--- /dev/null
+#include <algorithm>
+
+#include "conv2d-transpose.cuh"
+#include "ggml.h"
+
+__global__ void conv2d_transpose_kernel(const float * __restrict__ input, const half * __restrict__ kernel,
+ float * __restrict__ output, const int in_w, const int in_h, const int out_w,
+ const int out_h, const int kernel_w, const int kernel_h, const int stride,
+ const int c_in, const int c_out, const int batches) {
+ const int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
+
+ const int total_elements = out_w * out_h * c_out * batches;
+
+ if (global_idx >= total_elements) {
+ return;
+ }
+
+ const int out_x_idx = global_idx % out_w;
+ const int out_y_idx = (global_idx / out_w) % out_h;
+ const int c_idx = (global_idx / (out_w * out_h)) % c_out;
+ const int n_idx = global_idx / (out_w * out_h * c_out);
+
+ float accumulator = 0;
+ // For each output idx, find the inputs that contribute to it by checking stride alignment and bounds
+
+ for (int c_in_idx = 0; c_in_idx < c_in; c_in_idx++) {
+ for (int kh = 0; kh < kernel_h; ++kh) {
+ int in_y = out_y_idx - kh;
+ if (in_y < 0 || in_y % stride) continue;
+ in_y /= stride;
+ if (in_y >= in_h) continue;
+
+ for (int kw = 0; kw < kernel_w; ++kw) {
+ int in_x = out_x_idx - kw;
+ if (in_x < 0 || in_x % stride) continue;
+ in_x /= stride;
+ if (in_x >= in_w) continue;
+
+ const int input_idx = (in_w * in_h * c_in) * n_idx + (in_w * in_h) * c_in_idx + (in_w) *in_y + in_x;
+ const int kernel_idx =
+ (kernel_h * kernel_w * c_out) * c_in_idx + (kernel_h * kernel_w) * c_idx + (kernel_w) *kh + kw;
+
+ float input_val = input[input_idx];
+ half kern_val = kernel[kernel_idx];
+
+ accumulator += input_val * (float) kern_val;
+ }
+ }
+ }
+
+ output[(out_w * out_h * c_out) * n_idx + (out_w * out_h) * c_idx + (out_w) *out_y_idx + out_x_idx] = accumulator;
+}
+
+//input is (W, H, C_in, N), Kernel is (W, H, C_out, C_in)
+void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * kernel = dst->src[0];
+ const ggml_tensor * input = dst->src[1];
+
+ GGML_ASSERT(kernel->type == GGML_TYPE_F16 && input->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
+
+ const float * input_data = (const float *) input->data;
+ float * output_data = (float *) dst->data;
+ const half * kernel_data = (const half *) kernel->data;
+
+ const int input_w = input->ne[0];
+ const int input_h = input->ne[1];
+ const int output_w = dst->ne[0];
+ const int output_h = dst->ne[1];
+ const int channels_in = input->ne[2];
+ const int channels_out = kernel->ne[2];
+ const int kernel_w = kernel->ne[0];
+ const int kernel_h = kernel->ne[1];
+ const int stride = dst->op_params[0];
+ const int batches = input->ne[3];
+
+ GGML_ASSERT(channels_in == kernel->ne[3]);
+ GGML_ASSERT(stride > 0);
+
+ cudaStream_t st = ctx.stream();
+
+ GGML_ASSERT(ggml_is_contiguous(input));
+ GGML_ASSERT(ggml_is_contiguous(kernel));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+
+ const int total = (output_w * output_h * channels_out * batches);
+ const int blocks = (total + CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE - 1) / CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE;
+
+ conv2d_transpose_kernel<<<blocks, CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE, 0, st>>>(
+ input_data, kernel_data, output_data, input_w, input_h, output_w, output_h, kernel_w, kernel_h, stride,
+ channels_in, channels_out, batches);
+}
--- /dev/null
+#include "common.cuh"
+
+#define CUDA_CONV2D_TRANSPOSE_BLOCK_SIZE 256
+void ggml_cuda_conv_2d_transpose_p0(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "ggml-cuda/concat.cuh"
#include "ggml-cuda/conv-transpose-1d.cuh"
#include "ggml-cuda/conv2d-dw.cuh"
+#include "ggml-cuda/conv2d-transpose.cuh"
#include "ggml-cuda/convert.cuh"
#include "ggml-cuda/count-equal.cuh"
#include "ggml-cuda/cpy.cuh"
case GGML_OP_CONV_2D_DW:
ggml_cuda_op_conv2d_dw(ctx, dst);
break;
+ case GGML_OP_CONV_TRANSPOSE_2D:
+ ggml_cuda_conv_2d_transpose_p0(ctx, dst);
+ break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cuda_op_conv_transpose_1d(ctx,dst);
break;
}
case GGML_OP_IM2COL:
case GGML_OP_CONV_2D_DW:
+ case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
}
};
+// GGML_OP_CONV_TRANSPOSE_2D
+struct test_conv_transpose_2d : public test_case {
+ const std::array<int64_t, 4> ne_input;
+ const std::array<int64_t, 4> ne_kernel;
+ const int stride;
+
+ std::string vars() override {
+ return VARS_TO_STR3(ne_input, ne_kernel, stride);
+ }
+
+ test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
+ std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
+ int stride = 1)
+ : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
+
+ ggml_tensor * build_graph(ggml_context * ctx) override {
+ ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
+ ggml_set_name(input, "input");
+
+ ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
+ ggml_set_name(kernel, "kernel");
+
+ ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
+ ggml_set_name(out, "out");
+
+ return out;
+ }
+};
+
// GGML_OP_IM2COL
struct test_im2col : public test_case {
const ggml_type type_input;
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
+ test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
+ test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
+
test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
+ test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
+
return test_cases;
}