/gguf-llama-simple
/libllama.so
/llama-bench
+/baby-llama
+/beam-search
+/save-load-state
build-info.h
arm_neon.h
compile_commands.json
# Define the default target now so that it is always the first target
-BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam_search tests/test-c.o
+BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
-beam_search: examples/beam_search/beam_search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
+beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
add_subdirectory(simple)
add_subdirectory(embd-input)
add_subdirectory(llama-bench)
- add_subdirectory(beam_search)
+ add_subdirectory(beam-search)
if (LLAMA_METAL)
add_subdirectory(metal)
endif()
--- /dev/null
+set(TARGET beam-search)
+add_executable(${TARGET} beam-search.cpp)
+install(TARGETS ${TARGET} RUNTIME)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
+if(TARGET BUILD_INFO)
+ add_dependencies(${TARGET} BUILD_INFO)
+endif()
--- /dev/null
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+
+#include "common.h"
+#include "llama.h"
+#include "build-info.h"
+
+#include <cassert>
+#include <cinttypes>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <ctime>
+#include <fstream>
+#include <iostream>
+#include <string>
+#include <vector>
+
+#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
+#include <signal.h>
+#include <unistd.h>
+#elif defined (_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#define NOMINMAX
+#include <windows.h>
+#include <signal.h>
+#endif
+
+// Used for debugging to print out beam tokens.
+struct ostream_beam_view {
+ llama_context * ctx;
+ llama_beam_view beam_view;
+};
+std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) {
+ os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
+ for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
+ os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]);
+ }
+ return os << ')';
+}
+
+// Put here anything you want back in beam_search_callback().
+struct beam_search_callback_data {
+ llama_context * ctx;
+ std::vector<llama_token> response;
+};
+
+// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
+// For example, eob can be flagged due to maximum token length, stop words, etc.
+bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) {
+ return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
+}
+
+// Function matching type llama_beam_search_callback_fn_t.
+// Custom callback example is called each time the beams lengths increase:
+// * Show progress by printing ',' following by number of convergent beam tokens if any.
+// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
+// This is also called when the stop condition is met.
+// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
+void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
+ auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
+ // Mark beams as EOS as needed.
+ for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
+ llama_beam_view& beam_view = beams_state.beam_views[i];
+ if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
+ beam_view.eob = true;
+ }
+ }
+ printf(","); // Show progress
+ if (const size_t n = beams_state.common_prefix_length) {
+ callback_data.response.resize(callback_data.response.size() + n);
+ assert(0u < beams_state.n_beams);
+ const llama_token * tokens = beams_state.beam_views[0].tokens;
+ std::copy(tokens, tokens + n, callback_data.response.end() - n);
+ printf("%lu", n);
+ }
+ fflush(stdout);
+#if 1 // DEBUG: print current beams for this iteration
+ std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
+ for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
+ std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
+ }
+#endif
+}
+
+int main(int argc, char ** argv)
+{
+ gpt_params params;
+ //params.n_gpu_layers = 200;
+
+ //---------------------------------
+ // Print help :
+ //---------------------------------
+
+ if ( argc < 2 || argv[1][0] == '-' )
+ {
+ printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
+ return 1 ;
+ }
+
+ //---------------------------------
+ // Load parameters :
+ //---------------------------------
+
+ params.model = argv[1];
+
+ params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
+
+ if ( argc > 3 )
+ {
+ params.prompt = argv[3];
+ }
+
+ if ( params.prompt.empty() )
+ {
+ params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
+ }
+
+ //---------------------------------
+ // Init LLM :
+ //---------------------------------
+
+ llama_backend_init(params.numa);
+
+ llama_model * model;
+ llama_context * ctx;
+
+ std::tie(model, ctx) = llama_init_from_gpt_params( params );
+
+ if ( model == NULL )
+ {
+ fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
+ return 1;
+ }
+
+ //---------------------------------
+ // Tokenize the prompt :
+ //---------------------------------
+
+ std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
+
+ const size_t max_context_size = llama_n_ctx( ctx );
+ const size_t max_tokens_list_size = max_context_size - 4 ;
+
+ if (tokens_list.size() > max_tokens_list_size)
+ {
+ fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
+ __func__ , tokens_list.size() , max_tokens_list_size );
+ return 1;
+ }
+
+ fprintf( stderr, "\n\n" );
+
+ // Print the tokens from the prompt :
+
+ for( auto id : tokens_list )
+ {
+ std::cout << llama_token_to_piece(ctx, id);
+ }
+ std::cout << std::flush;
+
+ int n_past = llama_get_kv_cache_token_count(ctx);
+ if (llama_eval(ctx, tokens_list.data(), tokens_list.size(), n_past, params.n_threads))
+ {
+ fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
+ return 1;
+ }
+ n_past += tokens_list.size();
+
+ beam_search_callback_data callback_data{ctx, {}};
+ size_t const beam_width = static_cast<size_t>(params.n_beams);
+ int const n_predict = 256;
+ llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads);
+
+ std::cout << "\n\n";
+ for (llama_token const token_id : callback_data.response) {
+ std::cout << llama_token_to_piece(ctx,token_id);
+ }
+ std::cout << std::endl;
+
+ llama_free( ctx );
+ llama_free_model( model );
+
+ llama_backend_free();
+
+ return 0;
+}
+++ /dev/null
-set(TARGET beam_search)
-add_executable(${TARGET} beam_search.cpp)
-install(TARGETS ${TARGET} RUNTIME)
-target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
-target_compile_features(${TARGET} PRIVATE cxx_std_11)
-if(TARGET BUILD_INFO)
- add_dependencies(${TARGET} BUILD_INFO)
-endif()
+++ /dev/null
-#ifndef _GNU_SOURCE
-#define _GNU_SOURCE
-#endif
-
-#include "common.h"
-#include "llama.h"
-#include "build-info.h"
-
-#include <cassert>
-#include <cinttypes>
-#include <cmath>
-#include <cstdio>
-#include <cstring>
-#include <ctime>
-#include <fstream>
-#include <iostream>
-#include <string>
-#include <vector>
-
-#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
-#include <signal.h>
-#include <unistd.h>
-#elif defined (_WIN32)
-#define WIN32_LEAN_AND_MEAN
-#define NOMINMAX
-#include <windows.h>
-#include <signal.h>
-#endif
-
-// Used for debugging to print out beam tokens.
-struct ostream_beam_view {
- llama_context * ctx;
- llama_beam_view beam_view;
-};
-std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) {
- os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
- for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
- os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]);
- }
- return os << ')';
-}
-
-// Put here anything you want back in beam_search_callback().
-struct beam_search_callback_data {
- llama_context * ctx;
- std::vector<llama_token> response;
-};
-
-// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
-// For example, eob can be flagged due to maximum token length, stop words, etc.
-bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) {
- return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
-}
-
-// Function matching type llama_beam_search_callback_fn_t.
-// Custom callback example is called each time the beams lengths increase:
-// * Show progress by printing ',' following by number of convergent beam tokens if any.
-// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
-// This is also called when the stop condition is met.
-// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
-void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
- auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
- // Mark beams as EOS as needed.
- for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
- llama_beam_view& beam_view = beams_state.beam_views[i];
- if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
- beam_view.eob = true;
- }
- }
- printf(","); // Show progress
- if (const size_t n = beams_state.common_prefix_length) {
- callback_data.response.resize(callback_data.response.size() + n);
- assert(0u < beams_state.n_beams);
- const llama_token * tokens = beams_state.beam_views[0].tokens;
- std::copy(tokens, tokens + n, callback_data.response.end() - n);
- printf("%lu", n);
- }
- fflush(stdout);
-#if 1 // DEBUG: print current beams for this iteration
- std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
- for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
- std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
- }
-#endif
-}
-
-int main(int argc, char ** argv)
-{
- gpt_params params;
- //params.n_gpu_layers = 200;
-
- //---------------------------------
- // Print help :
- //---------------------------------
-
- if ( argc < 2 || argv[1][0] == '-' )
- {
- printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
- return 1 ;
- }
-
- //---------------------------------
- // Load parameters :
- //---------------------------------
-
- params.model = argv[1];
-
- params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
-
- if ( argc > 3 )
- {
- params.prompt = argv[3];
- }
-
- if ( params.prompt.empty() )
- {
- params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
- }
-
- //---------------------------------
- // Init LLM :
- //---------------------------------
-
- llama_backend_init(params.numa);
-
- llama_model * model;
- llama_context * ctx;
-
- std::tie(model, ctx) = llama_init_from_gpt_params( params );
-
- if ( model == NULL )
- {
- fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
- return 1;
- }
-
- //---------------------------------
- // Tokenize the prompt :
- //---------------------------------
-
- std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
-
- const size_t max_context_size = llama_n_ctx( ctx );
- const size_t max_tokens_list_size = max_context_size - 4 ;
-
- if (tokens_list.size() > max_tokens_list_size)
- {
- fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
- __func__ , tokens_list.size() , max_tokens_list_size );
- return 1;
- }
-
- fprintf( stderr, "\n\n" );
-
- // Print the tokens from the prompt :
-
- for( auto id : tokens_list )
- {
- std::cout << llama_token_to_piece(ctx, id);
- }
- std::cout << std::flush;
-
- int n_past = llama_get_kv_cache_token_count(ctx);
- if (llama_eval(ctx, tokens_list.data(), tokens_list.size(), n_past, params.n_threads))
- {
- fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
- return 1;
- }
- n_past += tokens_list.size();
-
- beam_search_callback_data callback_data{ctx, {}};
- size_t const beam_width = static_cast<size_t>(params.n_beams);
- int const n_predict = 256;
- llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads);
-
- std::cout << "\n\n";
- for (llama_token const token_id : callback_data.response) {
- std::cout << llama_token_to_piece(ctx,token_id);
- }
- std::cout << std::endl;
-
- llama_free( ctx );
- llama_free_model( model );
-
- llama_backend_free();
-
- return 0;
-}