepseekV2
+        if name.endswith("e_score_correction_bias"):
+            name = name.replace("e_score_correction_bias", "e_score_correction.bias")
+
+        # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
+        match = re.match(r"model.mtp_block.(\d+)", name)
+        if match:
+            return []
+
+        # skip all other MTP tensors for now
+        match = re.match(r"model.mtp_emb_norm.(\d+)", name)
+        if match:
+            return []
+
+        match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
+        if match:
+            return []
+
+        match = re.match(r"model.mtp_linear_proj.(\d+)", name)
+        if match:
+            return []
+
+        # process the experts separately
+        if name.find("mlp.experts") != -1:
+            n_experts = self.hparams["moe_num_experts"]
+            assert bid is not None
+
+            if self._experts is None:
+                self._experts = [{} for _ in range(self.block_count)]
+
+            self._experts[bid][name] = data_torch
+
+            if len(self._experts[bid]) >= n_experts * 3:
+                tensors: list[tuple[str, Tensor]] = []
+
+                # merge the experts into a single 3d tensor
+                for w_name in ["gate_proj", "up_proj", "down_proj"]:
+                    datas: list[Tensor] = []
+
+                    for xid in range(n_experts):
+                        ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
+                        datas.append(self._experts[bid][ename_to_retrieve])
+                        del self._experts[bid][ename_to_retrieve]
+
+                    data_torch = torch.stack(datas, dim=0)
+                    merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+                    new_name = self.map_tensor_name(merged_name)
+                    tensors.append((new_name, data_torch))
+
+                return tensors
+            else:
+                return []
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+
+        if self._experts is not None:
+            # flatten `list[dict[str, Tensor]]` into `list[str]`
+            experts = [k for d in self._experts for k in d.keys()]
+            if len(experts) > 0:
+                raise ValueError(f"Unprocessed experts: {experts}")
+
+
 @ModelBase.register(
     "Qwen2VLModel",
     "Qwen2VLForConditionalGeneration",
index d8afe7696d24384c024cd1ae67f5c4092510b185..a8f5947ac33bffe0318011d08d0d3402d809882f 100644 (file)
@@ -364,6 +364,7 @@ class MODEL_ARCH(IntEnum):
     DOTS1            = auto()
     ARCEE            = auto()
     ERNIE4_5         = auto()
+    ERNIE4_5_MOE     = auto()
     HUNYUAN_MOE      = auto()
     SMOLLM3          = auto()
     LFM2             = auto()
@@ -680,6 +681,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.DOTS1:            "dots1",
     MODEL_ARCH.ARCEE:            "arcee",
     MODEL_ARCH.ERNIE4_5:         "ernie4_5",
+    MODEL_ARCH.ERNIE4_5_MOE:     "ernie4_5-moe",
     MODEL_ARCH.FALCON_H1:        "falcon-h1",
     MODEL_ARCH.HUNYUAN_MOE:      "hunyuan-moe",
     MODEL_ARCH.SMOLLM3:          "smollm3",
@@ -2022,6 +2024,28 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_UP_SHEXP,
         MODEL_TENSOR.FFN_EXP_PROBS_B,
     ],
+    MODEL_ARCH.ERNIE4_5_MOE: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+        MODEL_TENSOR.FFN_GATE_SHEXP,
+        MODEL_TENSOR.FFN_DOWN_SHEXP,
+        MODEL_TENSOR.FFN_UP_SHEXP,
+        MODEL_TENSOR.FFN_EXP_PROBS_B,
+    ],
     MODEL_ARCH.PLM: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT,
index 2a675044f9d99276d4e0b8c203698fe5f751b8ef..7fbda422f0fe93d9f80883ac9d977c4e686941cf 100644 (file)
@@ -324,7 +324,8 @@ class TensorNameMap:
         ),
 
         MODEL_TENSOR.FFN_EXP_PROBS_B: (
-            "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
+            "model.layers.{bid}.mlp.gate.e_score_correction",               # deepseek-v3 dots1
+            "model.layers.{bid}.mlp.moe_statics.e_score_correction",        # ernie4.5-moe
         ),
 
         # Feed-forward up
@@ -364,13 +365,13 @@ class TensorNameMap:
         ),
 
         MODEL_TENSOR.FFN_UP_EXP: (
-            "layers.{bid}.feed_forward.experts.w3",           # mixtral (merged)
-            "transformer.decoder_layer.{bid}.moe.linear_v",   # Grok (merged)
-            "transformer.blocks.{bid}.ffn.experts.mlp.v1",    # dbrx
-            "model.layers.{bid}.mlp.experts.up_proj",         # qwen2moe olmoe (merged)
-            "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
-            "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
-            "encoder.layers.{bid}.mlp.experts.mlp.w1",        # nomic-bert-moe
+            "layers.{bid}.feed_forward.experts.w3",                 # mixtral (merged)
+            "transformer.decoder_layer.{bid}.moe.linear_v",         # Grok (merged)
+            "transformer.blocks.{bid}.ffn.experts.mlp.v1",          # dbrx
+            "model.layers.{bid}.mlp.experts.up_proj",               # qwen2moe olmoe (merged) ernie4.5-moe
+            "model.layers.{bid}.block_sparse_moe.experts.w3",       # phimoe (merged)
+            "model.layers.{bid}.feed_forward.experts.up_proj",      # llama4
+            "encoder.layers.{bid}.mlp.experts.mlp.w1",              # nomic-bert-moe
         ),
 
         MODEL_TENSOR.FFN_UP_SHEXP: (
@@ -403,12 +404,12 @@ class TensorNameMap:
         ),
 
         MODEL_TENSOR.FFN_GATE_EXP: (
-            "layers.{bid}.feed_forward.experts.w1",              # mixtral (merged)
-            "transformer.decoder_layer.{bid}.moe.linear",        # Grok (merged)
-            "transformer.blocks.{bid}.ffn.experts.mlp.w1",       # dbrx
-            "model.layers.{bid}.mlp.experts.gate_proj",          # qwen2moe olmoe (merged)
-            "model.layers.{bid}.block_sparse_moe.experts.w1",    # phimoe (merged)
-            "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
+            "layers.{bid}.feed_forward.experts.w1",                     # mixtral (merged)
+            "transformer.decoder_layer.{bid}.moe.linear",               # Grok (merged)
+            "transformer.blocks.{bid}.ffn.experts.mlp.w1",              # dbrx
+            "model.layers.{bid}.mlp.experts.gate_proj",                 # qwen2moe olmoe (merged) ernie4.5-moe
+            "model.layers.{bid}.block_sparse_moe.experts.w1",           # phimoe (merged)
+            "model.layers.{bid}.feed_forward.experts.gate_proj",        # llama4
         ),
 
         MODEL_TENSOR.FFN_GATE_SHEXP: (
@@ -450,14 +451,14 @@ class TensorNameMap:
         ),
 
         MODEL_TENSOR.FFN_DOWN_EXP: (
-            "layers.{bid}.feed_forward.experts.w2",              # mixtral (merged)
-            "transformer.decoder_layer.{bid}.moe.linear_1",      # Grok (merged)
-            "transformer.blocks.{bid}.ffn.experts.mlp.w2",       # dbrx
-            "model.layers.{bid}.mlp.experts.down_proj",          # qwen2moe olmoe (merged)
-            "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
-            "model.layers.{bid}.block_sparse_moe.experts.w2",    # phimoe (merged)
-            "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
-            "encoder.layers.{bid}.mlp.experts.mlp.w2",           # nomic-bert-moe
+            "layers.{bid}.feed_forward.experts.w2",                 # mixtral (merged)
+            "transformer.decoder_layer.{bid}.moe.linear_1",         # Grok (merged)
+            "transformer.blocks.{bid}.ffn.experts.mlp.w2",          # dbrx
+            "model.layers.{bid}.mlp.experts.down_proj",             # qwen2moe olmoe (merged) ernie4.5-moe
+            "model.layers.{bid}.block_sparse_moe.output_linear",    # granitemoe
+            "model.layers.{bid}.block_sparse_moe.experts.w2",       # phimoe (merged)
+            "model.layers.{bid}.feed_forward.experts.down_proj",    # llama4
+            "encoder.layers.{bid}.mlp.experts.mlp.w2",              # nomic-bert-moe
         ),
 
         MODEL_TENSOR.FFN_DOWN_SHEXP: (
index 9454d04e538018d8c5be1f20be8a430e2ed5d5bf..df3fc5d3e74f895a2e2bbbd4501d90d6fc352a34 100644 (file)
@@ -82,6 +82,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_DOTS1,            "dots1"            },
     { LLM_ARCH_ARCEE,            "arcee"            },
     { LLM_ARCH_ERNIE4_5,         "ernie4_5"         },
+    { LLM_ARCH_ERNIE4_5_MOE,     "ernie4_5-moe"     },
     { LLM_ARCH_HUNYUAN_MOE,      "hunyuan-moe"      },
     { LLM_ARCH_SMOLLM3,          "smollm3"          },
     { LLM_ARCH_LFM2,             "lfm2"             },
@@ -1825,6 +1826,31 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP,             "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_ERNIE4_5_MOE,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,           "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,           "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,             "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE_SHEXP,     "blk.%d.ffn_gate_shexp" },
+            { LLM_TENSOR_FFN_DOWN_SHEXP,     "blk.%d.ffn_down_shexp" },
+            { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_EXP_PROBS_B,    "blk.%d.exp_probs_b" },
+        },
+    },
     {
         LLM_ARCH_HUNYUAN_MOE,
         {
index 0ead0d6cdb11be87c5ef8660c288e5111c6e31dd..3bffe359eabe5541f18d9ed2fa77fa7048e15f80 100644 (file)
@@ -86,6 +86,7 @@ enum llm_arch {
     LLM_ARCH_DOTS1,
     LLM_ARCH_ARCEE,
     LLM_ARCH_ERNIE4_5,
+    LLM_ARCH_ERNIE4_5_MOE,
     LLM_ARCH_HUNYUAN_MOE,
     LLM_ARCH_SMOLLM3,
     LLM_ARCH_LFM2,
index 46899f48ffea0700535825b62a9ef03b5c0b43b1..589d95936b14df3599708e4b80601984eb7659d3 100644 (file)
@@ -107,8 +107,10 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_17B_16E:       return "17Bx16E (Scout)";
         case LLM_TYPE_17B_128E:      return "17Bx128E (Maverick)";
         case LLM_TYPE_A13B:          return "A13B";
+        case LLM_TYPE_21B_A3B:       return "21B.A3B";
         case LLM_TYPE_30B_A3B:       return "30B.A3B";
         case LLM_TYPE_235B_A22B:     return "235B.A22B";
+        case LLM_TYPE_300B_A47B:     return "300B.A47B";
         case LLM_TYPE_E2B:           return "E2B";
         case LLM_TYPE_E4B:           return "E4B";
         default:                     return "?B";
@@ -1649,10 +1651,20 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                 }
             } break;
         case LLM_ARCH_ERNIE4_5:
+        case LLM_ARCH_ERNIE4_5_MOE:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                if (arch == LLM_ARCH_ERNIE4_5_MOE) {
+                    ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
+                    ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
+                    ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP,         hparams.n_moe_layer_step);
+                    ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
+                }
+
                 switch (hparams.n_layer) {
                     case 18: type = LLM_TYPE_0_3B; break;
+                    case 28: type = LLM_TYPE_21B_A3B; break;
+                    case 54: type = LLM_TYPE_300B_A47B; break;
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
@@ -4858,6 +4870,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                     }
                 } break;
             case LLM_ARCH_ERNIE4_5:
+            case LLM_ARCH_ERNIE4_5_MOE:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
 
@@ -4886,9 +4899,27 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd},     TENSOR_NOT_REQUIRED);
 
                         layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
-                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
-                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
-                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+
+                        if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
+                            int n_ff_exp = hparams.n_ff_exp;
+
+                            layer.ffn_gate_inp  = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP,  "weight", i), {n_embd, n_expert}, 0);
+                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
+                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd,   n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
+                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {  n_ff_exp, n_embd, n_expert}, 0);
+                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd,   n_ff_exp, n_expert}, 0);
+
+                            // Shared expert (if present)
+                            if (hparams.n_ff_shexp > 0) {
+                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {    n_embd, hparams.n_ff_shexp}, 0);
+                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd    }, 0);
+                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, hparams.n_ff_shexp}, 0);
+                            }
+                        } else { // Dense layers
+                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
+                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                        }
                     }
                 } break;
             case LLM_ARCH_FALCON_H1:
@@ -15569,6 +15600,176 @@ struct llm_build_ernie4_5 : public llm_graph_context {
     }
 };
 
+struct llm_build_ernie4_5_moe : public llm_graph_context {
+    llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv_unified();
+
+        ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+        GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0");
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+            // norm
+            {
+                cur = build_norm(inpL,
+                        model.layers[il].attn_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(cur, "attn_norm", il);
+            }
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, NULL,
+                        Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+                cb(cur, "attn_out", il);
+            }
+
+            if (il == n_layer - 1 && inp_out_ids) {
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            bool is_moe_layer = static_cast<uint32_t>(il) >= hparams.n_layer_dense_lead && (il + 1) % hparams.n_moe_layer_step == 0;
+
+            if (!is_moe_layer) {
+                cur = build_norm(ffn_inp,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = build_ffn(cur,
+                        model.layers[il].ffn_up,   NULL, NULL,
+                        model.layers[il].ffn_gate, NULL, NULL,
+                        model.layers[il].ffn_down, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(cur, "ffn_out", il);
+            } else {
+                // MoE branch
+                cur = build_norm(ffn_inp,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, il);
+                cb(cur, "ffn_norm", il);
+
+                ggml_tensor * moe_out = build_moe_ffn(cur,
+                        model.layers[il].ffn_gate_inp,
+                        model.layers[il].ffn_up_exps,
+                        model.layers[il].ffn_gate_exps,
+                        model.layers[il].ffn_down_exps,
+                        model.layers[il].ffn_exp_probs_b,
+                        n_expert, n_expert_used,
+                        LLM_FFN_SILU, true,
+                        false, 0.0,
+                        LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
+                        il);
+                cb(moe_out, "ffn_moe_out", il);
+
+                // Shared expert (if present)
+                if (hparams.n_ff_shexp > 0) {
+                    ggml_tensor * ffn_shexp = build_ffn(cur,
+                        model.layers[il].ffn_up_shexp,   NULL, NULL,
+                        model.layers[il].ffn_gate_shexp, NULL, NULL,
+                        model.layers[il].ffn_down_shexp, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                    cb(ffn_shexp, "ffn_shexp", il);
+
+                    cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                } else {
+                    cur = moe_out;
+                }
+                cb(cur, "ffn_out", il);
+            }
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 struct llm_build_falcon_h1 : public llm_graph_context_mamba {
     llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context_mamba(params) {
         const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -17034,6 +17235,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_ernie4_5>(*this, params, gf);
             } break;
+        case LLM_ARCH_ERNIE4_5_MOE:
+            {
+                llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params, gf);
+            } break;
         case LLM_ARCH_HUNYUAN_MOE:
             {
                 llm = std::make_unique<llm_build_hunyuan_moe>(*this, params, gf);
@@ -17206,6 +17411,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_SMOLLM3:
         case LLM_ARCH_ARCEE:
         case LLM_ARCH_ERNIE4_5:
+        case LLM_ARCH_ERNIE4_5_MOE:
             return LLAMA_ROPE_TYPE_NORM;
 
         // the pairs of head values are offset by n_rot/2
index 01b7fe3e578ec8b85ec1e631f9fb8b769aa66704..094e23808a81392674c1122369cdef9c3651dc57 100644 (file)
@@ -99,8 +99,10 @@ enum llm_type {
     LLM_TYPE_17B_16E, // llama4 Scout
     LLM_TYPE_17B_128E, // llama4 Maverick
     LLM_TYPE_A13B,
+    LLM_TYPE_21B_A3B, // Ernie MoE small
     LLM_TYPE_30B_A3B,
     LLM_TYPE_235B_A22B,
+    LLM_TYPE_300B_A47B, // Ernie MoE big
     LLM_TYPE_E2B,
     LLM_TYPE_E4B,
 };