--- /dev/null
+#include "common.h"
+
+#include "console.h"
+#include "llama.h"
+#include "build-info.h"
+#include "grammar-parser.h"
+
+#include <cassert>
+#include <cinttypes>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <ctime>
+#include <fstream>
+#include <iostream>
+#include <sstream>
+#include <string>
+#include <vector>
+
+#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
+#include <signal.h>
+#include <unistd.h>
+#elif defined (_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
+#include <windows.h>
+#include <signal.h>
+#endif
+
+#if defined(_MSC_VER)
+#pragma warning(disable: 4244 4267) // possible loss of data
+#endif
+
+static llama_context ** g_ctx;
+static llama_model ** g_model;
+static gpt_params * g_params;
+static std::vector<llama_token> * g_input_tokens;
+static std::ostringstream * g_output_ss;
+static std::vector<llama_token> * g_output_tokens;
+static bool is_interacting = false;
+
+
+static void write_logfile(
+ const llama_context * ctx, const gpt_params & params, const llama_model * model,
+ const std::vector<llama_token> & input_tokens, const std::string & output,
+ const std::vector<llama_token> & output_tokens
+) {
+ if (params.logdir.empty()) {
+ return;
+ }
+
+ const std::string timestamp = get_sortable_timestamp();
+
+ const bool success = create_directory_with_parents(params.logdir);
+ if (!success) {
+ fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
+ __func__, params.logdir.c_str());
+ return;
+ }
+
+ const std::string logfile_path = params.logdir + timestamp + ".yml";
+ FILE * logfile = fopen(logfile_path.c_str(), "w");
+
+ if (logfile == NULL) {
+ fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
+ return;
+ }
+
+ fprintf(logfile, "binary: infill\n");
+ char model_desc[128];
+ llama_model_desc(model, model_desc, sizeof(model_desc));
+ dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
+
+ fprintf(logfile, "\n");
+ fprintf(logfile, "######################\n");
+ fprintf(logfile, "# Generation Results #\n");
+ fprintf(logfile, "######################\n");
+ fprintf(logfile, "\n");
+
+ dump_string_yaml_multiline(logfile, "output", output.c_str());
+ dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
+
+ llama_dump_timing_info_yaml(logfile, ctx);
+ fclose(logfile);
+}
+
+#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
+static void sigint_handler(int signo) {
+ if (signo == SIGINT) {
+ if (!is_interacting) {
+ is_interacting = true;
+ } else {
+ console::cleanup();
+ printf("\n");
+ llama_print_timings(*g_ctx);
+ write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
+ _exit(130);
+ }
+ }
+}
+#endif
+
+int main(int argc, char ** argv) {
+ gpt_params params;
+ g_params = ¶ms;
+
+ if (!gpt_params_parse(argc, argv, params)) {
+ return 1;
+ }
+
+#ifndef LOG_DISABLE_LOGS
+ log_set_target(log_filename_generator("infill", "log"));
+ LOG_TEE("Log start\n");
+ log_dump_cmdline(argc, argv);
+#endif // LOG_DISABLE_LOGS
+
+ console::init(params.simple_io, params.use_color);
+ atexit([]() { console::cleanup(); });
+
+ if (params.logits_all) {
+ printf("\n************\n");
+ printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
+ printf("************\n\n");
+
+ return 0;
+ }
+
+ if (params.embedding) {
+ printf("\n************\n");
+ printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
+ printf("************\n\n");
+
+ return 0;
+ }
+
+ if (params.n_ctx != 0 && params.n_ctx < 8) {
+ LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
+ params.n_ctx = 8;
+ }
+ if (params.instruct) {
+ printf("\n************\n");
+ printf("%s: please use the 'main' tool for instruct mode\n", __func__);
+ printf("************\n\n");
+
+ return 0;
+ }
+ if (!params.antiprompt.empty()) {
+ printf("\n************\n");
+ printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
+ printf("************\n\n");
+
+ return 0;
+ }
+ if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
+ printf("\n************\n");
+ printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
+ printf("************\n\n");
+
+ return 0;
+ }
+ if (params.random_prompt) {
+ printf("\n************\n");
+ printf("%s: please use the 'main' tool for random prompt mode\n", __func__);
+ printf("************\n\n");
+
+ return 0;
+ }
+ if (!params.path_prompt_cache.empty()) {
+ printf("\n************\n");
+ printf("%s: infill does not support prompt caching\n", __func__);
+ printf("************\n\n");
+
+ return 0;
+ }
+
+ if (params.rope_freq_base != 0.0) {
+ LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
+ }
+
+ if (params.rope_freq_scale != 0.0) {
+ LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
+ }
+
+ LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
+ LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
+
+ if (params.seed == LLAMA_DEFAULT_SEED) {
+ params.seed = time(NULL);
+ }
+
+ LOG_TEE("%s: seed = %u\n", __func__, params.seed);
+
+ std::mt19937 rng(params.seed);
+
+ LOG("%s: llama backend init\n", __func__);
+ llama_backend_init(params.numa);
+
+ llama_model * model;
+ llama_context * ctx;
+ llama_context * ctx_guidance = NULL;
+ g_model = &model;
+ g_ctx = &ctx;
+
+ // load the model and apply lora adapter, if any
+ LOG("%s: load the model and apply lora adapter, if any\n", __func__);
+ std::tie(model, ctx) = llama_init_from_gpt_params(params);
+ if (params.cfg_scale > 1.f) {
+ struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
+ ctx_guidance = llama_new_context_with_model(model, lparams);
+ }
+
+ if (model == NULL) {
+ LOG_TEE("%s: error: unable to load model\n", __func__);
+ return 1;
+ }
+
+ const int n_ctx_train = llama_n_ctx_train(model);
+ const int n_ctx = llama_n_ctx(ctx);
+ LOG("n_ctx: %d\n", n_ctx);
+
+ if (n_ctx > n_ctx_train) {
+ LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
+ __func__, n_ctx_train, n_ctx);
+ }
+
+ // print system information
+ {
+ LOG_TEE("\n");
+ LOG_TEE("%s\n", get_system_info(params).c_str());
+ }
+ const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
+ LOG("add_bos: %d\n", add_bos);
+
+ std::vector<llama_token> embd_inp;
+ std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
+ std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
+ inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
+ inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
+ embd_inp = inp_pfx;
+ embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
+ embd_inp.push_back(llama_token_middle(ctx));
+
+ LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
+ LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
+ LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
+
+ // Should not run without any tokens
+ if (embd_inp.empty()) {
+ embd_inp.push_back(llama_token_bos(ctx));
+ LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
+ }
+
+ // Tokenize negative prompt
+ std::vector<llama_token> guidance_inp;
+ int guidance_offset = 0;
+ int original_prompt_len = 0;
+ if (ctx_guidance) {
+ LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
+
+ guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
+ LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
+
+ std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
+ LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
+
+ original_prompt_len = original_inp.size();
+ guidance_offset = (int)guidance_inp.size() - original_prompt_len;
+ LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
+ LOG("guidance_offset: %s", log_tostr(guidance_offset));
+ }
+
+ if ((int) embd_inp.size() > n_ctx - 4) {
+ LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
+ return 1;
+ }
+
+ // number of tokens to keep when resetting context
+ if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
+ params.n_keep = (int)embd_inp.size();
+ }
+
+ LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
+ LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
+
+
+ // enable interactive mode if interactive start is specified
+ if (params.interactive_first) {
+ params.interactive = true;
+ }
+
+ if (params.verbose_prompt) {
+ LOG_TEE("\n");
+ LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
+ LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
+ for (int i = 0; i < (int) embd_inp.size(); i++) {
+ LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
+ }
+
+ if (ctx_guidance) {
+ LOG_TEE("\n");
+ LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
+ LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
+ for (int i = 0; i < (int) guidance_inp.size(); i++) {
+ LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
+ }
+ }
+
+ if (params.n_keep > 0) {
+ LOG_TEE("%s: static prompt based on n_keep: '", __func__);
+ for (int i = 0; i < params.n_keep; i++) {
+ LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
+ }
+ LOG_TEE("'\n");
+ }
+ LOG_TEE("\n");
+ }
+
+ if (params.interactive) {
+#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
+ struct sigaction sigint_action;
+ sigint_action.sa_handler = sigint_handler;
+ sigemptyset (&sigint_action.sa_mask);
+ sigint_action.sa_flags = 0;
+ sigaction(SIGINT, &sigint_action, NULL);
+#elif defined (_WIN32)
+ auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
+ return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
+ };
+ SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
+#endif
+
+ LOG_TEE("%s: interactive mode on.\n", __func__);
+
+ if (params.input_prefix_bos) {
+ LOG_TEE("Input prefix with BOS\n");
+ }
+
+ if (!params.input_prefix.empty()) {
+ LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
+ }
+
+ if (!params.input_suffix.empty()) {
+ LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
+ }
+ }
+ LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
+ params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
+ LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
+ LOG_TEE("\n\n");
+
+ struct llama_grammar * grammar = NULL;
+ grammar_parser::parse_state parsed_grammar;
+
+ if (!params.grammar.empty()) {
+ parsed_grammar = grammar_parser::parse(params.grammar.c_str());
+ // will be empty (default) if there are parse errors
+ if (parsed_grammar.rules.empty()) {
+ return 1;
+ }
+ LOG_TEE("%s: grammar:\n", __func__);
+ grammar_parser::print_grammar(stderr, parsed_grammar);
+ LOG_TEE("\n");
+
+ {
+ auto it = params.logit_bias.find(llama_token_eos(ctx));
+ if (it != params.logit_bias.end() && it->second == -INFINITY) {
+ LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
+ }
+ }
+
+ std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
+ grammar = llama_grammar_init(
+ grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
+ }
+
+ // TODO: replace with ring-buffer
+ std::vector<llama_token> last_tokens(n_ctx);
+ std::fill(last_tokens.begin(), last_tokens.end(), 0);
+ LOG_TEE("\n##### Infill mode #####\n\n");
+ if (params.infill) {
+ printf("\n************\n");
+ printf("no need to specify '--infill', always running infill\n");
+ printf("************\n\n");
+ }
+ if (params.interactive) {
+ const char *control_message;
+ if (params.multiline_input) {
+ control_message = " - To return control to LLaMa, end your input with '\\'.\n"
+ " - To return control without starting a new line, end your input with '/'.\n";
+ } else {
+ control_message = " - Press Return to return control to LLaMa.\n"
+ " - To return control without starting a new line, end your input with '/'.\n"
+ " - If you want to submit another line, end your input with '\\'.\n";
+ }
+ LOG_TEE("== Running in interactive mode. ==\n");
+#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
+ LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
+#endif
+ LOG_TEE( "%s\n", control_message);
+
+ is_interacting = params.interactive_first;
+ }
+
+ bool input_echo = true;
+
+ int n_past = 0;
+ int n_remain = params.n_predict;
+ int n_consumed = 0;
+ int n_past_guidance = 0;
+
+ std::vector<int> input_tokens; g_input_tokens = &input_tokens;
+ std::vector<int> output_tokens; g_output_tokens = &output_tokens;
+ std::ostringstream output_ss; g_output_ss = &output_ss;
+
+ // the first thing we will do is to output the prompt, so set color accordingly
+ console::set_display(console::prompt);
+
+ std::vector<llama_token> embd;
+ std::vector<llama_token> embd_guidance;
+
+ const int n_vocab = llama_n_vocab(model);
+
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+
+ while (n_remain != 0 || params.interactive) {
+ // predict
+ if (!embd.empty()) {
+ // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
+ // --prompt or --file which uses the same value.
+ int max_embd_size = n_ctx - 4;
+
+ // Ensure the input doesn't exceed the context size by truncating embd if necessary.
+ if ((int) embd.size() > max_embd_size) {
+ const int skipped_tokens = (int) embd.size() - max_embd_size;
+ embd.resize(max_embd_size);
+
+ console::set_display(console::error);
+ printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
+ console::set_display(console::reset);
+ fflush(stdout);
+ }
+
+ // infinite text generation via context swapping
+ // if we run out of context:
+ // - take the n_keep first tokens from the original prompt (via n_past)
+ // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
+ if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
+ if (params.n_predict == -2) {
+ LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
+ break;
+ }
+
+ const int n_left = n_past - params.n_keep - 1;
+ const int n_discard = n_left/2;
+
+ LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
+ n_past, n_left, n_ctx, params.n_keep, n_discard);
+
+ llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
+ llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
+
+ n_past -= n_discard;
+
+ if (ctx_guidance) {
+ n_past_guidance -= n_discard;
+ }
+
+ LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
+
+ LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
+
+ }
+
+ // evaluate tokens in batches
+ // embd is typically prepared beforehand to fit within a batch, but not always
+
+ if (ctx_guidance) {
+ int input_size = 0;
+ llama_token * input_buf = NULL;
+
+ if (n_past_guidance < (int) guidance_inp.size()) {
+ // Guidance context should have the same data with these modifications:
+ //
+ // * Replace the initial prompt
+ // * Shift everything by guidance_offset
+ embd_guidance = guidance_inp;
+ if (embd.begin() + original_prompt_len < embd.end()) {
+ embd_guidance.insert(
+ embd_guidance.end(),
+ embd.begin() + original_prompt_len,
+ embd.end()
+ );
+ }
+
+ input_buf = embd_guidance.data();
+ input_size = embd_guidance.size();
+
+ LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
+ } else {
+ input_buf = embd.data();
+ input_size = embd.size();
+ }
+
+ for (int i = 0; i < input_size; i += params.n_batch) {
+ int n_eval = std::min(input_size - i, params.n_batch);
+ if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
+ LOG_TEE("%s : failed to eval\n", __func__);
+ return 1;
+ }
+
+ n_past_guidance += n_eval;
+ }
+ }
+
+ for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
+ int n_eval = (int) embd.size() - i;
+ if (n_eval > params.n_batch) {
+ n_eval = params.n_batch;
+ }
+
+ LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
+
+ if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
+ LOG_TEE("%s : failed to eval\n", __func__);
+ return 1;
+ }
+
+ n_past += n_eval;
+
+ LOG("n_past = %d\n", n_past);
+ }
+
+ }
+
+ embd.clear();
+ embd_guidance.clear();
+
+ if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
+
+ const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
+
+ last_tokens.erase(last_tokens.begin());
+ last_tokens.push_back(id);
+
+ LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
+
+ embd.push_back(id);
+
+ // echo this to console
+ input_echo = true;
+
+ // decrement remaining sampling budget
+ --n_remain;
+
+ LOG("n_remain: %d\n", n_remain);
+ } else {
+ // some user input remains from prompt or interaction, forward it to processing
+ LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
+ while ((int) embd_inp.size() > n_consumed) {
+ embd.push_back(embd_inp[n_consumed]);
+ last_tokens.erase(last_tokens.begin());
+ last_tokens.push_back(embd_inp[n_consumed]);
+ ++n_consumed;
+ if ((int) embd.size() >= params.n_batch) {
+ break;
+ }
+ }
+ }
+
+ // display text
+ if (input_echo) {
+ for (auto id : embd) {
+ const std::string token_str = llama_token_to_piece(ctx, id);
+ printf("%s", token_str.c_str());
+
+ if (embd.size() > 1) {
+ input_tokens.push_back(id);
+ } else {
+ output_tokens.push_back(id);
+ output_ss << token_str;
+ }
+ }
+ fflush(stdout);
+ }
+ // reset color to default if we there is no pending user input
+ if (input_echo && (int) embd_inp.size() == n_consumed) {
+ console::set_display(console::reset);
+ }
+
+ // if not currently processing queued inputs;
+ if ((int) embd_inp.size() <= n_consumed) {
+
+ // deal with eot token in infill mode
+ if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
+ if(is_interacting && !params.interactive_first) {
+ // print an eot token
+ printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
+ }
+ fflush(stdout);
+ printf("\n");
+ console::set_display(console::user_input);
+ std::string buffer;
+ std::string line;
+ bool another_line=true;
+ // set a new prefix via stdin
+ do {
+ another_line = console::readline(line, params.multiline_input);
+ buffer += line;
+ } while (another_line);
+ // check if we got an empty line, if so we use the old input
+ if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
+ params.input_prefix = buffer;
+ }
+ buffer.clear();
+ // set a new suffix via stdin
+ do {
+ another_line = console::readline(line, params.multiline_input);
+ buffer += line;
+ } while (another_line);
+ // check if we got an empty line
+ if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
+ params.input_suffix = buffer;
+ }
+ buffer.clear();
+ // done taking input, reset color
+ console::set_display(console::reset);
+ // tokenize new prefix and suffix
+ std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
+ std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
+ inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
+ inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
+ embd_inp = inp_pfx;
+ embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
+ embd_inp.push_back(llama_token_middle(ctx));
+ embd.clear();
+ embd_guidance.clear();
+ n_remain = params.n_predict;
+ n_past = 0;
+ n_consumed = 0;
+ // LOG_TEE("took new input\n");
+ is_interacting = false;
+ }
+ // deal with end of text token in interactive mode
+ else if (last_tokens.back() == llama_token_eos(ctx)) {
+ LOG("found EOS token\n");
+
+ if (params.interactive) {
+
+ is_interacting = true;
+ printf("\n");
+ console::set_display(console::user_input);
+ fflush(stdout);
+ }
+ }
+
+ if (n_past > 0 && is_interacting && !params.interactive) {
+ LOG("waiting for user input\n");
+
+ if (params.input_prefix_bos) {
+ LOG("adding input prefix BOS token\n");
+ embd_inp.push_back(llama_token_bos(ctx));
+ }
+
+ std::string buffer;
+ if (!params.input_prefix.empty()) {
+ LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
+ buffer += params.input_prefix;
+ printf("%s", buffer.c_str());
+ }
+
+ std::string line;
+ bool another_line = true;
+ do {
+ another_line = console::readline(line, params.multiline_input);
+ buffer += line;
+ } while (another_line);
+
+ // done taking input, reset color
+ console::set_display(console::reset);
+
+ // Add tokens to embd only if the input buffer is non-empty
+ // Entering a empty line lets the user pass control back
+ if (buffer.length() > 1) {
+ // append input suffix if any
+ if (!params.input_suffix.empty()) {
+ LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
+ buffer += params.input_suffix;
+ printf("%s", params.input_suffix.c_str());
+ }
+
+ LOG("buffer: '%s'\n", buffer.c_str());
+
+ const size_t original_size = embd_inp.size();
+
+ const auto line_inp = ::llama_tokenize(ctx, buffer, false);
+ LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
+
+ embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
+
+ for (size_t i = original_size; i < embd_inp.size(); ++i) {
+ const llama_token token = embd_inp[i];
+ output_tokens.push_back(token);
+ output_ss << llama_token_to_piece(ctx, token);
+ }
+
+ n_remain -= line_inp.size();
+ LOG("n_remain: %d\n", n_remain);
+ } else {
+ LOG("empty line, passing control back\n");
+ }
+
+ input_echo = false; // do not echo this again
+ }
+
+ if (n_past > 0) {
+ if (is_interacting) {
+ // reset grammar state if we're restarting generation
+ if (grammar != NULL) {
+ llama_grammar_free(grammar);
+
+ std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
+ grammar = llama_grammar_init(
+ grammar_rules.data(), grammar_rules.size(),
+ parsed_grammar.symbol_ids.at("root"));
+ }
+ }
+ is_interacting = false;
+ }
+ }
+
+ // end of text token
+ if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !params.interactive) {
+ break;
+ }
+
+ // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
+ // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
+ if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
+ n_remain = params.n_predict;
+ is_interacting = true;
+ }
+ }
+ if (!params.interactive && n_remain <= 0) {
+ printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
+ fflush(stdout);
+ }
+
+ llama_print_timings(ctx);
+ write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
+
+ if (ctx_guidance) { llama_free(ctx_guidance); }
+ llama_free(ctx);
+ llama_free_model(model);
+
+ if (grammar != NULL) {
+ llama_grammar_free(grammar);
+ }
+ llama_backend_free();
+
+#ifndef LOG_DISABLE_LOGS
+ LOG_TEE("Log end\n");
+#endif // LOG_DISABLE_LOGS
+
+ return 0;
+}
+
return true;
}
+ void loadInfill()
+ {
+ auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS
+ auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS
+ prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
+ prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
+ prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
+ prefix_tokens.push_back(llama_token_middle(ctx));
+ auto prompt_tokens = prefix_tokens;
+
+ num_prompt_tokens = prompt_tokens.size();
+
+ if (params.n_keep < 0)
+ {
+ params.n_keep = (int)num_prompt_tokens;
+ }
+ params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
+
+ // if input prompt is too big, truncate like normal
+ if (num_prompt_tokens >= (size_t)params.n_ctx)
+ {
+ printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
+ // todo we probably want to cut from both sides
+ const int n_left = (params.n_ctx - params.n_keep) / 2;
+ std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
+ const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
+ new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
+ std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
+
+ LOG_VERBOSE("input truncated", {
+ {"n_ctx", params.n_ctx},
+ {"n_keep", params.n_keep},
+ {"n_left", n_left},
+ {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
+ });
+
+ truncated = true;
+ prompt_tokens = new_tokens;
+ }
+ else
+ {
+ const size_t ps = num_prompt_tokens;
+ std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
+ std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
+ }
+
+ // compare the evaluated prompt with the new prompt
+ n_past = common_part(embd, prompt_tokens);
+ embd = prompt_tokens;
+ if (n_past == num_prompt_tokens)
+ {
+ // we have to evaluate at least 1 token to generate logits.
+ printf("we have to evaluate at least 1 token to generate logits\n");
+ n_past--;
+ }
+
+ LOG_VERBOSE("prompt ingested", {
+ {"n_past", n_past},
+ {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
+ {"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
+ });
+
+ has_next_token = true;
+ }
void loadPrompt()
{
auto prompt_tokens = tokenize(prompt, true); // always add BOS
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
}
+static void parse_options_infill(const json &body, llama_server_context &llama)
+{
+ if (body.count("input_prefix") != 0)
+ {
+ llama.params.input_prefix = body["input_prefix"];
+ }
+ else
+ {
+ llama.params.input_prefix = "";
+ }
+ if (body.count("input_suffix") != 0)
+ {
+ llama.params.input_suffix = body["input_suffix"];
+ }
+ else
+ {
+ llama.params.input_suffix = "";
+ }
+ parse_options_completion(body, llama);
+}
+
static void log_server_request(const Request &req, const Response &res)
{
LOG_INFO("request", {
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
} });
+ svr.Post("/infill", [&llama](const Request &req, Response &res)
+ {
+ auto lock = llama.lock();
+
+ llama.rewind();
+
+ llama_reset_timings(llama.ctx);
+
+ parse_options_infill(json::parse(req.body), llama);
+
+ if (!llama.loadGrammar())
+ {
+ res.status = 400;
+ return;
+ }
+ llama.loadInfill();
+ llama.beginCompletion();
+ const auto chunked_content_provider = [&](size_t, DataSink & sink) {
+ size_t sent_count = 0;
+ size_t sent_token_probs_index = 0;
+
+ while (llama.has_next_token) {
+ const completion_token_output token_with_probs = llama.doCompletion();
+ if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
+ continue;
+ }
+ const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
+
+ size_t pos = std::min(sent_count, llama.generated_text.size());
+
+ const std::string str_test = llama.generated_text.substr(pos);
+ bool is_stop_full = false;
+ size_t stop_pos =
+ llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
+ if (stop_pos != std::string::npos) {
+ is_stop_full = true;
+ llama.generated_text.erase(
+ llama.generated_text.begin() + pos + stop_pos,
+ llama.generated_text.end());
+ pos = std::min(sent_count, llama.generated_text.size());
+ } else {
+ is_stop_full = false;
+ stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
+ STOP_PARTIAL);
+ }
+
+ if (
+ stop_pos == std::string::npos ||
+ // Send rest of the text if we are at the end of the generation
+ (!llama.has_next_token && !is_stop_full && stop_pos > 0)
+ ) {
+ const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
+
+ sent_count += to_send.size();
+
+ std::vector<completion_token_output> probs_output = {};
+
+ if (llama.params.n_probs > 0) {
+ const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
+ size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
+ size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
+ if (probs_pos < probs_stop_pos) {
+ probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
+ }
+ sent_token_probs_index = probs_stop_pos;
+ }
+
+ const json data = format_partial_response(llama, to_send, probs_output);
+
+ const std::string str =
+ "data: " +
+ data.dump(-1, ' ', false, json::error_handler_t::replace) +
+ "\n\n";
+
+ LOG_VERBOSE("data stream", {
+ { "to_send", str }
+ });
+
+ if (!sink.write(str.data(), str.size())) {
+ LOG_VERBOSE("stream closed", {});
+ llama_print_timings(llama.ctx);
+ return false;
+ }
+ }
+
+ if (!llama.has_next_token) {
+ // Generation is done, send extra information.
+ const json data = format_final_response(
+ llama,
+ "",
+ std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
+ );
+
+ const std::string str =
+ "data: " +
+ data.dump(-1, ' ', false, json::error_handler_t::replace) +
+ "\n\n";
+
+ LOG_VERBOSE("data stream", {
+ { "to_send", str }
+ });
+
+ if (!sink.write(str.data(), str.size())) {
+ LOG_VERBOSE("stream closed", {});
+ llama_print_timings(llama.ctx);
+ return false;
+ }
+ }
+ }
+
+ llama_print_timings(llama.ctx);
+ sink.done();
+ return true;
+ };
+ const auto on_complete = [&](bool) {
+ llama.mutex.unlock();
+ };
+ lock.release();
+ res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
+ });
+
svr.Get("/model.json", [&llama](const Request &, Response &res)
{
const json data = format_generation_settings(llama);