push:
branches:
- master
- paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
+ paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
pull_request_target:
types: [opened, synchronize, reopened]
- paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
+ paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
schedule:
- cron: '04 2 * * *'
$(CC) $(CFLAGS) -c $< -o $@
ggml/src/ggml-backend.o: \
- ggml/src/ggml-backend.c \
+ ggml/src/ggml-backend.cpp \
+ ggml/src/ggml-backend-impl.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h
- $(CC) $(CFLAGS) -c $< -o $@
+ $(CXX) $(CXXFLAGS) -c $< -o $@
ggml/src/ggml-quants.o: \
ggml/src/ggml-quants.c \
"src/unicode-data.cpp",
"ggml/src/ggml.c",
"ggml/src/ggml-alloc.c",
- "ggml/src/ggml-backend.c",
+ "ggml/src/ggml-backend.cpp",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-aarch64.c",
]
typedef struct ggml_backend_event * ggml_backend_event_t;
typedef struct ggml_backend * ggml_backend_t;
typedef void * ggml_backend_graph_plan_t;
+ typedef struct ggml_backend_reg * ggml_backend_reg_t;
+ typedef struct ggml_backend_device * ggml_backend_dev_t;
+
//
- // Backend buffer
+ // Backend buffer type
//
- // buffer type
- GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
- GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
- GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
- GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
- GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
- GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
+ GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
+ GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
+ GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
+ GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
+ GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
+ GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
+ GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
+
+ //
+ // Backend buffer
+ //
- // buffer
enum ggml_backend_buffer_usage {
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
};
- GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
- GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
- GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
- GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
- GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
- GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
- GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
- GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
- GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
- GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
- GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
- GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
- GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
- GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
+ GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
+ GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
+ GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+ GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
+ GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
+ GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+ GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
+ GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
+ GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
+ GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
+
+ // tensor copy between different backends
+ GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
//
- // Backend
+ // Backend (stream)
//
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// "offset" refers to the offset of the tensor data for setting/getting data
- GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
- GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
- GGML_API GGML_CALL void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
+ GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+ GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+ GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
+
+ // NOTE: will be removed, use device version instead
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
- // tensor copy between different backends
- GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
-
// asynchronous copy
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
- // events
- GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
- GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
- GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
- GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
- GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event);
+ GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend);
//
- // CPU backend
+ // Events
//
- GGML_API ggml_backend_t ggml_backend_cpu_init(void);
+ GGML_API ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device);
+ GGML_API void ggml_backend_event_free(ggml_backend_event_t event);
+ GGML_API void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend);
+ GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
+ GGML_API void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event);
- GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
- GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
- GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
- GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
+ //
+ // Backend device
+ //
- // Create a backend buffer from an existing pointer
- GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
+ enum ggml_backend_dev_type {
+ GGML_BACKEND_DEVICE_TYPE_CPU,
+ GGML_BACKEND_DEVICE_TYPE_GPU,
+ // devices with full capabilities (excludes backends such as BLAS that only support matrix multiplication)
+ GGML_BACKEND_DEVICE_TYPE_CPU_FULL,
+ GGML_BACKEND_DEVICE_TYPE_GPU_FULL
+ };
- GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
+ // functionality supported by the device
+ struct ggml_backend_dev_caps {
+ // asynchronous operations
+ bool async;
+ // pinned host buffer
+ bool host_buffer;
+ // event synchronization
+ bool events;
+ };
-#ifdef GGML_USE_CPU_HBM
- GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
-#endif
+ // all the device properties
+ struct ggml_backend_dev_props {
+ const char * name;
+ const char * description;
+ size_t memory_free;
+ size_t memory_total;
+ enum ggml_backend_dev_type type;
+ struct ggml_backend_dev_caps caps;
+ };
+
+ GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
+ GGML_API const char * ggml_backend_dev_description(ggml_backend_dev_t device);
+ GGML_API void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total);
+ GGML_API enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device);
+ GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
+ GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
+ GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
+ GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
+
+ GGML_API bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
+ GGML_API bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft);
+ GGML_API bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
+
+ //
+ // Backend (reg)
+ //
+
+ GGML_API const char * ggml_backend_reg_name(ggml_backend_reg_t reg);
+ GGML_API size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg);
+ GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
+ GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);
+ GGML_API void ggml_backend_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data);
+
+ // Functions that may be obtained using ggml_backend_reg_get_proc_address
+ typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(const float *);
//
// Backend registry
//
- // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
+ // Backend (reg) enumeration
+ GGML_API size_t ggml_backend_reg_count(void);
+ GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
+ GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name);
+
+ // Device enumeration
+ GGML_API size_t ggml_backend_dev_count(void);
+ GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index);
+ GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name);
+ GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type);
+
+ // Set the log callback for all registered backends
+ GGML_API void ggml_backend_set_log_callback(ggml_log_callback log_callback, void * user_data);
- GGML_API size_t ggml_backend_reg_get_count(void);
- GGML_API size_t ggml_backend_reg_find_by_name(const char * name); // returns index of backend with name, or SIZE_MAX if not found
- GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional)
- GGML_API const char * ggml_backend_reg_get_name(size_t i);
- GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
- GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
- GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
+ // Direct backend (stream) initialization
+ // = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params)
+ GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params);
+ // = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params)
+ GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params);
+ // = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU_FULL) OR ggml_backend_dev_by_type(CPU_FULL), NULL)
+ GGML_API ggml_backend_t ggml_backend_init_best(void);
//
// Backend scheduler
//
- // The backend scheduler allows for multiple backends to be used together
+ // The backend scheduler allows for multiple backend devices to be used together
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
// The backends are selected based on:
// - the backend that supports the operation
}
*/
- struct ggml_backend_sched;
typedef struct ggml_backend_sched * ggml_backend_sched_t;
+ // Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback)
// when ask == true, the scheduler wants to know if the user wants to observe this node
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
//
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
- typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
+ typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
// Compare the output of two backends
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
+ //
+ // CPU backend
+ //
+
+ GGML_API ggml_backend_t ggml_backend_cpu_init(void);
+
+ GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
+ GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
+ GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
+ GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
+
+ // Create a backend buffer from an existing pointer
+ GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
+ GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
+
+ GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
+
+#ifdef GGML_USE_CPU_HBM
+ GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
+#endif
#ifdef __cplusplus
}
#endif
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
+GGML_API ggml_backend_t ggml_backend_blas_init(void);
-GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
+GGML_API bool ggml_backend_is_blas(ggml_backend_t backend);
// number of threads used for conversion to float
// for openblas and blis, this will also set the number of threads used for blas operations
-GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
+GGML_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
#ifdef __cplusplus
* @param device The index of the device to initialize.
* @return A pointer to the initialized backend instance, or nullptr on failure.
*/
-GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device);
+GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
/**
* @brief Checks if a given backend is a CANN backend.
* @param backend The backend instance to check.
* @return True if the backend is a CANN backend, false otherwise.
*/
-GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend);
+GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
/**
* @brief Retrieves the CANN buffer type for a specified device.
* @return A pointer to the buffer type interface for the specified device, or
* nullptr if the device index is out of range.
*/
-GGML_API GGML_CALL ggml_backend_buffer_type_t
+GGML_API ggml_backend_buffer_type_t
ggml_backend_cann_buffer_type(int32_t device);
/**
*
* @return The number of CANN devices available.
*/
-GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void);
+GGML_API int32_t ggml_backend_cann_get_device_count(void);
/**
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
*
* @return A pointer to the host buffer type interface.
*/
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
/**
* @brief Retrieves the description of a specific CANN device.
* @param description Pointer to a buffer where the description will be written.
* @param description_size Size of the description buffer.
*/
-GGML_API GGML_CALL void ggml_backend_cann_get_device_description(
+GGML_API void ggml_backend_cann_get_device_description(
int32_t device, char* description, size_t description_size);
/**
* @param total Pointer to a variable where the total memory size will be
* stored.
*/
-GGML_API GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device,
- size_t* free,
- size_t* total);
+GGML_API void ggml_backend_cann_get_device_memory(int32_t device,
+ size_t* free,
+ size_t* total);
/**
* @brief Set the logging callback for GGML.
#include "ggml.h"
#include "ggml-backend.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+
#ifdef GGML_USE_HIPBLAS
#define GGML_CUDA_NAME "ROCm"
#define GGML_CUBLAS_NAME "hipBLAS"
#define GGML_CUDA_NAME "CUDA"
#define GGML_CUBLAS_NAME "cuBLAS"
#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
#define GGML_CUDA_MAX_DEVICES 16
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
+GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
-GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
+GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
-GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
-GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
-GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
+GGML_API int ggml_backend_cuda_get_device_count(void);
+GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
+GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
-GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
-GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
+GGML_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
+GGML_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data);
+
+GGML_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
+
#ifdef __cplusplus
}
#endif
+// Note: this description is outdated
+//
// An interface allowing to compute ggml_cgraph with Metal
//
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
-GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
+GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
#define GGML_RPC_MAX_SERVERS 16
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
-GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
+GGML_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
+GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend);
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
+GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
-GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
+GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
-GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
+GGML_API void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
#ifdef __cplusplus
}
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
+GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
-GGML_API void ggml_backend_sycl_print_sycl_devices(void);
-GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
-GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
-GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
-GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
+GGML_API void ggml_backend_sycl_print_sycl_devices(void);
+GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len);
+GGML_API void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
+GGML_API int ggml_backend_sycl_get_device_count();
+GGML_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
// SYCL doesn't support registering host memory, keep here for reference
-// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
-// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
+// GGML_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
+// GGML_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif
GGML_API void ggml_vk_instance_init(void);
// backend API
-GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
+GGML_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
-GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
-GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
-GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
-GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
+GGML_API bool ggml_backend_is_vk(ggml_backend_t backend);
+GGML_API int ggml_backend_vk_get_device_count(void);
+GGML_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
+GGML_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
+GGML_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
+GGML_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
#ifdef __cplusplus
}
# define GGML_API
#endif
-#ifdef GGML_MULTIPLATFORM
-# if defined(_WIN32)
-# define GGML_CALL
-# else
-# define GGML_CALL __attribute__((__ms_abi__))
-# endif
-#else
-# define GGML_CALL
-#endif
-
// TODO: support for clang
#ifdef __GNUC__
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
};
// get ggml_status name string
- GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
+ GGML_API const char * ggml_status_to_string(enum ggml_status status);
// ieee 754-2008 half-precision float16
// todo: make this not an integral type
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
- GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
+ GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
+ GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
+ GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
+ GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
- GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
- GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
- GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
+ GGML_API int64_t ggml_blck_size(enum ggml_type type);
+ GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
+ GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
GGML_DEPRECATED(
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
"use ggml_row_size() instead");
- GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
- GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
- GGML_API const char * ggml_op_symbol(enum ggml_op op);
+ GGML_API const char * ggml_type_name(enum ggml_type type);
+ GGML_API const char * ggml_op_name (enum ggml_op op);
+ GGML_API const char * ggml_op_symbol(enum ggml_op op);
- GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
- GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
+ GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
+ GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
- GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
+ GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
+ GGML_API bool ggml_is_quantized(enum ggml_type type);
// TODO: temporary until model loading of ggml examples is refactored
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
- GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
- GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
+ GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
+ GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
- GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
- GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
- GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
- GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
+ GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
+ GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
+ GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
- GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
+ GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
"use ggml_rope_ext_inplace instead");
// compute correction dims for YaRN RoPE scaling
- GGML_CALL void ggml_rope_yarn_corr_dims(
+ void ggml_rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// rotary position embedding backward, i.e compute dx from dy
../include/ggml-backend.h
ggml.c
ggml-alloc.c
- ggml-backend.c
+ ggml-backend.cpp
ggml-quants.c
ggml-quants.h
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
#endif
//
- // Backend buffer
+ // Backend buffer type
//
- // buffer type
- typedef void * ggml_backend_buffer_type_context_t;
-
struct ggml_backend_buffer_type_i {
- const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
+ const char * (*get_name) (ggml_backend_buffer_type_t buft);
// allocate a buffer of this type
- ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
+ ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
// tensor alignment
- size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft);
- // max buffer size that can be allocated
- size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft);
- // data size needed to allocate the tensor, including padding
- size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
- // check if tensor data is in host memory
- bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
+ size_t (*get_alignment) (ggml_backend_buffer_type_t buft);
+ // (optional) max buffer size that can be allocated (defaults to SIZE_MAX)
+ size_t (*get_max_size) (ggml_backend_buffer_type_t buft);
+ // (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes)
+ size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
+ // (optional) check if tensor data is in host memory (defaults to false)
+ bool (*is_host) (ggml_backend_buffer_type_t buft);
};
struct ggml_backend_buffer_type {
struct ggml_backend_buffer_type_i iface;
- ggml_backend_buffer_type_context_t context;
+ ggml_backend_dev_t device;
+ void * context;
};
- // buffer
- typedef void * ggml_backend_buffer_context_t;
+ //
+ // Backend buffer
+ //
struct ggml_backend_buffer_i {
- const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
- void (*GGML_CALL free_buffer) (ggml_backend_buffer_t buffer);
- void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
- void (*GGML_CALL init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
- void (*GGML_CALL memset_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
- void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
- void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
- bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
- void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
- void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
+ const char * (*get_name) (ggml_backend_buffer_t buffer);
+ // (optional) free the buffer
+ void (*free_buffer) (ggml_backend_buffer_t buffer);
+ // base address of the buffer
+ void * (*get_base) (ggml_backend_buffer_t buffer);
+ // (optional) initialize a tensor in the buffer (eg. add tensor extras)
+ void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
+ // tensor data access
+ void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
+ void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+ void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+ // (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported)
+ bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
+ // clear the entire buffer
+ void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
+ // (optional) reset any internal state due to tensor initialization, such as tensor extras
+ void (*reset) (ggml_backend_buffer_t buffer);
};
struct ggml_backend_buffer {
struct ggml_backend_buffer_i iface;
ggml_backend_buffer_type_t buft;
- ggml_backend_buffer_context_t context;
+ void * context;
size_t size;
enum ggml_backend_buffer_usage usage;
};
- GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
- ggml_backend_buffer_type_t buft,
- struct ggml_backend_buffer_i iface,
- ggml_backend_buffer_context_t context,
- size_t size);
+ ggml_backend_buffer_t ggml_backend_buffer_init(
+ ggml_backend_buffer_type_t buft,
+ struct ggml_backend_buffer_i iface,
+ void * context,
+ size_t size);
// do not use directly, use ggml_backend_tensor_copy instead
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
+ // multi-buffer
// buffer that contains a collection of buffers
- GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
- GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
- GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
+ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
+ bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
+ void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
//
- // Backend
+ // Backend (stream)
//
- typedef void * ggml_backend_context_t;
-
struct ggml_backend_i {
- const char * (*GGML_CALL get_name)(ggml_backend_t backend);
+ const char * (*get_name)(ggml_backend_t backend);
- void (*GGML_CALL free)(ggml_backend_t backend);
+ void (*free)(ggml_backend_t backend);
// buffer allocation
- ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
+ ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
- void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
- void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
- bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
+ void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
+ void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
+ bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
- void (*GGML_CALL synchronize)(ggml_backend_t backend);
+ void (*synchronize)(ggml_backend_t backend);
- // compute graph with a plan (not used currently)
- // create a new plan for a graph
- ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
- void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+ // (optional) compute graph with a plan (not used currently)
+ ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
+ void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
- void (*GGML_CALL graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
+ void (*graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
// compute the graph with the plan
- enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+ enum ggml_status (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
+
+ // compute graph (always async if supported by the backend)
+ enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
- // compute graph without a plan (async)
- enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
+ // IMPORTANT: these functions have been moved to the device interface and will be removed from the backend interface
+ // new backends should implement the device interface instead
+ // These functions are being moved to the device interface
// check if the backend can compute an operation
- bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
+ bool (*supports_op) (ggml_backend_t backend, const struct ggml_tensor * op);
// check if the backend can use tensors allocated in a buffer type
- bool (*GGML_CALL supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
+ bool (*supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
// these should be expensive operations with large batch sizes that may benefit from running on this backend
// even if the weight has to be copied from the CPU temporarily
- bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
+ bool (*offload_op) (ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
- // create a new event that can record events on this backend instance
- ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
- void (*GGML_CALL event_free) (ggml_backend_event_t event);
- // record an event on the backend instance that created it
- void (*GGML_CALL event_record) (ggml_backend_event_t event);
- // wait for an event on on a different backend instance
- void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
- // block until an event is recorded
- void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
+ // record an event on this stream
+ void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
+ // wait for an event on on a different stream
+ void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
};
struct ggml_backend {
ggml_guid_t guid;
-
struct ggml_backend_i iface;
- ggml_backend_context_t context;
+ ggml_backend_dev_t device;
+ void * context;
};
struct ggml_backend_event {
- ggml_backend_t backend;
+ struct ggml_backend_device * device;
void * context;
};
//
- // Backend registry
+ // Backend device
//
- typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
+ // Note: if additional properties are needed, we should add a struct with all of them
+ // the current functions to obtain the properties can remain, since they are more convenient for often used properties
+ struct ggml_backend_device_i {
+ // device name: short identifier for this device, such as "CPU" or "CUDA0"
+ const char * (*get_name)(ggml_backend_dev_t dev);
+
+ // device description: short informative description of the device, could be the model name
+ const char * (*get_description)(ggml_backend_dev_t dev);
+
+ // device memory in bytes
+ void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total);
+
+ // device type
+ enum ggml_backend_dev_type (*get_type)(ggml_backend_dev_t dev);
+
+ // device properties
+ void (*get_props)(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props);
+
+ // backend (stream) initialization
+ ggml_backend_t (*init_backend)(ggml_backend_dev_t dev, const char * params);
+
+ // preferred buffer type
+ ggml_backend_buffer_type_t (*get_buffer_type)(ggml_backend_dev_t dev);
+
+ // (optional) host buffer type (in system memory, typically this is a pinned memory buffer for faster transfers between host and device)
+ ggml_backend_buffer_type_t (*get_host_buffer_type)(ggml_backend_dev_t dev);
+
+ // (optional) buffer from pointer: create a buffer from a host pointer (useful for memory mapped models and importing data from other libraries)
+ ggml_backend_buffer_t (*buffer_from_host_ptr)(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size);
+
+ // check if the backend can compute an operation
+ bool (*supports_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
+
+ // check if the backend can use tensors allocated in a buffer type
+ bool (*supports_buft)(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft);
+
+ // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
+ // these should be expensive operations with large batch sizes that may benefit from running on this backend
+ // even if the weight has to be copied from the CPU temporarily
+ bool (*offload_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
+
+ // (optional) event synchronization
+ ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
+ void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
+ void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
+ };
+
+ struct ggml_backend_device {
+ struct ggml_backend_device_i iface;
+ ggml_backend_reg_t reg;
+ void * context;
+ };
+
+ //
+ // Backend (reg)
+ //
+
+ struct ggml_backend_reg_i {
+ const char * (*get_name)(ggml_backend_reg_t reg);
+
+ // enumerate available devices
+ size_t (*get_device_count)(ggml_backend_reg_t reg);
+ ggml_backend_dev_t (*get_device)(ggml_backend_reg_t reg, size_t index);
+
+ // (optional) get a pointer to a function in the backend
+ // backends can add custom functions that are not part of the standard ggml-backend interface
+ void * (*get_proc_address)(ggml_backend_reg_t reg, const char * name);
+
+ // (optional) set the log callback for the backend
+ void (*set_log_callback)(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data);
+ };
+
+ struct ggml_backend_reg {
+ // int api_version; // TODO: for dynamic loading
+ struct ggml_backend_reg_i iface;
+ void * context;
+ };
+
- GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
+ // Internal backend registry API
+ void ggml_backend_register(ggml_backend_reg_t reg);
+ void ggml_backend_device_register(ggml_backend_dev_t device);
+ // TODO: backends can be loaded as a dynamic library, in which case it needs to export this function
+ // typedef ggml_backend_register_t * (*ggml_backend_init)(void);
#ifdef __cplusplus
}
+++ /dev/null
-#include "ggml-backend-impl.h"
-#include "ggml-alloc.h"
-#include "ggml-impl.h"
-
-#include <assert.h>
-#include <limits.h>
-#include <stdarg.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-// backend buffer type
-
-const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name(buft);
-}
-
-GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- return buft->iface.alloc_buffer(buft, size);
-}
-
-size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_alignment(buft);
-}
-
-size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
- // get_max_size is optional, defaults to SIZE_MAX
- if (buft->iface.get_max_size) {
- return buft->iface.get_max_size(buft);
- }
- return SIZE_MAX;
-}
-
-GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
- // get_alloc_size is optional, defaults to ggml_nbytes
- if (buft->iface.get_alloc_size) {
- size_t size = buft->iface.get_alloc_size(buft, tensor);
- assert(size >= ggml_nbytes(tensor));
- return size;
- }
- return ggml_nbytes(tensor);
-}
-
-bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
- if (buft->iface.is_host) {
- return buft->iface.is_host(buft);
- }
- return false;
-}
-
-// backend buffer
-
-GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
- ggml_backend_buffer_type_t buft,
- struct ggml_backend_buffer_i iface,
- ggml_backend_buffer_context_t context,
- size_t size) {
- ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
-
- (*buffer) = (struct ggml_backend_buffer) {
- /* .interface = */ iface,
- /* .buft = */ buft,
- /* .context = */ context,
- /* .size = */ size,
- /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
- };
-
- return buffer;
-}
-
-const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name(buffer);
-}
-
-void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
- if (buffer == NULL) {
- return;
- }
-
- if (buffer->iface.free_buffer != NULL) {
- buffer->iface.free_buffer(buffer);
- }
- free(buffer);
-}
-
-size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
- return buffer->size;
-}
-
-void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
- void * base = buffer->iface.get_base(buffer);
-
- GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
-
- return base;
-}
-
-GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- // init_tensor is optional
- if (buffer->iface.init_tensor) {
- buffer->iface.init_tensor(buffer, tensor);
- }
-}
-
-size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
- return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
-}
-
-size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
- return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
-}
-
-size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
-}
-
-void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- buffer->iface.clear(buffer, value);
-}
-
-bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
- return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
-}
-
-void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
- buffer->usage = usage;
-
- // FIXME: add a generic callback to the buffer interface
- if (ggml_backend_buffer_is_multi_buffer(buffer)) {
- ggml_backend_multi_buffer_set_usage(buffer, usage);
- }
-}
-
-enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
- return buffer->usage;
-}
-
-ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
- return buffer->buft;
-}
-
-void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
- if (buffer->iface.reset) {
- buffer->iface.reset(buffer);
- }
-}
-
-bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
- ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
- if (dst_buf->iface.cpy_tensor) {
- return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
- }
- return false;
-}
-
-// backend
-
-ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
- if (backend == NULL) {
- return NULL;
- }
- return backend->guid;
-}
-
-const char * ggml_backend_name(ggml_backend_t backend) {
- if (backend == NULL) {
- return "NULL";
- }
- return backend->iface.get_name(backend);
-}
-
-void ggml_backend_free(ggml_backend_t backend) {
- if (backend == NULL) {
- return;
- }
-
- backend->iface.free(backend);
-}
-
-ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
- return backend->iface.get_default_buffer_type(backend);
-}
-
-ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
- return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
-}
-
-size_t ggml_backend_get_alignment(ggml_backend_t backend) {
- return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
-}
-
-size_t ggml_backend_get_max_size(ggml_backend_t backend) {
- return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
-}
-
-void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
-
- if (backend->iface.set_tensor_async == NULL) {
- ggml_backend_tensor_set(tensor, data, offset, size);
- } else {
- backend->iface.set_tensor_async(backend, tensor, data, offset, size);
- }
-}
-
-void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
-
- if (backend->iface.get_tensor_async == NULL) {
- ggml_backend_tensor_get(tensor, data, offset, size);
- } else {
- backend->iface.get_tensor_async(backend, tensor, data, offset, size);
- }
-}
-
-GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
-
- GGML_ASSERT(buf != NULL && "tensor buffer not set");
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
-
- if (!size) {
- return;
- }
-
- buf->iface.set_tensor(buf, tensor, data, offset, size);
-}
-
-GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
-
- GGML_ASSERT(buf != NULL && "tensor buffer not set");
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
-
- if (!size) {
- return;
- }
-
- buf->iface.get_tensor(buf, tensor, data, offset, size);
-}
-
-GGML_API GGML_CALL void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
-
- GGML_ASSERT(buf != NULL && "tensor buffer not set");
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
-
- if (!size) {
- return;
- }
-
- GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not supported by backend buffer");
-
- buf->iface.memset_tensor(buf, tensor, value, offset, size);
-}
-
-void ggml_backend_synchronize(ggml_backend_t backend) {
- if (backend->iface.synchronize == NULL) {
- return;
- }
-
- backend->iface.synchronize(backend);
-}
-
-ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- GGML_ASSERT(backend->iface.graph_plan_create != NULL);
-
- return backend->iface.graph_plan_create(backend, cgraph);
-}
-
-void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- GGML_ASSERT(backend->iface.graph_plan_free != NULL);
-
- backend->iface.graph_plan_free(backend, plan);
-}
-
-enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
-
- return backend->iface.graph_plan_compute(backend, plan);
-}
-
-enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
- ggml_backend_synchronize(backend);
- return err;
-}
-
-enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- return backend->iface.graph_compute(backend, cgraph);
-}
-
-bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- return backend->iface.supports_op(backend, op);
-}
-
-bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- return backend->iface.supports_buft(backend, buft);
-}
-
-bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- if (backend->iface.offload_op != NULL) {
- return backend->iface.offload_op(backend, op);
- }
- return false;
-}
-
-// backend copy
-
-static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
- if (a->type != b->type) {
- return false;
- }
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (a->ne[i] != b->ne[i]) {
- return false;
- }
- if (a->nb[i] != b->nb[i]) {
- return false;
- }
- }
- return true;
-}
-
-void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
-
- if (src == dst) {
- return;
- }
-
- if (ggml_backend_buffer_is_host(src->buffer)) {
- ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
- } else if (ggml_backend_buffer_is_host(dst->buffer)) {
- ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
- } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
-#ifndef NDEBUG
- fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
-#endif
- size_t nbytes = ggml_nbytes(src);
- void * data = malloc(nbytes);
- ggml_backend_tensor_get(src, data, 0, nbytes);
- ggml_backend_tensor_set(dst, data, 0, nbytes);
- free(data);
- }
-}
-
-void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
-
- if (src == dst) {
- return;
- }
-
- if (backend_dst->iface.cpy_tensor_async != NULL) {
- if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
- return;
- }
- }
-
- // an async copy would normally happen after all the queued operations on both backends are completed
- // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
- ggml_backend_synchronize(backend_src);
- ggml_backend_synchronize(backend_dst);
- ggml_backend_tensor_copy(src, dst);
-}
-
-// events
-
-ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
- if (backend->iface.event_new == NULL) {
- return NULL;
- }
- return backend->iface.event_new(backend);
-}
-
-void ggml_backend_event_free(ggml_backend_event_t event) {
- if (event == NULL) {
- return;
- }
- event->backend->iface.event_free(event);
-}
-
-void ggml_backend_event_record(ggml_backend_event_t event) {
- GGML_ASSERT(event->backend->iface.event_record != NULL);
-
- event->backend->iface.event_record(event);
-}
-
-void ggml_backend_event_synchronize(ggml_backend_event_t event) {
- GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
-
- event->backend->iface.event_synchronize(event);
-}
-
-void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
- GGML_ASSERT(backend->iface.event_wait != NULL);
-
- backend->iface.event_wait(backend, event);
-}
-
-// backend registry
-
-#define GGML_REG_MAX_BACKENDS 64
-
-struct ggml_backend_reg {
- char name[128];
- ggml_backend_init_fn init_fn;
- ggml_backend_buffer_type_t default_buffer_type;
- void * user_data;
-};
-
-static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
-static size_t ggml_backend_registry_count = 0;
-
-GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
-
-GGML_CALL static void ggml_backend_registry_init(void) {
- static bool initialized = false;
-
- if (initialized) {
- return;
- }
-
- initialized = true;
-
- ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
-
- // add forward decls here to avoid including the backend headers
-#ifdef GGML_USE_CUDA
- extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
- ggml_backend_cuda_reg_devices();
-#endif
-
-#ifdef GGML_USE_SYCL
- extern void ggml_backend_sycl_reg_devices(void);
- ggml_backend_sycl_reg_devices();
-#endif
-
-#ifdef GGML_USE_METAL
- extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
- extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
- ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
-#endif
-
-#ifdef GGML_USE_VULKAN
- extern GGML_CALL int ggml_backend_vk_reg_devices(void);
- ggml_backend_vk_reg_devices();
-#endif
-
-#ifdef GGML_USE_KOMPUTE
- extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
- ggml_backend_kompute_reg_devices();
-#endif
-
-#ifdef GGML_USE_CANN
- extern GGML_CALL int ggml_backend_cann_reg_devices(void);
- ggml_backend_cann_reg_devices();
-#endif
-}
-
-GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
- GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
-
- size_t id = ggml_backend_registry_count;
-
- ggml_backend_registry[id] = (struct ggml_backend_reg) {
- /* .name = */ {0},
- /* .fn = */ init_fn,
- /* .default_buffer_type = */ default_buffer_type,
- /* .user_data = */ user_data,
- };
-
- snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
-
-#ifndef NDEBUG
- fprintf(stderr, "%s: registered backend %s\n", __func__, name);
-#endif
-
- ggml_backend_registry_count++;
-}
-
-size_t ggml_backend_reg_get_count(void) {
- ggml_backend_registry_init();
-
- return ggml_backend_registry_count;
-}
-
-size_t ggml_backend_reg_find_by_name(const char * name) {
- ggml_backend_registry_init();
-
- for (size_t i = 0; i < ggml_backend_registry_count; i++) {
- // TODO: case insensitive in a portable way
- if (strcmp(ggml_backend_registry[i].name, name) == 0) {
- return i;
- }
- }
-
- // not found
- return SIZE_MAX;
-}
-
-// init from backend:params string
-ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
- ggml_backend_registry_init();
-
- const char * params = strchr(backend_str, ':');
- char backend_name[128];
- if (params == NULL) {
- snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
- params = "";
- } else {
- snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
- params++;
- }
-
- size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
-
- if (backend_i == SIZE_MAX) {
- fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
- return NULL;
- }
-
- return ggml_backend_reg_init_backend(backend_i, params);
-}
-
-const char * ggml_backend_reg_get_name(size_t i) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].name;
-}
-
-ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
-}
-
-ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_registry[i].default_buffer_type;
-}
-
-ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
- ggml_backend_registry_init();
-
- GGML_ASSERT(i < ggml_backend_registry_count);
- return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
-}
-
-// backend CPU
-
-static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
-
-GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
- return "CPU";
-
- GGML_UNUSED(buffer);
-}
-
-GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
- uintptr_t data = (uintptr_t)buffer->context;
-
- // align the buffer
- if (data % TENSOR_ALIGNMENT != 0) {
- data = GGML_PAD(data, TENSOR_ALIGNMENT);
- }
-
- return (void *)data;
-}
-
-GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- free(buffer->context);
-}
-
-GGML_CALL static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
- memset((char *)tensor->data + offset, value, size);
-
- GGML_UNUSED(buffer);
-}
-
-GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- memcpy((char *)tensor->data + offset, data, size);
-
- GGML_UNUSED(buffer);
-}
-
-GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- memcpy(data, (const char *)tensor->data + offset, size);
-
- GGML_UNUSED(buffer);
-}
-
-GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
- if (ggml_backend_buffer_is_host(src->buffer)) {
- memcpy(dst->data, src->data, ggml_nbytes(src));
- return true;
- }
- return false;
-
- GGML_UNUSED(buffer);
-}
-
-GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- memset(buffer->context, value, buffer->size);
-}
-
-static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
- /* .get_name = */ ggml_backend_cpu_buffer_name,
- /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cpu_buffer_get_base,
- /* .init_tensor = */ NULL, // no initialization required
- /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
- /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_cpu_buffer_clear,
- /* .reset = */ NULL,
-};
-
-// for buffers from ptr, free is not called
-static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
- /* .get_name = */ ggml_backend_cpu_buffer_name,
- /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
- /* .get_base = */ ggml_backend_cpu_buffer_get_base,
- /* .init_tensor = */ NULL, // no initialization required
- /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
- /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_cpu_buffer_clear,
- /* .reset = */ NULL,
-};
-
-GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
- return "CPU";
-
- GGML_UNUSED(buft);
-}
-
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
- void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
- if (data == NULL) {
- fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
- return NULL;
- }
-
- return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
-}
-
-GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return TENSOR_ALIGNMENT;
-
- GGML_UNUSED(buft);
-}
-
-GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
- return true;
-
- GGML_UNUSED(buft);
-}
-
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
- static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
- },
- /* .context = */ NULL,
- };
-
- return &ggml_backend_cpu_buffer_type;
-}
-
-#ifdef GGML_USE_CPU_HBM
-
-// buffer type HBM
-
-#include <hbwmalloc.h>
-
-GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
- return "CPU_HBM";
-
- GGML_UNUSED(buft);
-}
-
-GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
- return "CPU_HBM";
-
- GGML_UNUSED(buf);
-}
-
-GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- hbw_free(buffer->context);
-}
-
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- //void * ptr = hbw_malloc(size);
- void * ptr;
- int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
- if (result != 0) {
- fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
- return NULL;
- }
-
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
- buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
-
- return buffer;
-}
-
-ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
- static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
- },
- /* .context = */ NULL,
- };
-
- return &ggml_backend_cpu_buffer_type_hbm;
-}
-#endif
-
-struct ggml_backend_cpu_context {
- int n_threads;
- ggml_threadpool_t threadpool;
-
- void * work_data;
- size_t work_size;
-
- ggml_abort_callback abort_callback;
- void * abort_callback_data;
-};
-
-GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
- return "CPU";
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- free(cpu_ctx->work_data);
- free(cpu_ctx);
- free(backend);
-}
-
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
- return ggml_backend_cpu_buffer_type();
-
- GGML_UNUSED(backend);
-}
-
-struct ggml_backend_plan_cpu {
- struct ggml_cplan cplan;
- struct ggml_cgraph cgraph;
-};
-
-GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
-
- struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
-
- cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
- cpu_plan->cgraph = *cgraph; // FIXME: deep copy
-
- if (cpu_plan->cplan.work_size > 0) {
- cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
- if (cpu_plan->cplan.work_data == NULL) {
- free(cpu_plan);
- return NULL;
- }
- }
-
- cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
- cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
-
- return cpu_plan;
-}
-
-GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
-
- free(cpu_plan->cplan.work_data);
- free(cpu_plan);
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
-
- return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
-
- struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
-
- if (cpu_ctx->work_size < cplan.work_size) {
- free(cpu_ctx->work_data);
- cpu_ctx->work_data = malloc(cplan.work_size);
- if (cpu_ctx->work_data == NULL) {
- cpu_ctx->work_size = 0;
- return GGML_STATUS_ALLOC_FAILED;
- }
- cpu_ctx->work_size = cplan.work_size;
- }
- cplan.work_data = cpu_ctx->work_data;
-
- cplan.abort_callback = cpu_ctx->abort_callback;
- cplan.abort_callback_data = cpu_ctx->abort_callback_data;
-
- return ggml_graph_compute(cgraph, &cplan);
-}
-
-GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_CPY:
- return
- op->type != GGML_TYPE_IQ2_XXS &&
- op->type != GGML_TYPE_IQ2_XS &&
- op->type != GGML_TYPE_IQ1_S &&
- op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
- case GGML_OP_MUL_MAT:
- return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
- case GGML_OP_ROPE_BACK:
- return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
- case GGML_OP_IM2COL_BACK:
- return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
- default:
- return true;
- }
-
- GGML_UNUSED(backend);
-}
-
-GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- return ggml_backend_buft_is_host(buft);
-
- GGML_UNUSED(backend);
-}
-
-static struct ggml_backend_i cpu_backend_i = {
- /* .get_name = */ ggml_backend_cpu_name,
- /* .free = */ ggml_backend_cpu_free,
- /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
- /* .set_tensor_async = */ NULL,
- /* .get_tensor_async = */ NULL,
- /* .cpy_tensor_async = */ NULL,
- /* .synchronize = */ NULL,
- /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
- /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
- /* .graph_compute = */ ggml_backend_cpu_graph_compute,
- /* .supports_op = */ ggml_backend_cpu_supports_op,
- /* .supports_buft = */ ggml_backend_cpu_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
-};
-
-static ggml_guid_t ggml_backend_cpu_guid(void) {
- static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
- return &guid;
-}
-
-ggml_backend_t ggml_backend_cpu_init(void) {
- struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
- if (ctx == NULL) {
- return NULL;
- }
-
- ctx->n_threads = GGML_DEFAULT_N_THREADS;
- ctx->threadpool = NULL;
- ctx->work_data = NULL;
- ctx->work_size = 0;
- ctx->abort_callback = NULL;
- ctx->abort_callback_data = NULL;
-
- ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
- if (cpu_backend == NULL) {
- free(ctx);
- return NULL;
- }
-
- *cpu_backend = (struct ggml_backend) {
- /* .guid = */ ggml_backend_cpu_guid(),
- /* .interface = */ cpu_backend_i,
- /* .context = */ ctx
- };
- return cpu_backend;
-}
-
-GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
-}
-
-void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
- GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
-
- struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
- ctx->n_threads = n_threads;
-}
-
-void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
- GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
-
- struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
-
- if (ctx->threadpool && ctx->threadpool != threadpool) {
- // already had a different threadpool, pause/suspend it before switching
- ggml_threadpool_pause(ctx->threadpool);
- }
- ctx->threadpool = threadpool;
-}
-
-void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
- GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
-
- struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
- ctx->abort_callback = abort_callback;
- ctx->abort_callback_data = abort_callback_data;
-}
-
-GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
- GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
- return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
-}
-
-GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
- return ggml_backend_cpu_init();
-
- GGML_UNUSED(params);
- GGML_UNUSED(user_data);
-}
-
-// multi-buffer buffer
-
-struct ggml_backend_multi_buffer_context {
- ggml_backend_buffer_t * buffers;
- size_t n_buffers;
-};
-
-typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
-
-GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
-
- return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
-}
-
-GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
- for (size_t i = 0; i < ctx->n_buffers; i++) {
- ggml_backend_buffer_free(ctx->buffers[i]);
- }
-
- free(ctx->buffers);
- free(ctx);
-}
-
-GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
- for (size_t i = 0; i < ctx->n_buffers; i++) {
- ggml_backend_buffer_clear(ctx->buffers[i], value);
- }
-}
-
-static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
- static struct ggml_backend_buffer_i multi_backend_buffer_i = {
- /* .get_name = */ ggml_backend_multi_buffer_get_name,
- /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
- /* .get_base = */ NULL,
- /* .init_tensor = */ NULL,
- /* .memset_tensor = */ NULL,
- /* .set_tensor = */ NULL,
- /* .get_tensor = */ NULL,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_multi_buffer_clear,
- /* .reset = */ NULL,
- };
-
- return multi_backend_buffer_i;
-}
-
-GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
- ctx->n_buffers = n_buffers;
- ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
-
- GGML_ASSERT(ctx->buffers != NULL);
-
- size_t total_size = 0;
- for (size_t i = 0; i < n_buffers; i++) {
- ctx->buffers[i] = buffers[i];
- total_size += ggml_backend_buffer_get_size(buffers[i]);
- }
-
- return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
-}
-
-GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
-}
-
-GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
- GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
- ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
- for (size_t i = 0; i < ctx->n_buffers; i++) {
- ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
- }
-}
-
-// creates a copy of the tensor with the same memory layout
-static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
- struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- dup->nb[i] = tensor->nb[i];
- }
- return dup;
-}
-
-static bool ggml_is_view_op(enum ggml_op op) {
- return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
-}
-
-// scheduler
-
-#ifndef GGML_SCHED_MAX_BACKENDS
-#define GGML_SCHED_MAX_BACKENDS 16
-#endif
-
-#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
-#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
-#endif
-
-#ifndef GGML_SCHED_MAX_COPIES
-#define GGML_SCHED_MAX_COPIES 4
-#endif
-
-struct ggml_backend_sched_split {
- int backend_id;
- int i_start;
- int i_end;
- struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
- int n_inputs;
- // graph view of this split
- struct ggml_cgraph graph;
-};
-
-struct ggml_backend_sched {
- bool is_reset; // true if the scheduler has been reset since the last graph split
- bool is_alloc;
-
- int n_backends;
-
- ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
- ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
- ggml_gallocr_t galloc;
-
- // hash map of the nodes in the graph
- struct ggml_hash_set hash_set;
- int * hv_tensor_backend_ids; // [hash_set.size]
- struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
-
- int * node_backend_ids; // [graph_size]
- int * leaf_backend_ids; // [graph_size]
-
- int * prev_node_backend_ids; // [graph_size]
- int * prev_leaf_backend_ids; // [graph_size]
-
- // copy of the graph with modified inputs
- struct ggml_cgraph graph;
-
- // graph splits
- struct ggml_backend_sched_split * splits;
- int n_splits;
- int splits_capacity;
-
- // pipeline parallelism support
- int n_copies;
- int cur_copy;
- ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
- struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
- int n_graph_inputs;
-
- struct ggml_context * ctx;
-
- ggml_backend_sched_eval_callback callback_eval;
- void * callback_eval_user_data;
-
- char * context_buffer;
- size_t context_buffer_size;
-
- bool debug;
-};
-
-#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
-#define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
-#define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
-#define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
-
-// returns the priority of the backend, lower id is higher priority
-static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
- for (int i = 0; i < sched->n_backends; i++) {
- if (sched->backends[i] == backend) {
- return i;
- }
- }
- return -1;
-}
-
-static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
- ggml_backend_buffer_t buffer = tensor->buffer;
- if (buffer == NULL) {
- return -1;
- }
-
- // find highest prio backend that supports the buffer type and the op
- for (int i = 0; i < sched->n_backends; i++) {
- if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
- ggml_backend_supports_op(sched->backends[i], op)) {
- return i;
- }
- }
-
-#ifndef NDEBUG
- fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
- __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
-#endif
-
- return -1;
-}
-
-#if 0
-#define GGML_SCHED_MAX_SPLITS_DEBUG 4096
-static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
-#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
-#define GET_CAUSE(node) causes[hash_id(node)]
-#else
-#define SET_CAUSE(node, ...)
-#define GET_CAUSE(node) ""
-#endif
-
-// returns the backend that should be used for the node based on the current locations
-static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
- // TODO: use supports_op to check if the backend supports the op
-
- // assign pre-allocated nodes to their backend
- int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
- if (cur_backend_id != -1) {
- SET_CAUSE(tensor, "1.dst");
- return cur_backend_id;
- }
-
- // view_src
- if (tensor->view_src != NULL) {
- cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
- if (cur_backend_id != -1) {
- SET_CAUSE(tensor, "1.vsrc");
- return cur_backend_id;
- }
- }
-
- if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
- // since the tensor is pre-allocated, it cannot be moved to another backend
- GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
- }
-
- // graph input
- if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
- cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
- SET_CAUSE(tensor, "1.inp");
- return cur_backend_id;
- }
-
- // operations with weights are preferably run on the same backend as the weights
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- const struct ggml_tensor * src = tensor->src[i];
- if (src == NULL) {
- continue;
- }
- if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
- int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
- // check if a backend with higher prio wants to offload the op
- if (src_backend_id == sched->n_backends - 1) {
- for (int b = 0; b < src_backend_id; b++) {
- if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
- SET_CAUSE(tensor, "1.off");
- return b;
- }
- }
- }
- SET_CAUSE(tensor, "1.wgt%d", i);
- return src_backend_id;
- }
- }
-
- return -1;
-}
-
-static char * fmt_size(size_t size) {
- static char buffer[128];
- if (size >= 1024*1024) {
- snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
- } else {
- snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
- }
- return buffer;
-}
-
-static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- int cur_split = 0;
- for (int i = 0; i < graph->n_nodes; i++) {
- if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
- ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
- fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
- sched->splits[cur_split].n_inputs);
- for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
- fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
- fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
- }
- fprintf(stderr, "\n");
- cur_split++;
- }
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
- fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
- fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- continue;
- }
- ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
- fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
- fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
- }
- fprintf(stderr, "\n");
- }
-}
-
-static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
- ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
- ggml_backend_buffer_type_t buft = NULL;
-
- if (buf) {
- // the tensor is already allocated
- buft = buf->buft;
- } else {
- // see if the tensor already has a backend assigned, and use the buffer type of that backend
- int tensor_backend_id = tensor_backend_id(t);
- if (tensor_backend_id == -1 && t->view_src) {
- tensor_backend_id = tensor_backend_id(t->view_src);
- }
- if (tensor_backend_id != -1) {
- buft = sched->bufts[tensor_backend_id];
- }
- }
-
- return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
-}
-
-static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
- if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
- *node_backend_id = cur_backend_id;
- SET_CAUSE(node, "2.sup");
- }
-}
-
-// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
-static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- // reset splits
- sched->n_splits = 0;
- sched->n_graph_inputs = 0;
- sched->is_reset = false;
-
- struct ggml_init_params params = {
- /* .mem_size = */ sched->context_buffer_size,
- /* .mem_buffer = */ sched->context_buffer,
- /* .no_alloc = */ true
- };
-
- ggml_free(sched->ctx);
-
- sched->ctx = ggml_init(params);
- if (sched->ctx == NULL) {
- GGML_ABORT("%s: failed to initialize context\n", __func__);
- }
-
- // pass 1: assign backends to ops with pre-allocated inputs
- for (int i = 0; i < graph->n_leafs; i++) {
- struct ggml_tensor * leaf = graph->leafs[i];
- int * leaf_backend_id = &tensor_backend_id(leaf);
- // do not overwrite user assignments
- if (*leaf_backend_id == -1) {
- *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
- }
- }
-
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- int * node_backend_id = &tensor_backend_id(node);
- // do not overwrite user assignments
- if (*node_backend_id == -1) {
- *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
-
-#if 0
- // src
- if (node->op == GGML_OP_NONE) {
- continue;
- }
-
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- continue;
- }
- int * src_backend_id = &tensor_backend_id(src);
- if (*src_backend_id == -1) {
- *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
- }
- }
-#endif
- }
- }
-
- // pass 2: expand current backend assignments
- // assign the same backend to adjacent nodes
- // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
- // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
- // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
- // expand gpu down
- {
- int cur_backend_id = -1;
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- int * node_backend_id = &tensor_backend_id(node);
- if (*node_backend_id != -1) {
- if (*node_backend_id == sched->n_backends - 1) {
- // skip cpu (lowest prio backend)
- cur_backend_id = -1;
- } else {
- cur_backend_id = *node_backend_id;
- }
- } else if (cur_backend_id != -1) {
- ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
- }
- }
- }
- // expand gpu up
- {
- int cur_backend_id = -1;
- for (int i = graph->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- int * node_backend_id = &tensor_backend_id(node);
- if (*node_backend_id != -1) {
- if (*node_backend_id == sched->n_backends - 1) {
- // skip cpu (lowest prio backend)
- cur_backend_id = -1;
- } else {
- cur_backend_id = *node_backend_id;
- }
- } else if (cur_backend_id != -1) {
- ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
- }
- }
- }
- // expand rest down
- {
- int cur_backend_id = -1;
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- int * node_backend_id = &tensor_backend_id(node);
- if (*node_backend_id != -1) {
- cur_backend_id = *node_backend_id;
- } else if (cur_backend_id != -1) {
- ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
- }
- }
- }
- // expand rest up
- {
- int cur_backend_id = -1;
- for (int i = graph->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- int * node_backend_id = &tensor_backend_id(node);
- if (*node_backend_id != -1) {
- cur_backend_id = *node_backend_id;
- } else if (cur_backend_id != -1) {
- ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
- }
- }
- }
-
- // pass 3: upgrade nodes to higher prio backends with compatible buffer types
- // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
- // however, we also need to verify that the sources are in compatible buffer types
- // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
- // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
- // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
- // additionally, set remaining unassigned nodes to the backend with the most supported inputs
- // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- if (ggml_is_view_op(node->op)) {
- continue;
- }
- int * node_backend_id = &tensor_backend_id(node);
- if (*node_backend_id == -1) {
- // unassigned node: find the backend with the most supported inputs
- int n_supported_best = -1;
- for (int b = 0; b < sched->n_backends; b++) {
- if (ggml_backend_supports_op(sched->backends[b], node)) {
- int n_supported = 0;
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- continue;
- }
- if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
- n_supported++;
- }
- }
- if (n_supported > n_supported_best) {
- n_supported_best = n_supported;
- *node_backend_id = b;
- SET_CAUSE(node, "3.best");
- }
- }
- }
- } else {
- // assigned node: upgrade to higher prio backend if possible
- for (int b = 0; b < *node_backend_id; b++) {
- if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
- bool supported = true;
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- continue;
- }
- if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
- supported = false;
- break;
- }
- }
- if (supported) {
- *node_backend_id = b;
- SET_CAUSE(node, "3.upg");
- break;
- }
- }
- }
- }
- }
-
- // pass 4: assign backends to remaining src from dst and view_src
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- int * cur_backend_id = &tensor_backend_id(node);
- if (node->view_src != NULL && *cur_backend_id == -1) {
- *cur_backend_id = tensor_backend_id(node->view_src);
- SET_CAUSE(node, "4.vsrc");
- }
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- continue;
- }
- int * src_backend_id = &tensor_backend_id(src);
- if (*src_backend_id == -1) {
- if (src->view_src != NULL) {
- // views are always on the same backend as the source
- *src_backend_id = tensor_backend_id(src->view_src);
- SET_CAUSE(src, "4.vsrc");
- } else {
- *src_backend_id = *cur_backend_id;
- SET_CAUSE(src, "4.cur");
- }
- }
- }
- }
-
- // pass 5: split graph, find tensors that need to be copied
- {
- int i_split = 0;
- struct ggml_backend_sched_split * split = &sched->splits[0];
- // find the backend of the first split, skipping view ops
- int i = 0;
- for (; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- if (!ggml_is_view_op(node->op)) {
- split->backend_id = tensor_backend_id(node);
- break;
- }
- }
- split->i_start = 0;
- split->n_inputs = 0;
- int cur_backend_id = split->backend_id;
- for (; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
-
- if (ggml_is_view_op(node->op)) {
- continue;
- }
-
- const int node_backend_id = tensor_backend_id(node);
-
- assert(node_backend_id != -1); // all nodes should be assigned by now
-
- // check if we should start a new split based on the sources of the current node
- bool need_new_split = false;
- if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- continue;
- }
- // check if a weight is on a different backend
- // by starting a new split, the memory of the previously offloaded weights can be reused
- if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
- int src_backend_id = tensor_backend_id(src);
- if (src_backend_id != cur_backend_id) {
- need_new_split = true;
- break;
- }
- }
- // check if the split has too many inputs
- // FIXME: count the number of inputs instead of only checking when full
- if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
- const size_t id = hash_id(src);
- int src_backend_id = sched->hv_tensor_backend_ids[id];
- bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
- if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
- //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
- need_new_split = true;
- break;
- }
- }
- }
- }
-
- if (node_backend_id != cur_backend_id || need_new_split) {
- split->i_end = i;
- i_split++;
- if (i_split >= sched->splits_capacity) {
- sched->splits_capacity *= 2;
- sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
- GGML_ASSERT(sched->splits != NULL);
- }
- split = &sched->splits[i_split];
- split->backend_id = node_backend_id;
- split->i_start = i;
- split->n_inputs = 0;
- cur_backend_id = node_backend_id;
- }
-
- // find inputs that are not on the same backend
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * src = node->src[j];
- if (src == NULL) {
- continue;
- }
-
- size_t src_id = hash_id(src);
- const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
- assert(src_backend_id != -1); // all inputs should be assigned by now
-
- if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
- if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
- ggml_backend_t backend = sched->backends[src_backend_id];
- for (int c = 0; c < sched->n_copies; c++) {
- struct ggml_tensor * tensor_copy;
- if (c == sched->cur_copy) {
- tensor_copy = src; // use the original tensor as the current copy
- } else {
- tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
- ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
- }
- if (sched->n_copies > 1) {
- ggml_set_input(tensor_copy);
- ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
- }
- tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
- SET_CAUSE(tensor_copy, "4.cpy");
- }
- int n_graph_inputs = sched->n_graph_inputs++;
- GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
- sched->graph_inputs[n_graph_inputs] = src;
- }
- }
-
- if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
- // create a copy of the input in the split's backend
- if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
- ggml_backend_t backend = sched->backends[cur_backend_id];
- for (int c = 0; c < sched->n_copies; c++) {
- struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
- ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
- if (sched->n_copies > 1) {
- ggml_set_input(tensor_copy);
- ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
- }
- tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
- SET_CAUSE(tensor_copy, "4.cpy");
- }
- int n_inputs = split->n_inputs++;
- GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
- split->inputs[n_inputs] = src;
- }
- node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
- }
- }
- }
- split->i_end = graph->n_nodes;
- sched->n_splits = i_split + 1;
- }
-
- if (sched->debug) {
- ggml_backend_sched_print_assignments(sched, graph);
- }
-
- // swap node_backend_ids and leaf _backend_ids with prevs
- {
- int * tmp = sched->node_backend_ids;
- sched->node_backend_ids = sched->prev_node_backend_ids;
- sched->prev_node_backend_ids = tmp;
-
- tmp = sched->leaf_backend_ids;
- sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
- sched->prev_leaf_backend_ids = tmp;
- }
-
- int graph_size = MAX(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
- if (sched->graph.size < graph_size) {
- sched->graph.size = graph_size;
- sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
- sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
- GGML_ASSERT(sched->graph.nodes != NULL);
- GGML_ASSERT(sched->graph.leafs != NULL);
- }
- sched->graph.n_nodes = 0;
- sched->graph.n_leafs = 0;
-
- struct ggml_cgraph * graph_copy = &sched->graph;
-
- for (int i = 0; i < sched->n_splits; i++) {
- struct ggml_backend_sched_split * split = &sched->splits[i];
- split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
-
- // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
- for (int j = 0; j < split->n_inputs; j++) {
- assert(graph_copy->size > (graph_copy->n_nodes + 1));
-
- struct ggml_tensor * input = split->inputs[j];
- const size_t input_id = hash_id(input);
- struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
-
- // add a dependency to the input source so that it is not freed before the copy is done
- struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
- input_dep->src[0] = input;
- sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
- graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
-
- // add a dependency to the input copy so that it is allocated at the start of the split
- sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
- graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
- }
-
- for (int j = split->i_start; j < split->i_end; j++) {
- assert(graph_copy->size > graph_copy->n_nodes);
- sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
- graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
- }
- }
-
- if (sched->n_copies > 1) {
- // add input copies as leafs so that they are allocated first
- for (int i = 0; i < sched->n_graph_inputs; i++) {
- struct ggml_tensor * input = sched->graph_inputs[i];
- size_t id = hash_id(input);
- int backend_id = tensor_backend_id(input);
- for (int c = 0; c < sched->n_copies; c++) {
- struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
- sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
- assert(graph_copy->size > graph_copy->n_leafs);
- graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
- }
- }
-
- for (int i = 0; i < sched->n_splits; i++) {
- struct ggml_backend_sched_split * split = &sched->splits[i];
- int backend_id = split->backend_id;
- for (int j = 0; j < split->n_inputs; j++) {
- struct ggml_tensor * input = split->inputs[j];
- size_t id = hash_id(input);
- for (int c = 0; c < sched->n_copies; c++) {
- struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
- sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
- assert(graph_copy->size > graph_copy->n_leafs);
- graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
- }
- }
- }
- }
-
- // add leafs from the original graph
- for (int i = 0; i < graph->n_leafs; i++) {
- struct ggml_tensor * leaf = graph->leafs[i];
- sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
- assert(graph_copy->size > graph_copy->n_leafs);
- graph_copy->leafs[graph_copy->n_leafs++] = leaf;
- }
-}
-
-static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
- bool backend_ids_changed = false;
- for (int i = 0; i < sched->graph.n_nodes; i++) {
- if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
- sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
- backend_ids_changed = true;
- break;
- }
- }
- if (!backend_ids_changed) {
- for (int i = 0; i < sched->graph.n_leafs; i++) {
- if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
- sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
- backend_ids_changed = true;
- break;
- }
- }
- }
-
- // allocate graph
- if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
- // the re-allocation may cause the split inputs to be moved to a different address
- ggml_backend_sched_synchronize(sched);
-#ifndef NDEBUG
- fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
-#endif
- ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
- if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
- fprintf(stderr, "%s: failed to allocate graph\n", __func__);
- return false;
- }
- }
-
- return true;
-}
-
-static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
- struct ggml_backend_sched_split * splits = sched->splits;
-
- for (int i = 0; i < sched->n_splits; i++) {
- struct ggml_backend_sched_split * split = &splits[i];
- int split_backend_id = split->backend_id;
- ggml_backend_t split_backend = sched->backends[split_backend_id];
-
- // copy the input tensors to the split backend
- for (int j = 0; j < split->n_inputs; j++) {
- ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
- struct ggml_tensor * input = split->inputs[j];
- struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
-
- if (input->flags & GGML_TENSOR_FLAG_INPUT) {
- // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
- if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
- ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
- } else {
- ggml_backend_synchronize(split_backend);
- }
- ggml_backend_tensor_copy(input, input_cpy);
- } else {
- // wait for the split backend to finish using the input before overwriting it
- if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
- ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
- } else {
- ggml_backend_synchronize(split_backend);
- }
- // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
- // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
- if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
- ggml_backend_synchronize(input_backend);
- if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
- ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
- } else {
- ggml_backend_synchronize(split_backend);
- }
- ggml_backend_tensor_copy(input, input_cpy);
- }
- }
- }
-
- if (!sched->callback_eval) {
- enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
- if (ec != GGML_STATUS_SUCCESS) {
- return ec;
- }
- } else {
- // similar to ggml_backend_compare_graph_backend
- for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
- struct ggml_tensor * t = split->graph.nodes[j0];
-
- // check if the user needs data from this node
- bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
-
- int j1 = j0;
-
- // determine the range [j0, j1] of nodes that can be computed together
- while (!need && j1 < split->graph.n_nodes - 1) {
- t = split->graph.nodes[++j1];
- need = sched->callback_eval(t, true, sched->callback_eval_user_data);
- }
-
- struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
-
- enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
- if (ec != GGML_STATUS_SUCCESS) {
- return ec;
- }
-
- // TODO: pass backend to the callback, then the user can decide if they want to synchronize
- ggml_backend_synchronize(split_backend);
-
- if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
- break;
- }
-
- j0 = j1;
- }
- }
-
- // record the event of this copy
- if (split->n_inputs > 0) {
- if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
- ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
- }
- }
- }
-
- sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
-
- return GGML_STATUS_SUCCESS;
-}
-
-ggml_backend_sched_t ggml_backend_sched_new(
- ggml_backend_t * backends,
- ggml_backend_buffer_type_t * bufts,
- int n_backends,
- size_t graph_size,
- bool parallel) {
- GGML_ASSERT(n_backends > 0);
- GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
- GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
-
- struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
-
- sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
- sched->n_backends = n_backends;
- sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
-
- // initialize hash table
- // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
- sched->hash_set = ggml_hash_set_new(graph_size);
- sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
- sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
-
- const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
- const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
- sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
- sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
- sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
- sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
-
- sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
- sched->context_buffer = malloc(sched->context_buffer_size);
-
- const int initial_splits_capacity = 16;
- sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
- sched->splits_capacity = initial_splits_capacity;
-
- for (int b = 0; b < n_backends; b++) {
- sched->backends[b] = backends[b];
- sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
- GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
- if (sched->n_copies > 1) {
- for (int c = 0; c < sched->n_copies; c++) {
- sched->events[b][c] = ggml_backend_event_new(backends[b]);
- }
- }
- }
-
- sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
-
- ggml_backend_sched_reset(sched);
-
- return sched;
-}
-
-void ggml_backend_sched_free(ggml_backend_sched_t sched) {
- if (sched == NULL) {
- return;
- }
- for (int b = 0; b < sched->n_backends; b++) {
- for (int c = 0; c < sched->n_copies; c++) {
- ggml_backend_event_free(sched->events[b][c]);
- }
- }
- ggml_gallocr_free(sched->galloc);
- ggml_free(sched->ctx);
- ggml_hash_set_free(&sched->hash_set);
- free(sched->splits);
- free(sched->hv_tensor_backend_ids);
- free(sched->hv_tensor_copies);
- free(sched->node_backend_ids);
- free(sched->leaf_backend_ids);
- free(sched->prev_node_backend_ids);
- free(sched->prev_leaf_backend_ids);
- free(sched->context_buffer);
- free(sched->graph.nodes);
- free(sched->graph.leafs);
- free(sched);
-}
-
-void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
- // reset state for the next run
- if (!sched->is_reset) {
- ggml_hash_set_reset(&sched->hash_set);
- memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
- memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
- sched->is_reset = true;
- }
- sched->is_alloc = false;
-}
-
-bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
- GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
-
- ggml_backend_sched_split_graph(sched, measure_graph);
-
- if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
- return false;
- }
-
- ggml_backend_sched_reset(sched);
- ggml_backend_sched_synchronize(sched);
-
- return true;
-}
-
-bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
-
- ggml_backend_sched_split_graph(sched, graph);
-
-
- if (!ggml_backend_sched_alloc_splits(sched)) {
- return false;
- }
-
- sched->is_alloc = true;
-
- return true;
-}
-
-enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
- ggml_backend_sched_synchronize(sched);
- return err;
-}
-
-enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
- if (!sched->is_reset && !sched->is_alloc) {
- ggml_backend_sched_reset(sched);
- }
-
- if (!sched->is_alloc) {
- if (!ggml_backend_sched_alloc_graph(sched, graph)) {
- return GGML_STATUS_ALLOC_FAILED;
- }
- }
-
- return ggml_backend_sched_compute_splits(sched);
-}
-
-void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
- for (int i = 0; i < sched->n_backends; i++) {
- ggml_backend_synchronize(sched->backends[i]);
- }
-}
-
-void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
- sched->callback_eval = callback;
- sched->callback_eval_user_data = user_data;
-}
-
-int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
- return sched->n_splits;
-}
-
-int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
- return sched->n_copies;
-}
-
-int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
- return sched->n_backends;
-}
-
-ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
- GGML_ASSERT(i >= 0 && i < sched->n_backends);
- return sched->backends[i];
-}
-
-size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
- int backend_index = ggml_backend_sched_backend_id(sched, backend);
- GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
-
- return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
-}
-
-void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
- int backend_index = ggml_backend_sched_backend_id(sched, backend);
- GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
- tensor_backend_id(node) = backend_index;
- SET_CAUSE(node, "usr");
- sched->is_reset = false;
-}
-
-ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
- int backend_index = tensor_backend_id(node);
- if (backend_index == -1) {
- return NULL;
- }
- return sched->backends[backend_index];
-}
-
-// utils
-
-void ggml_backend_view_init(struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->buffer == NULL);
- GGML_ASSERT(tensor->view_src != NULL);
- GGML_ASSERT(tensor->view_src->buffer != NULL);
- GGML_ASSERT(tensor->view_src->data != NULL);
-
- tensor->buffer = tensor->view_src->buffer;
- tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
- ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
-}
-
-void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
- GGML_ASSERT(tensor->buffer == NULL);
- GGML_ASSERT(tensor->data == NULL);
- GGML_ASSERT(tensor->view_src == NULL);
- GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
- GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
- (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
-
- tensor->buffer = buffer;
- tensor->data = addr;
- ggml_backend_buffer_init_tensor(buffer, tensor);
-}
-
-static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
- struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
-
- GGML_ASSERT(src != NULL);
- GGML_ASSERT(src->data && "graph must be allocated");
-
- size_t id = ggml_hash_insert(&hash_set, src);
- if (id == GGML_HASHSET_ALREADY_EXISTS) {
- return node_copies[ggml_hash_find(&hash_set, src)];
- }
-
- struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
- if (src->view_src != NULL) {
- dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
- dst->view_offs = src->view_offs;
- }
- dst->op = src->op;
- memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
- ggml_set_name(dst, src->name);
-
- // copy src
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- struct ggml_tensor * s = src->src[i];
- if (s == NULL) {
- continue;
- }
- dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
- }
-
- node_copies[id] = dst;
- return dst;
-}
-
-static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
- size_t id = ggml_hash_find(hash_set, src);
- if (node_init[id]) {
- return;
- }
- node_init[id] = true;
-
- struct ggml_tensor * dst = node_copies[id];
- if (dst->view_src != NULL) {
- graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
- ggml_backend_view_init(dst);
- }
- else {
- ggml_backend_tensor_copy(src, dst);
- }
-
- // init src
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- struct ggml_tensor * s = src->src[i];
- if (s == NULL) {
- continue;
- }
- graph_copy_init_tensor(hash_set, node_copies, node_init, s);
- }
-}
-
-struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
- struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
- struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
- bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
-
- struct ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ true
- };
-
- struct ggml_context * ctx_allocated = ggml_init(params);
- struct ggml_context * ctx_unallocated = ggml_init(params);
-
- if (ctx_allocated == NULL || ctx_unallocated == NULL) {
- fprintf(stderr, "failed to allocate context for graph copy\n");
- ggml_hash_set_free(&hash_set);
- free(node_copies);
- free(node_init);
- ggml_free(ctx_allocated);
- ggml_free(ctx_unallocated);
- return (struct ggml_backend_graph_copy) {
- /* .buffer = */ NULL,
- /* .ctx_allocated = */ NULL,
- /* .ctx_unallocated = */ NULL,
- /* .graph = */ NULL,
- };
- }
-
- // dup nodes
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
- }
-
- // allocate nodes
- ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
- if (buffer == NULL) {
- fprintf(stderr, "failed to allocate buffer for graph copy\n");
- ggml_hash_set_free(&hash_set);
- free(node_copies);
- free(node_init);
- ggml_free(ctx_allocated);
- ggml_free(ctx_unallocated);
- return (struct ggml_backend_graph_copy) {
- /* .buffer = */ NULL,
- /* .ctx_allocated = */ NULL,
- /* .ctx_unallocated = */ NULL,
- /* .graph = */ NULL,
- };
- }
-
- //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
-
- // copy data and init views
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
- }
-
- // build graph copy
- struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
- for (int i = 0; i < graph->n_nodes; i++) {
- struct ggml_tensor * node = graph->nodes[i];
- struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
- graph_copy->nodes[i] = node_copy;
- }
- graph_copy->n_nodes = graph->n_nodes;
-
- ggml_hash_set_free(&hash_set);
- free(node_copies);
- free(node_init);
-
- return (struct ggml_backend_graph_copy) {
- /* .buffer = */ buffer,
- /* .ctx_allocated = */ ctx_allocated,
- /* .ctx_unallocated = */ ctx_unallocated,
- /* .graph = */ graph_copy,
- };
-}
-
-void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
- ggml_backend_buffer_free(copy.buffer);
- ggml_free(copy.ctx_allocated);
- ggml_free(copy.ctx_unallocated);
-}
-
-bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
- struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
- if (copy.buffer == NULL) {
- return false;
- }
-
- struct ggml_cgraph * g1 = graph;
- struct ggml_cgraph * g2 = copy.graph;
-
- assert(g1->n_nodes == g2->n_nodes);
-
- for (int i = 0; i < g1->n_nodes; i++) {
- //printf("eval %d/%d\n", i, g1->n_nodes);
- struct ggml_tensor * t1 = g1->nodes[i];
- struct ggml_tensor * t2 = g2->nodes[i];
-
- assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
-
- struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
- struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
-
- ggml_backend_graph_compute(backend1, &g1v);
- ggml_backend_graph_compute(backend2, &g2v);
-
- if (ggml_is_view_op(t1->op)) {
- continue;
- }
-
- // compare results, calculate rms etc
- if (!callback(i, t1, t2, user_data)) {
- break;
- }
- }
-
- ggml_backend_graph_copy_free(copy);
-
- return true;
-}
--- /dev/null
+// Note: porting this file to C++ is a work in progress
+
+#include "ggml-backend-impl.h"
+#include "ggml-alloc.h"
+#include "ggml-impl.h"
+
+#include <assert.h>
+#include <limits.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <vector>
+
+// backend buffer type
+
+const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
+ return buft->iface.get_name(buft);
+}
+
+ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ return buft->iface.alloc_buffer(buft, size);
+}
+
+size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
+ return buft->iface.get_alignment(buft);
+}
+
+size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
+ // get_max_size is optional, defaults to SIZE_MAX
+ if (buft->iface.get_max_size) {
+ return buft->iface.get_max_size(buft);
+ }
+ return SIZE_MAX;
+}
+
+size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
+ // get_alloc_size is optional, defaults to ggml_nbytes
+ if (buft->iface.get_alloc_size) {
+ size_t size = buft->iface.get_alloc_size(buft, tensor);
+ assert(size >= ggml_nbytes(tensor));
+ return size;
+ }
+ return ggml_nbytes(tensor);
+}
+
+bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
+ if (buft->iface.is_host) {
+ return buft->iface.is_host(buft);
+ }
+ return false;
+}
+
+ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
+ return buft->device;
+}
+
+// backend buffer
+
+ggml_backend_buffer_t ggml_backend_buffer_init(
+ ggml_backend_buffer_type_t buft,
+ struct ggml_backend_buffer_i iface,
+ void * context,
+ size_t size) {
+ ggml_backend_buffer_t buffer = new ggml_backend_buffer {
+ /* .interface = */ iface,
+ /* .buft = */ buft,
+ /* .context = */ context,
+ /* .size = */ size,
+ /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
+ };
+
+ return buffer;
+}
+
+const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name(buffer);
+}
+
+void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
+ if (buffer == NULL) {
+ return;
+ }
+
+ if (buffer->iface.free_buffer != NULL) {
+ buffer->iface.free_buffer(buffer);
+ }
+ delete buffer;
+}
+
+size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
+ return buffer->size;
+}
+
+void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
+ void * base = buffer->iface.get_base(buffer);
+
+ GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
+
+ return base;
+}
+
+void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+ // init_tensor is optional
+ if (buffer->iface.init_tensor) {
+ buffer->iface.init_tensor(buffer, tensor);
+ }
+}
+
+size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
+ return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
+}
+
+size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
+ return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
+}
+
+size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
+ return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
+}
+
+void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ buffer->iface.clear(buffer, value);
+}
+
+bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
+ return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
+}
+
+void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
+ buffer->usage = usage;
+
+ // FIXME: add a generic callback to the buffer interface
+ if (ggml_backend_buffer_is_multi_buffer(buffer)) {
+ ggml_backend_multi_buffer_set_usage(buffer, usage);
+ }
+}
+
+enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
+ return buffer->usage;
+}
+
+ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
+ return buffer->buft;
+}
+
+void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
+ if (buffer->iface.reset) {
+ buffer->iface.reset(buffer);
+ }
+}
+
+bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
+ ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
+ if (dst_buf->iface.cpy_tensor) {
+ return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
+ }
+ return false;
+}
+
+// backend
+
+ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
+ if (backend == NULL) {
+ return NULL;
+ }
+ return backend->guid;
+}
+
+const char * ggml_backend_name(ggml_backend_t backend) {
+ if (backend == NULL) {
+ return "NULL";
+ }
+ return backend->iface.get_name(backend);
+}
+
+void ggml_backend_free(ggml_backend_t backend) {
+ if (backend == NULL) {
+ return;
+ }
+
+ backend->iface.free(backend);
+}
+
+ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
+ return backend->iface.get_default_buffer_type(backend);
+}
+
+ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
+ return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
+}
+
+size_t ggml_backend_get_alignment(ggml_backend_t backend) {
+ return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
+}
+
+size_t ggml_backend_get_max_size(ggml_backend_t backend) {
+ return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
+}
+
+void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+
+ if (backend->iface.set_tensor_async == NULL) {
+ ggml_backend_tensor_set(tensor, data, offset, size);
+ } else {
+ backend->iface.set_tensor_async(backend, tensor, data, offset, size);
+ }
+}
+
+void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
+
+ if (backend->iface.get_tensor_async == NULL) {
+ ggml_backend_tensor_get(tensor, data, offset, size);
+ } else {
+ backend->iface.get_tensor_async(backend, tensor, data, offset, size);
+ }
+}
+
+void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
+
+ GGML_ASSERT(buf != NULL && "tensor buffer not set");
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+
+ if (!size) {
+ return;
+ }
+
+ buf->iface.set_tensor(buf, tensor, data, offset, size);
+}
+
+void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
+
+ GGML_ASSERT(buf != NULL && "tensor buffer not set");
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
+
+ if (!size) {
+ return;
+ }
+
+ buf->iface.get_tensor(buf, tensor, data, offset, size);
+}
+
+GGML_API void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+ ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
+
+ GGML_ASSERT(buf != NULL && "tensor buffer not set");
+ GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
+ GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
+
+ if (!size) {
+ return;
+ }
+
+ GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not supported by backend buffer");
+
+ buf->iface.memset_tensor(buf, tensor, value, offset, size);
+}
+
+void ggml_backend_synchronize(ggml_backend_t backend) {
+ if (backend->iface.synchronize == NULL) {
+ return;
+ }
+
+ backend->iface.synchronize(backend);
+}
+
+ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ GGML_ASSERT(backend->iface.graph_plan_create != NULL);
+
+ return backend->iface.graph_plan_create(backend, cgraph);
+}
+
+void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ GGML_ASSERT(backend->iface.graph_plan_free != NULL);
+
+ backend->iface.graph_plan_free(backend, plan);
+}
+
+enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
+
+ return backend->iface.graph_plan_compute(backend, plan);
+}
+
+enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
+ ggml_backend_synchronize(backend);
+ return err;
+}
+
+enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ return backend->iface.graph_compute(backend, cgraph);
+}
+
+bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ // helper to ease transition to device interface
+ if (backend->device) {
+ return ggml_backend_dev_supports_op(backend->device, op);
+ }
+
+ return backend->iface.supports_op(backend, op);
+}
+
+bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+ // helper to ease transition to device interface
+ if (backend->device) {
+ return ggml_backend_dev_supports_buft(backend->device, buft);
+ }
+
+ return backend->iface.supports_buft(backend, buft);
+}
+
+bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+ // helper to ease transition to device interface
+ if (backend->device) {
+ return ggml_backend_dev_offload_op(backend->device, op);
+ }
+
+ if (backend->iface.offload_op != NULL) {
+ return backend->iface.offload_op(backend, op);
+ }
+ return false;
+}
+
+ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
+ return backend->device;
+}
+
+// backend copy
+
+static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
+ if (a->type != b->type) {
+ return false;
+ }
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ if (a->ne[i] != b->ne[i]) {
+ return false;
+ }
+ if (a->nb[i] != b->nb[i]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
+ GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
+
+ if (src == dst) {
+ return;
+ }
+
+ if (ggml_backend_buffer_is_host(src->buffer)) {
+ ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
+ } else if (ggml_backend_buffer_is_host(dst->buffer)) {
+ ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
+ } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
+#ifndef NDEBUG
+ fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
+#endif
+ size_t nbytes = ggml_nbytes(src);
+ void * data = malloc(nbytes);
+ ggml_backend_tensor_get(src, data, 0, nbytes);
+ ggml_backend_tensor_set(dst, data, 0, nbytes);
+ free(data);
+ }
+}
+
+void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
+ GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
+
+ if (src == dst) {
+ return;
+ }
+
+ if (backend_dst->iface.cpy_tensor_async != NULL) {
+ if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
+ return;
+ }
+ }
+
+ // an async copy would normally happen after all the queued operations on both backends are completed
+ // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
+ ggml_backend_synchronize(backend_src);
+ ggml_backend_synchronize(backend_dst);
+ ggml_backend_tensor_copy(src, dst);
+}
+
+// events
+
+ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
+ // null device is allowed for the transition period to the device interface
+ if (device == NULL || device->iface.event_new == NULL) {
+ return NULL;
+ }
+ return device->iface.event_new(device);
+}
+
+void ggml_backend_event_free(ggml_backend_event_t event) {
+ if (event == NULL) {
+ return;
+ }
+ event->device->iface.event_free(event->device, event);
+}
+
+void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
+ GGML_ASSERT(backend->iface.event_record != NULL);
+
+ backend->iface.event_record(backend, event);
+}
+
+void ggml_backend_event_synchronize(ggml_backend_event_t event) {
+ GGML_ASSERT(event->device->iface.event_synchronize);
+
+ event->device->iface.event_synchronize(event->device, event);
+}
+
+void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
+ GGML_ASSERT(backend->iface.event_wait != NULL);
+
+ backend->iface.event_wait(backend, event);
+}
+
+// Backend device
+
+const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
+ return device->iface.get_name(device);
+}
+
+const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
+ return device->iface.get_description(device);
+}
+
+void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
+ device->iface.get_memory(device, free, total);
+}
+
+enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
+ return device->iface.get_type(device);
+}
+
+void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
+ device->iface.get_props(device, props);
+}
+
+ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
+ return device->reg;
+}
+
+ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
+ return device->iface.init_backend(device, params);
+}
+
+ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
+ return device->iface.get_buffer_type(device);
+}
+
+ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
+ return device->iface.get_host_buffer_type(device);
+}
+
+ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
+ return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
+}
+
+bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
+ return device->iface.supports_op(device, op);
+}
+
+bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
+ return device->iface.supports_buft(device, buft);
+}
+
+bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
+ return device->iface.offload_op(device, op);
+}
+
+// Backend (reg)
+
+const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
+ return reg->iface.get_name(reg);
+}
+
+size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
+ return reg->iface.get_device_count(reg);
+}
+
+ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
+ return reg->iface.get_device(reg, index);
+}
+
+void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
+ if (!reg->iface.get_proc_address) {
+ return NULL;
+ }
+ return reg->iface.get_proc_address(reg, name);
+}
+
+void ggml_backend_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data) {
+ if (reg->iface.set_log_callback) {
+ reg->iface.set_log_callback(reg, log_callback, user_data);
+ }
+}
+
+// Backend registry
+
+#ifdef GGML_USE_CUDA
+#include "ggml-cuda.h"
+#endif
+
+struct ggml_backend_registry {
+ std::vector<ggml_backend_reg_t> backends;
+ std::vector<ggml_backend_dev_t> devices;
+
+ ggml_backend_registry() {
+#ifdef GGML_USE_CUDA
+ register_backend(ggml_backend_cuda_reg());
+#endif
+
+ register_backend(ggml_backend_cpu_reg());
+
+ // TODO: sycl, metal, vulkan, kompute, cann
+ }
+
+ void register_backend(ggml_backend_reg_t reg) {
+#ifndef NDEBUG
+ fprintf(stderr, "%s: registered backend %s (%zu devices)\n",
+ __func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
+#endif
+ backends.push_back(reg);
+ for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
+ register_device(ggml_backend_reg_dev_get(reg, i));
+ }
+ }
+
+ void register_device(ggml_backend_dev_t device) {
+#ifndef NDEBUG
+ fprintf(stderr, "%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
+#endif
+ devices.push_back(device);
+ }
+};
+
+static ggml_backend_registry & get_reg() {
+ static ggml_backend_registry reg;
+ return reg;
+}
+
+// Internal API
+void ggml_backend_register(ggml_backend_reg_t reg) {
+ get_reg().register_backend(reg);
+}
+
+void ggml_backend_device_register(ggml_backend_dev_t device) {
+ get_reg().register_device(device);
+}
+
+// Backend (reg) enumeration
+size_t ggml_backend_reg_count() {
+ return get_reg().backends.size();
+}
+
+ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
+ GGML_ASSERT(index < ggml_backend_reg_count());
+ return get_reg().backends[index];
+}
+
+ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
+ for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
+ ggml_backend_reg_t reg = ggml_backend_reg_get(i);
+ if (strcmp(ggml_backend_reg_name(reg), name) == 0) {
+ return reg;
+ }
+ }
+ return NULL;
+}
+
+// Device enumeration
+size_t ggml_backend_dev_count() {
+ return get_reg().devices.size();
+}
+
+ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
+ GGML_ASSERT(index < ggml_backend_dev_count());
+ return get_reg().devices[index];
+}
+
+ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+ if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
+ return dev;
+ }
+ }
+ return NULL;
+}
+
+ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+ if (ggml_backend_dev_type(dev) == type) {
+ return dev;
+ }
+ }
+ return NULL;
+}
+
+void ggml_backend_set_log_callback(ggml_log_callback log_callback, void * user_data) {
+ for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
+ ggml_backend_reg_t reg = ggml_backend_reg_get(i);
+ ggml_backend_reg_set_log_callback(reg, log_callback, user_data);
+ }
+}
+
+// Convenience functions
+ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
+ if (!dev) {
+ return NULL;
+ }
+ return ggml_backend_dev_init(dev, params);
+}
+
+ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
+ if (!dev) {
+ return NULL;
+ }
+ return ggml_backend_dev_init(dev, params);
+}
+
+ggml_backend_t ggml_backend_init_best(void) {
+ ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL);
+ if (!dev) {
+ dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU_FULL);
+ }
+ if (!dev) {
+ return NULL;
+ }
+ return ggml_backend_dev_init(dev, NULL);
+}
+
+// backend CPU
+
+static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
+
+static const char * ggml_backend_cpu_buffer_get_name(ggml_backend_buffer_t buffer) {
+ return "CPU";
+
+ GGML_UNUSED(buffer);
+}
+
+static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
+ uintptr_t data = (uintptr_t)buffer->context;
+
+ // align the buffer
+ if (data % TENSOR_ALIGNMENT != 0) {
+ data = GGML_PAD(data, TENSOR_ALIGNMENT);
+ }
+
+ return (void *)data;
+}
+
+static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ free(buffer->context);
+}
+
+static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+ memset((char *)tensor->data + offset, value, size);
+
+ GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ memcpy((char *)tensor->data + offset, data, size);
+
+ GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ memcpy(data, (const char *)tensor->data + offset, size);
+
+ GGML_UNUSED(buffer);
+}
+
+static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
+ if (ggml_backend_buffer_is_host(src->buffer)) {
+ memcpy(dst->data, src->data, ggml_nbytes(src));
+ return true;
+ }
+ return false;
+
+ GGML_UNUSED(buffer);
+}
+
+static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ memset(buffer->context, value, buffer->size);
+}
+
+static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
+ /* .get_name = */ ggml_backend_cpu_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_cpu_buffer_get_base,
+ /* .init_tensor = */ NULL, // no initialization required
+ /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
+ /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
+ /* .clear = */ ggml_backend_cpu_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
+ /* .get_name = */ ggml_backend_cpu_buffer_get_name,
+ /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
+ /* .get_base = */ ggml_backend_cpu_buffer_get_base,
+ /* .init_tensor = */ NULL, // no initialization required
+ /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
+ /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
+ /* .clear = */ ggml_backend_cpu_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+ return "CPU";
+
+ GGML_UNUSED(buft);
+}
+
+static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
+ void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
+ if (data == NULL) {
+ fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
+ return NULL;
+ }
+
+ return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
+}
+
+static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ return TENSOR_ALIGNMENT;
+
+ GGML_UNUSED(buft);
+}
+
+static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+ return true;
+
+ GGML_UNUSED(buft);
+}
+
+ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
+ static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
+ /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
+ /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
+ },
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_buffer_type;
+}
+
+#ifdef GGML_USE_CPU_HBM
+
+// buffer type HBM
+
+#include <hbwmalloc.h>
+
+static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+ return "CPU_HBM";
+
+ GGML_UNUSED(buft);
+}
+
+static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
+ return "CPU_HBM";
+
+ GGML_UNUSED(buf);
+}
+
+static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ hbw_free(buffer->context);
+}
+
+static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ //void * ptr = hbw_malloc(size);
+ void * ptr;
+ int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
+ if (result != 0) {
+ fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
+ return NULL;
+ }
+
+ ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+ buffer->buft = buft;
+ buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
+ buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
+
+ return buffer;
+}
+
+ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
+ static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
+ /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
+ /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
+ },
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_buffer_type_hbm;
+}
+#endif
+
+struct ggml_backend_cpu_context {
+ int n_threads;
+ ggml_threadpool_t threadpool;
+
+ uint8_t * work_data;
+ size_t work_size;
+
+ ggml_abort_callback abort_callback;
+ void * abort_callback_data;
+};
+
+static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
+ return "CPU";
+
+ GGML_UNUSED(backend);
+}
+
+static void ggml_backend_cpu_free(ggml_backend_t backend) {
+ struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+ delete[] cpu_ctx->work_data;
+ delete cpu_ctx;
+ delete backend;
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
+ return ggml_backend_cpu_buffer_type();
+
+ GGML_UNUSED(backend);
+}
+
+struct ggml_backend_plan_cpu {
+ struct ggml_cplan cplan;
+ struct ggml_cgraph cgraph;
+};
+
+static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
+ struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+
+ struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
+
+ cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
+ cpu_plan->cgraph = *cgraph; // FIXME: deep copy
+
+ if (cpu_plan->cplan.work_size > 0) {
+ cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
+ if (cpu_plan->cplan.work_data == NULL) {
+ delete cpu_plan;
+ return NULL;
+ }
+ }
+
+ cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
+ cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
+
+ return cpu_plan;
+}
+
+static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
+
+ delete[] cpu_plan->cplan.work_data;
+ delete cpu_plan;
+
+ GGML_UNUSED(backend);
+}
+
+static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
+ struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
+
+ return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
+
+ GGML_UNUSED(backend);
+}
+
+static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+ struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
+
+ struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
+
+ if (cpu_ctx->work_size < cplan.work_size) {
+ delete[] cpu_ctx->work_data;
+ cpu_ctx->work_data = new uint8_t[cplan.work_size];
+ if (cpu_ctx->work_data == NULL) {
+ cpu_ctx->work_size = 0;
+ return GGML_STATUS_ALLOC_FAILED;
+ }
+ cpu_ctx->work_size = cplan.work_size;
+ }
+ cplan.work_data = (uint8_t *)cpu_ctx->work_data;
+
+ cplan.abort_callback = cpu_ctx->abort_callback;
+ cplan.abort_callback_data = cpu_ctx->abort_callback_data;
+
+ return ggml_graph_compute(cgraph, &cplan);
+}
+
+static const struct ggml_backend_i ggml_backend_cpu_i = {
+ /* .get_name = */ ggml_backend_cpu_get_name,
+ /* .free = */ ggml_backend_cpu_free,
+ /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
+ /* .set_tensor_async = */ NULL,
+ /* .get_tensor_async = */ NULL,
+ /* .cpy_tensor_async = */ NULL,
+ /* .synchronize = */ NULL,
+ /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
+ /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
+ /* .graph_plan_update = */ NULL,
+ /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
+ /* .graph_compute = */ ggml_backend_cpu_graph_compute,
+ /* .supports_op = */ NULL,
+ /* .supports_buft = */ NULL,
+ /* .offload_op = */ NULL,
+ /* .event_record = */ NULL,
+ /* .event_wait = */ NULL,
+};
+
+static ggml_guid_t ggml_backend_cpu_guid(void) {
+ static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
+ return &guid;
+}
+
+ggml_backend_t ggml_backend_cpu_init(void) {
+ struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
+ if (ctx == NULL) {
+ return NULL;
+ }
+
+ ctx->n_threads = GGML_DEFAULT_N_THREADS;
+ ctx->threadpool = NULL;
+ ctx->work_data = NULL;
+ ctx->work_size = 0;
+ ctx->abort_callback = NULL;
+ ctx->abort_callback_data = NULL;
+
+ ggml_backend_t cpu_backend = new ggml_backend {
+ /* .guid = */ ggml_backend_cpu_guid(),
+ /* .interface = */ ggml_backend_cpu_i,
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
+ /* .context = */ ctx,
+ };
+
+ if (cpu_backend == NULL) {
+ delete ctx;
+ return NULL;
+ }
+
+ return cpu_backend;
+}
+
+bool ggml_backend_is_cpu(ggml_backend_t backend) {
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
+}
+
+void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
+ GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
+
+ struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
+ ctx->n_threads = n_threads;
+}
+
+void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
+ GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
+
+ struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
+
+ if (ctx->threadpool && ctx->threadpool != threadpool) {
+ // already had a different threadpool, pause/suspend it before switching
+ ggml_threadpool_pause(ctx->threadpool);
+ }
+ ctx->threadpool = threadpool;
+}
+
+void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
+ GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
+
+ struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
+ ctx->abort_callback = abort_callback;
+ ctx->abort_callback_data = abort_callback_data;
+}
+
+ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
+ GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
+ return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
+}
+
+////////////////////////
+
+static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
+ return "CPU";
+
+ GGML_UNUSED(dev);
+}
+
+static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
+ // TODO
+ return "CPU";
+
+ GGML_UNUSED(dev);
+}
+
+static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
+ // TODO
+ *free = 0;
+ *total = 0;
+
+ GGML_UNUSED(dev);
+}
+
+static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
+ return GGML_BACKEND_DEVICE_TYPE_CPU_FULL;
+
+ GGML_UNUSED(dev);
+}
+
+static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
+ props->name = ggml_backend_cpu_device_get_name(dev);
+ props->description = ggml_backend_cpu_device_get_description(dev);
+ props->type = ggml_backend_cpu_device_get_type(dev);
+ ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
+ props->caps = {
+ /* async */ false,
+ /* host_buffer */ false,
+ /* events */ false,
+ };
+}
+
+static ggml_backend_t ggml_backend_cpu_device_init(ggml_backend_dev_t dev, const char * params) {
+ return ggml_backend_cpu_init();
+
+ GGML_UNUSED(dev);
+ GGML_UNUSED(params);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
+ return ggml_backend_cpu_buffer_type();
+
+ GGML_UNUSED(dev);
+}
+
+static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
+ return ggml_backend_cpu_buffer_from_ptr(ptr, size);
+
+ GGML_UNUSED(dev);
+ GGML_UNUSED(max_tensor_size);
+}
+
+static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
+ switch (op->op) {
+ case GGML_OP_CPY:
+ return
+ op->type != GGML_TYPE_IQ2_XXS &&
+ op->type != GGML_TYPE_IQ2_XS &&
+ op->type != GGML_TYPE_IQ1_S &&
+ op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
+ case GGML_OP_MUL_MAT:
+ return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
+ case GGML_OP_ROPE_BACK:
+ return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
+ case GGML_OP_IM2COL_BACK:
+ return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
+ case GGML_OP_OUT_PROD:
+ return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
+ default:
+ return true;
+ }
+
+ GGML_UNUSED(dev);
+}
+
+static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
+ return ggml_backend_buft_is_host(buft);
+
+ GGML_UNUSED(dev);
+}
+
+static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
+ /* .get_name = */ ggml_backend_cpu_device_get_name,
+ /* .get_description = */ ggml_backend_cpu_device_get_description,
+ /* .get_memory = */ ggml_backend_cpu_device_get_memory,
+ /* .get_type = */ ggml_backend_cpu_device_get_type,
+ /* .get_props = */ ggml_backend_cpu_device_get_props,
+ /* .init_backend = */ ggml_backend_cpu_device_init,
+ /* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
+ /* .get_host_buffer_type = */ NULL,
+ /* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_ptr,
+ /* .supports_op = */ ggml_backend_cpu_device_supports_op,
+ /* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
+ /* .offload_op = */ NULL,
+ /* .event_new = */ NULL,
+ /* .event_free = */ NULL,
+ /* .event_synchronize = */ NULL,
+};
+
+////////////////////////
+
+static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
+ return "CPU";
+
+ GGML_UNUSED(reg);
+}
+
+static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
+ return 1;
+
+ GGML_UNUSED(reg);
+}
+
+static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
+ GGML_ASSERT(index == 0);
+
+ static ggml_backend_device ggml_backend_cpu_device = {
+ /* .iface = */ ggml_backend_cpu_device_i,
+ /* .reg = */ reg,
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_device;
+
+ GGML_UNUSED(reg);
+ GGML_UNUSED(index);
+}
+
+static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
+ /* .get_name = */ ggml_backend_cpu_reg_get_name,
+ /* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
+ /* .get_device = */ ggml_backend_cpu_reg_get_device,
+ /* .get_proc_address = */ NULL,
+ /* .set_log_callback = */ NULL,
+};
+
+ggml_backend_reg_t ggml_backend_cpu_reg(void) {
+ static struct ggml_backend_reg ggml_backend_cpu_reg = {
+ /* .iface = */ ggml_backend_cpu_reg_i,
+ /* .context = */ NULL,
+ };
+
+ return &ggml_backend_cpu_reg;
+}
+
+// multi-buffer buffer
+
+struct ggml_backend_multi_buffer_context {
+ ggml_backend_buffer_t * buffers;
+ size_t n_buffers;
+};
+
+static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
+
+ return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
+}
+
+static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
+ for (size_t i = 0; i < ctx->n_buffers; i++) {
+ ggml_backend_buffer_free(ctx->buffers[i]);
+ }
+
+ free(ctx->buffers);
+ free(ctx);
+}
+
+static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
+ for (size_t i = 0; i < ctx->n_buffers; i++) {
+ ggml_backend_buffer_clear(ctx->buffers[i], value);
+ }
+}
+
+static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
+ /* .get_name = */ ggml_backend_multi_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
+ /* .get_base = */ NULL,
+ /* .init_tensor = */ NULL,
+ /* .memset_tensor = */ NULL,
+ /* .set_tensor = */ NULL,
+ /* .get_tensor = */ NULL,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_multi_buffer_clear,
+ /* .reset = */ NULL,
+};
+
+ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
+ ctx->n_buffers = n_buffers;
+ ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
+
+ GGML_ASSERT(ctx->buffers != NULL);
+
+ size_t total_size = 0;
+ for (size_t i = 0; i < n_buffers; i++) {
+ ctx->buffers[i] = buffers[i];
+ total_size += ggml_backend_buffer_get_size(buffers[i]);
+ }
+
+ return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
+}
+
+bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
+}
+
+void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
+ GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
+ ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
+ for (size_t i = 0; i < ctx->n_buffers; i++) {
+ ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
+ }
+}
+
+// creates a copy of the tensor with the same memory layout
+static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
+ struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ dup->nb[i] = tensor->nb[i];
+ }
+ return dup;
+}
+
+static bool ggml_is_view_op(enum ggml_op op) {
+ return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
+}
+
+// scheduler
+
+#ifndef GGML_SCHED_MAX_BACKENDS
+#define GGML_SCHED_MAX_BACKENDS 16
+#endif
+
+#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
+#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
+#endif
+
+#ifndef GGML_SCHED_MAX_COPIES
+#define GGML_SCHED_MAX_COPIES 4
+#endif
+
+struct ggml_backend_sched_split {
+ int backend_id;
+ int i_start;
+ int i_end;
+ struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
+ int n_inputs;
+ // graph view of this split
+ struct ggml_cgraph graph;
+};
+
+struct ggml_backend_sched {
+ bool is_reset; // true if the scheduler has been reset since the last graph split
+ bool is_alloc;
+
+ int n_backends;
+
+ ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
+ ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
+ ggml_gallocr_t galloc;
+
+ // hash map of the nodes in the graph
+ struct ggml_hash_set hash_set;
+ int * hv_tensor_backend_ids; // [hash_set.size]
+ struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
+
+ int * node_backend_ids; // [graph_size]
+ int * leaf_backend_ids; // [graph_size]
+
+ int * prev_node_backend_ids; // [graph_size]
+ int * prev_leaf_backend_ids; // [graph_size]
+
+ // copy of the graph with modified inputs
+ struct ggml_cgraph graph;
+
+ // graph splits
+ struct ggml_backend_sched_split * splits;
+ int n_splits;
+ int splits_capacity;
+
+ // pipeline parallelism support
+ int n_copies;
+ int cur_copy;
+ ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
+ struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
+ int n_graph_inputs;
+
+ struct ggml_context * ctx;
+
+ ggml_backend_sched_eval_callback callback_eval;
+ void * callback_eval_user_data;
+
+ char * context_buffer;
+ size_t context_buffer_size;
+
+ bool debug;
+};
+
+#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
+#define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
+#define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
+#define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
+
+// returns the priority of the backend, lower id is higher priority
+static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ for (int i = 0; i < sched->n_backends; i++) {
+ if (sched->backends[i] == backend) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
+ ggml_backend_buffer_t buffer = tensor->buffer;
+ if (buffer == NULL) {
+ return -1;
+ }
+
+ // find highest prio backend that supports the buffer type and the op
+ for (int i = 0; i < sched->n_backends; i++) {
+ if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
+ ggml_backend_supports_op(sched->backends[i], op)) {
+ return i;
+ }
+ }
+
+#ifndef NDEBUG
+ fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
+ __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
+#endif
+
+ return -1;
+}
+
+#if 0
+#define GGML_SCHED_MAX_SPLITS_DEBUG 4096
+static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
+#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
+#define GET_CAUSE(node) causes[hash_id(node)]
+#else
+#define SET_CAUSE(node, ...)
+#define GET_CAUSE(node) ""
+#endif
+
+// returns the backend that should be used for the node based on the current locations
+static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
+ // TODO: use supports_op to check if the backend supports the op
+
+ // assign pre-allocated nodes to their backend
+ int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
+ if (cur_backend_id != -1) {
+ SET_CAUSE(tensor, "1.dst");
+ return cur_backend_id;
+ }
+
+ // view_src
+ if (tensor->view_src != NULL) {
+ cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
+ if (cur_backend_id != -1) {
+ SET_CAUSE(tensor, "1.vsrc");
+ return cur_backend_id;
+ }
+ }
+
+ if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
+ // since the tensor is pre-allocated, it cannot be moved to another backend
+ GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
+ }
+
+ // graph input
+ if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
+ cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
+ SET_CAUSE(tensor, "1.inp");
+ return cur_backend_id;
+ }
+
+ // operations with weights are preferably run on the same backend as the weights
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ const struct ggml_tensor * src = tensor->src[i];
+ if (src == NULL) {
+ continue;
+ }
+ if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
+ int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
+ // check if a backend with higher prio wants to offload the op
+ if (src_backend_id == sched->n_backends - 1) {
+ for (int b = 0; b < src_backend_id; b++) {
+ if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
+ SET_CAUSE(tensor, "1.off");
+ return b;
+ }
+ }
+ }
+ SET_CAUSE(tensor, "1.wgt%d", i);
+ return src_backend_id;
+ }
+ }
+
+ return -1;
+}
+
+static char * fmt_size(size_t size) {
+ static char buffer[128];
+ if (size >= 1024*1024) {
+ snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
+ } else {
+ snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
+ }
+ return buffer;
+}
+
+static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ int cur_split = 0;
+ for (int i = 0; i < graph->n_nodes; i++) {
+ if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
+ ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
+ fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
+ sched->splits[cur_split].n_inputs);
+ for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
+ fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
+ fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
+ }
+ fprintf(stderr, "\n");
+ cur_split++;
+ }
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
+ fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
+ fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
+ fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
+ fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
+ }
+ fprintf(stderr, "\n");
+ }
+}
+
+static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
+ ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
+ ggml_backend_buffer_type_t buft = NULL;
+
+ if (buf) {
+ // the tensor is already allocated
+ buft = buf->buft;
+ } else {
+ // see if the tensor already has a backend assigned, and use the buffer type of that backend
+ int tensor_backend_id = tensor_backend_id(t);
+ if (tensor_backend_id == -1 && t->view_src) {
+ tensor_backend_id = tensor_backend_id(t->view_src);
+ }
+ if (tensor_backend_id != -1) {
+ buft = sched->bufts[tensor_backend_id];
+ }
+ }
+
+ return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
+}
+
+static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
+ if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
+ *node_backend_id = cur_backend_id;
+ SET_CAUSE(node, "2.sup");
+ }
+}
+
+// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
+static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ // reset splits
+ sched->n_splits = 0;
+ sched->n_graph_inputs = 0;
+ sched->is_reset = false;
+
+ struct ggml_init_params params = {
+ /* .mem_size = */ sched->context_buffer_size,
+ /* .mem_buffer = */ sched->context_buffer,
+ /* .no_alloc = */ true
+ };
+
+ ggml_free(sched->ctx);
+
+ sched->ctx = ggml_init(params);
+ if (sched->ctx == NULL) {
+ GGML_ABORT("%s: failed to initialize context\n", __func__);
+ }
+
+ // pass 1: assign backends to ops with pre-allocated inputs
+ for (int i = 0; i < graph->n_leafs; i++) {
+ struct ggml_tensor * leaf = graph->leafs[i];
+ int * leaf_backend_id = &tensor_backend_id(leaf);
+ // do not overwrite user assignments
+ if (*leaf_backend_id == -1) {
+ *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
+ }
+ }
+
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ int * node_backend_id = &tensor_backend_id(node);
+ // do not overwrite user assignments
+ if (*node_backend_id == -1) {
+ *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
+
+#if 0
+ // src
+ if (node->op == GGML_OP_NONE) {
+ continue;
+ }
+
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ int * src_backend_id = &tensor_backend_id(src);
+ if (*src_backend_id == -1) {
+ *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
+ }
+ }
+#endif
+ }
+ }
+
+ // pass 2: expand current backend assignments
+ // assign the same backend to adjacent nodes
+ // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
+ // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
+ // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
+ // expand gpu down
+ {
+ int cur_backend_id = -1;
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ if (*node_backend_id == sched->n_backends - 1) {
+ // skip cpu (lowest prio backend)
+ cur_backend_id = -1;
+ } else {
+ cur_backend_id = *node_backend_id;
+ }
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+ // expand gpu up
+ {
+ int cur_backend_id = -1;
+ for (int i = graph->n_nodes - 1; i >= 0; i--) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ if (*node_backend_id == sched->n_backends - 1) {
+ // skip cpu (lowest prio backend)
+ cur_backend_id = -1;
+ } else {
+ cur_backend_id = *node_backend_id;
+ }
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+ // expand rest down
+ {
+ int cur_backend_id = -1;
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ cur_backend_id = *node_backend_id;
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+ // expand rest up
+ {
+ int cur_backend_id = -1;
+ for (int i = graph->n_nodes - 1; i >= 0; i--) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id != -1) {
+ cur_backend_id = *node_backend_id;
+ } else if (cur_backend_id != -1) {
+ ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
+ }
+ }
+ }
+
+ // pass 3: upgrade nodes to higher prio backends with compatible buffer types
+ // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
+ // however, we also need to verify that the sources are in compatible buffer types
+ // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
+ // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
+ // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
+ // additionally, set remaining unassigned nodes to the backend with the most supported inputs
+ // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+ int * node_backend_id = &tensor_backend_id(node);
+ if (*node_backend_id == -1) {
+ // unassigned node: find the backend with the most supported inputs
+ int n_supported_best = -1;
+ for (int b = 0; b < sched->n_backends; b++) {
+ if (ggml_backend_supports_op(sched->backends[b], node)) {
+ int n_supported = 0;
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
+ n_supported++;
+ }
+ }
+ if (n_supported > n_supported_best) {
+ n_supported_best = n_supported;
+ *node_backend_id = b;
+ SET_CAUSE(node, "3.best");
+ }
+ }
+ }
+ } else {
+ // assigned node: upgrade to higher prio backend if possible
+ for (int b = 0; b < *node_backend_id; b++) {
+ if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
+ bool supported = true;
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
+ supported = false;
+ break;
+ }
+ }
+ if (supported) {
+ *node_backend_id = b;
+ SET_CAUSE(node, "3.upg");
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // pass 4: assign backends to remaining src from dst and view_src
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ int * cur_backend_id = &tensor_backend_id(node);
+ if (node->view_src != NULL && *cur_backend_id == -1) {
+ *cur_backend_id = tensor_backend_id(node->view_src);
+ SET_CAUSE(node, "4.vsrc");
+ }
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ int * src_backend_id = &tensor_backend_id(src);
+ if (*src_backend_id == -1) {
+ if (src->view_src != NULL) {
+ // views are always on the same backend as the source
+ *src_backend_id = tensor_backend_id(src->view_src);
+ SET_CAUSE(src, "4.vsrc");
+ } else {
+ *src_backend_id = *cur_backend_id;
+ SET_CAUSE(src, "4.cur");
+ }
+ }
+ }
+ }
+
+ // pass 5: split graph, find tensors that need to be copied
+ {
+ int i_split = 0;
+ struct ggml_backend_sched_split * split = &sched->splits[0];
+ // find the backend of the first split, skipping view ops
+ int i = 0;
+ for (; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ if (!ggml_is_view_op(node->op)) {
+ split->backend_id = tensor_backend_id(node);
+ break;
+ }
+ }
+ split->i_start = 0;
+ split->n_inputs = 0;
+ int cur_backend_id = split->backend_id;
+ for (; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+
+ if (ggml_is_view_op(node->op)) {
+ continue;
+ }
+
+ const int node_backend_id = tensor_backend_id(node);
+
+ assert(node_backend_id != -1); // all nodes should be assigned by now
+
+ // check if we should start a new split based on the sources of the current node
+ bool need_new_split = false;
+ if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+ // check if a weight is on a different backend
+ // by starting a new split, the memory of the previously offloaded weights can be reused
+ if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
+ int src_backend_id = tensor_backend_id(src);
+ if (src_backend_id != cur_backend_id) {
+ need_new_split = true;
+ break;
+ }
+ }
+ // check if the split has too many inputs
+ // FIXME: count the number of inputs instead of only checking when full
+ if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
+ const size_t id = hash_id(src);
+ int src_backend_id = sched->hv_tensor_backend_ids[id];
+ bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
+ if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
+ //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
+ need_new_split = true;
+ break;
+ }
+ }
+ }
+ }
+
+ if (node_backend_id != cur_backend_id || need_new_split) {
+ split->i_end = i;
+ i_split++;
+ if (i_split >= sched->splits_capacity) {
+ sched->splits_capacity *= 2;
+ sched->splits = (ggml_backend_sched_split *)
+ realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
+ GGML_ASSERT(sched->splits != NULL);
+ }
+ split = &sched->splits[i_split];
+ split->backend_id = node_backend_id;
+ split->i_start = i;
+ split->n_inputs = 0;
+ cur_backend_id = node_backend_id;
+ }
+
+ // find inputs that are not on the same backend
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * src = node->src[j];
+ if (src == NULL) {
+ continue;
+ }
+
+ size_t src_id = hash_id(src);
+ const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
+ assert(src_backend_id != -1); // all inputs should be assigned by now
+
+ if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
+ if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
+ ggml_backend_t backend = sched->backends[src_backend_id];
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * tensor_copy;
+ if (c == sched->cur_copy) {
+ tensor_copy = src; // use the original tensor as the current copy
+ } else {
+ tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
+ ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
+ }
+ if (sched->n_copies > 1) {
+ ggml_set_input(tensor_copy);
+ ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
+ }
+ tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
+ SET_CAUSE(tensor_copy, "4.cpy");
+ }
+ int n_graph_inputs = sched->n_graph_inputs++;
+ GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
+ sched->graph_inputs[n_graph_inputs] = src;
+ }
+ }
+
+ if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
+ // create a copy of the input in the split's backend
+ if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
+ ggml_backend_t backend = sched->backends[cur_backend_id];
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
+ ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
+ if (sched->n_copies > 1) {
+ ggml_set_input(tensor_copy);
+ ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
+ }
+ tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
+ SET_CAUSE(tensor_copy, "4.cpy");
+ }
+ int n_inputs = split->n_inputs++;
+ GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
+ split->inputs[n_inputs] = src;
+ }
+ node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
+ }
+ }
+ }
+ split->i_end = graph->n_nodes;
+ sched->n_splits = i_split + 1;
+ }
+
+ if (sched->debug) {
+ ggml_backend_sched_print_assignments(sched, graph);
+ }
+
+ // swap node_backend_ids and leaf _backend_ids with prevs
+ {
+ int * tmp = sched->node_backend_ids;
+ sched->node_backend_ids = sched->prev_node_backend_ids;
+ sched->prev_node_backend_ids = tmp;
+
+ tmp = sched->leaf_backend_ids;
+ sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
+ sched->prev_leaf_backend_ids = tmp;
+ }
+
+ int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
+ if (sched->graph.size < graph_size) {
+ sched->graph.size = graph_size;
+ sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
+ sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
+ GGML_ASSERT(sched->graph.nodes != NULL);
+ GGML_ASSERT(sched->graph.leafs != NULL);
+ }
+ sched->graph.n_nodes = 0;
+ sched->graph.n_leafs = 0;
+
+ struct ggml_cgraph * graph_copy = &sched->graph;
+
+ for (int i = 0; i < sched->n_splits; i++) {
+ struct ggml_backend_sched_split * split = &sched->splits[i];
+ split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
+
+ // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
+ for (int j = 0; j < split->n_inputs; j++) {
+ assert(graph_copy->size > (graph_copy->n_nodes + 1));
+
+ struct ggml_tensor * input = split->inputs[j];
+ const size_t input_id = hash_id(input);
+ struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
+
+ // add a dependency to the input source so that it is not freed before the copy is done
+ struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
+ input_dep->src[0] = input;
+ sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
+ graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
+
+ // add a dependency to the input copy so that it is allocated at the start of the split
+ sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
+ graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
+ }
+
+ for (int j = split->i_start; j < split->i_end; j++) {
+ assert(graph_copy->size > graph_copy->n_nodes);
+ sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
+ graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
+ }
+ }
+
+ if (sched->n_copies > 1) {
+ // add input copies as leafs so that they are allocated first
+ for (int i = 0; i < sched->n_graph_inputs; i++) {
+ struct ggml_tensor * input = sched->graph_inputs[i];
+ size_t id = hash_id(input);
+ int backend_id = tensor_backend_id(input);
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
+ sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
+ assert(graph_copy->size > graph_copy->n_leafs);
+ graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
+ }
+ }
+
+ for (int i = 0; i < sched->n_splits; i++) {
+ struct ggml_backend_sched_split * split = &sched->splits[i];
+ int backend_id = split->backend_id;
+ for (int j = 0; j < split->n_inputs; j++) {
+ struct ggml_tensor * input = split->inputs[j];
+ size_t id = hash_id(input);
+ for (int c = 0; c < sched->n_copies; c++) {
+ struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
+ sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
+ assert(graph_copy->size > graph_copy->n_leafs);
+ graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
+ }
+ }
+ }
+ }
+
+ // add leafs from the original graph
+ for (int i = 0; i < graph->n_leafs; i++) {
+ struct ggml_tensor * leaf = graph->leafs[i];
+ sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
+ assert(graph_copy->size > graph_copy->n_leafs);
+ graph_copy->leafs[graph_copy->n_leafs++] = leaf;
+ }
+}
+
+static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
+ bool backend_ids_changed = false;
+ for (int i = 0; i < sched->graph.n_nodes; i++) {
+ if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
+ sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
+ backend_ids_changed = true;
+ break;
+ }
+ }
+ if (!backend_ids_changed) {
+ for (int i = 0; i < sched->graph.n_leafs; i++) {
+ if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
+ sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
+ backend_ids_changed = true;
+ break;
+ }
+ }
+ }
+
+ // allocate graph
+ if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
+ // the re-allocation may cause the split inputs to be moved to a different address
+ ggml_backend_sched_synchronize(sched);
+#ifndef NDEBUG
+ fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
+#endif
+ ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
+ if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
+ fprintf(stderr, "%s: failed to allocate graph\n", __func__);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
+ struct ggml_backend_sched_split * splits = sched->splits;
+
+ for (int i = 0; i < sched->n_splits; i++) {
+ struct ggml_backend_sched_split * split = &splits[i];
+ int split_backend_id = split->backend_id;
+ ggml_backend_t split_backend = sched->backends[split_backend_id];
+
+ // copy the input tensors to the split backend
+ for (int j = 0; j < split->n_inputs; j++) {
+ ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
+ struct ggml_tensor * input = split->inputs[j];
+ struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
+
+ if (input->flags & GGML_TENSOR_FLAG_INPUT) {
+ // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
+ } else {
+ ggml_backend_synchronize(split_backend);
+ }
+ ggml_backend_tensor_copy(input, input_cpy);
+ } else {
+ // wait for the split backend to finish using the input before overwriting it
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
+ } else {
+ ggml_backend_synchronize(split_backend);
+ }
+ // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
+ // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
+ if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
+ ggml_backend_synchronize(input_backend);
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
+ } else {
+ ggml_backend_synchronize(split_backend);
+ }
+ ggml_backend_tensor_copy(input, input_cpy);
+ }
+ }
+ }
+
+ if (!sched->callback_eval) {
+ enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
+ if (ec != GGML_STATUS_SUCCESS) {
+ return ec;
+ }
+ } else {
+ // similar to ggml_backend_compare_graph_backend
+ for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
+ struct ggml_tensor * t = split->graph.nodes[j0];
+
+ // check if the user needs data from this node
+ bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
+
+ int j1 = j0;
+
+ // determine the range [j0, j1] of nodes that can be computed together
+ while (!need && j1 < split->graph.n_nodes - 1) {
+ t = split->graph.nodes[++j1];
+ need = sched->callback_eval(t, true, sched->callback_eval_user_data);
+ }
+
+ struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
+
+ enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
+ if (ec != GGML_STATUS_SUCCESS) {
+ return ec;
+ }
+
+ // TODO: pass backend to the callback, then the user can decide if they want to synchronize
+ ggml_backend_synchronize(split_backend);
+
+ if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
+ break;
+ }
+
+ j0 = j1;
+ }
+ }
+
+ // record the event of this copy
+ if (split->n_inputs > 0) {
+ if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
+ ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
+ }
+ }
+ }
+
+ sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
+
+ return GGML_STATUS_SUCCESS;
+}
+
+ggml_backend_sched_t ggml_backend_sched_new(
+ ggml_backend_t * backends,
+ ggml_backend_buffer_type_t * bufts,
+ int n_backends,
+ size_t graph_size,
+ bool parallel) {
+ GGML_ASSERT(n_backends > 0);
+ GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
+ GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
+
+ struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
+
+ sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
+ sched->n_backends = n_backends;
+ sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
+
+ // initialize hash table
+ // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
+ sched->hash_set = ggml_hash_set_new(graph_size);
+ sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
+ sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
+
+ const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
+ const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
+ sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
+ sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
+ sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
+ sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
+
+ sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
+ sched->context_buffer = (char *) malloc(sched->context_buffer_size);
+
+ const int initial_splits_capacity = 16;
+ sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
+ sched->splits_capacity = initial_splits_capacity;
+
+ for (int b = 0; b < n_backends; b++) {
+ sched->backends[b] = backends[b];
+ sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
+ GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
+ if (sched->n_copies > 1) {
+ for (int c = 0; c < sched->n_copies; c++) {
+ sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
+ }
+ }
+ }
+
+ sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
+
+ ggml_backend_sched_reset(sched);
+
+ return sched;
+}
+
+void ggml_backend_sched_free(ggml_backend_sched_t sched) {
+ if (sched == NULL) {
+ return;
+ }
+ for (int b = 0; b < sched->n_backends; b++) {
+ for (int c = 0; c < sched->n_copies; c++) {
+ ggml_backend_event_free(sched->events[b][c]);
+ }
+ }
+ ggml_gallocr_free(sched->galloc);
+ ggml_free(sched->ctx);
+ ggml_hash_set_free(&sched->hash_set);
+ free(sched->splits);
+ free(sched->hv_tensor_backend_ids);
+ free(sched->hv_tensor_copies);
+ free(sched->node_backend_ids);
+ free(sched->leaf_backend_ids);
+ free(sched->prev_node_backend_ids);
+ free(sched->prev_leaf_backend_ids);
+ free(sched->context_buffer);
+ free(sched->graph.nodes);
+ free(sched->graph.leafs);
+ free(sched);
+}
+
+void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
+ // reset state for the next run
+ if (!sched->is_reset) {
+ ggml_hash_set_reset(&sched->hash_set);
+ memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
+ memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
+ sched->is_reset = true;
+ }
+ sched->is_alloc = false;
+}
+
+bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
+ GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
+
+ ggml_backend_sched_split_graph(sched, measure_graph);
+
+ if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
+ return false;
+ }
+
+ ggml_backend_sched_reset(sched);
+ ggml_backend_sched_synchronize(sched);
+
+ return true;
+}
+
+bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
+
+ ggml_backend_sched_split_graph(sched, graph);
+
+
+ if (!ggml_backend_sched_alloc_splits(sched)) {
+ return false;
+ }
+
+ sched->is_alloc = true;
+
+ return true;
+}
+
+enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
+ ggml_backend_sched_synchronize(sched);
+ return err;
+}
+
+enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
+ if (!sched->is_reset && !sched->is_alloc) {
+ ggml_backend_sched_reset(sched);
+ }
+
+ if (!sched->is_alloc) {
+ if (!ggml_backend_sched_alloc_graph(sched, graph)) {
+ return GGML_STATUS_ALLOC_FAILED;
+ }
+ }
+
+ return ggml_backend_sched_compute_splits(sched);
+}
+
+void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
+ for (int i = 0; i < sched->n_backends; i++) {
+ ggml_backend_synchronize(sched->backends[i]);
+ }
+}
+
+void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
+ sched->callback_eval = callback;
+ sched->callback_eval_user_data = user_data;
+}
+
+int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
+ return sched->n_splits;
+}
+
+int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
+ return sched->n_copies;
+}
+
+int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
+ return sched->n_backends;
+}
+
+ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
+ GGML_ASSERT(i >= 0 && i < sched->n_backends);
+ return sched->backends[i];
+}
+
+size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+
+ return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
+}
+
+void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
+ int backend_index = ggml_backend_sched_backend_id(sched, backend);
+ GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
+ tensor_backend_id(node) = backend_index;
+ SET_CAUSE(node, "usr");
+ sched->is_reset = false;
+}
+
+ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
+ int backend_index = tensor_backend_id(node);
+ if (backend_index == -1) {
+ return NULL;
+ }
+ return sched->backends[backend_index];
+}
+
+// utils
+
+void ggml_backend_view_init(struct ggml_tensor * tensor) {
+ GGML_ASSERT(tensor->buffer == NULL);
+ GGML_ASSERT(tensor->view_src != NULL);
+ GGML_ASSERT(tensor->view_src->buffer != NULL);
+ GGML_ASSERT(tensor->view_src->data != NULL);
+
+ tensor->buffer = tensor->view_src->buffer;
+ tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
+ ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
+}
+
+void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
+ GGML_ASSERT(tensor->buffer == NULL);
+ GGML_ASSERT(tensor->data == NULL);
+ GGML_ASSERT(tensor->view_src == NULL);
+ GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
+ GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
+ (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
+
+ tensor->buffer = buffer;
+ tensor->data = addr;
+ ggml_backend_buffer_init_tensor(buffer, tensor);
+}
+
+static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
+ struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
+
+ GGML_ASSERT(src != NULL);
+ GGML_ASSERT(src->data && "graph must be allocated");
+
+ size_t id = ggml_hash_insert(&hash_set, src);
+ if (id == GGML_HASHSET_ALREADY_EXISTS) {
+ return node_copies[ggml_hash_find(&hash_set, src)];
+ }
+
+ struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
+ if (src->view_src != NULL) {
+ dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
+ dst->view_offs = src->view_offs;
+ }
+ dst->op = src->op;
+ memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
+ ggml_set_name(dst, src->name);
+
+ // copy src
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ struct ggml_tensor * s = src->src[i];
+ if (s == NULL) {
+ continue;
+ }
+ dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
+ }
+
+ node_copies[id] = dst;
+ return dst;
+}
+
+static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
+ size_t id = ggml_hash_find(hash_set, src);
+ if (node_init[id]) {
+ return;
+ }
+ node_init[id] = true;
+
+ struct ggml_tensor * dst = node_copies[id];
+ if (dst->view_src != NULL) {
+ graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
+ ggml_backend_view_init(dst);
+ }
+ else {
+ ggml_backend_tensor_copy(src, dst);
+ }
+
+ // init src
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ struct ggml_tensor * s = src->src[i];
+ if (s == NULL) {
+ continue;
+ }
+ graph_copy_init_tensor(hash_set, node_copies, node_init, s);
+ }
+}
+
+struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
+ struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
+ struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
+ bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
+
+ struct ggml_init_params params = {
+ /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
+ /* .mem_buffer = */ NULL,
+ /* .no_alloc = */ true
+ };
+
+ struct ggml_context * ctx_allocated = ggml_init(params);
+ struct ggml_context * ctx_unallocated = ggml_init(params);
+
+ if (ctx_allocated == NULL || ctx_unallocated == NULL) {
+ fprintf(stderr, "failed to allocate context for graph copy\n");
+ ggml_hash_set_free(&hash_set);
+ free(node_copies);
+ free(node_init);
+ ggml_free(ctx_allocated);
+ ggml_free(ctx_unallocated);
+ return {
+ /* .buffer = */ NULL,
+ /* .ctx_allocated = */ NULL,
+ /* .ctx_unallocated = */ NULL,
+ /* .graph = */ NULL,
+ };
+ }
+
+ // dup nodes
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
+ }
+
+ // allocate nodes
+ ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
+ if (buffer == NULL) {
+ fprintf(stderr, "failed to allocate buffer for graph copy\n");
+ ggml_hash_set_free(&hash_set);
+ free(node_copies);
+ free(node_init);
+ ggml_free(ctx_allocated);
+ ggml_free(ctx_unallocated);
+ return {
+ /* .buffer = */ NULL,
+ /* .ctx_allocated = */ NULL,
+ /* .ctx_unallocated = */ NULL,
+ /* .graph = */ NULL,
+ };
+ }
+
+ //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
+
+ // copy data and init views
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
+ }
+
+ // build graph copy
+ struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
+ for (int i = 0; i < graph->n_nodes; i++) {
+ struct ggml_tensor * node = graph->nodes[i];
+ struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
+ graph_copy->nodes[i] = node_copy;
+ }
+ graph_copy->n_nodes = graph->n_nodes;
+
+ ggml_hash_set_free(&hash_set);
+ free(node_copies);
+ free(node_init);
+
+ return {
+ /* .buffer = */ buffer,
+ /* .ctx_allocated = */ ctx_allocated,
+ /* .ctx_unallocated = */ ctx_unallocated,
+ /* .graph = */ graph_copy,
+ };
+}
+
+void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
+ ggml_backend_buffer_free(copy.buffer);
+ ggml_free(copy.ctx_allocated);
+ ggml_free(copy.ctx_unallocated);
+}
+
+bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
+ struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
+ if (copy.buffer == NULL) {
+ return false;
+ }
+
+ struct ggml_cgraph * g1 = graph;
+ struct ggml_cgraph * g2 = copy.graph;
+
+ assert(g1->n_nodes == g2->n_nodes);
+
+ for (int i = 0; i < g1->n_nodes; i++) {
+ //printf("eval %d/%d\n", i, g1->n_nodes);
+ struct ggml_tensor * t1 = g1->nodes[i];
+ struct ggml_tensor * t2 = g2->nodes[i];
+
+ assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
+
+ struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
+ struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
+
+ ggml_backend_graph_compute(backend1, &g1v);
+ ggml_backend_graph_compute(backend2, &g2v);
+
+ if (ggml_is_view_op(t1->op)) {
+ continue;
+ }
+
+ // compare results, calculate rms etc
+ if (!callback(i, t1, t2, user_data)) {
+ break;
+ }
+ }
+
+ ggml_backend_graph_copy_free(copy);
+
+ return true;
+}
// backend interface
-GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
+static const char * ggml_backend_blas_name(ggml_backend_t backend) {
return "BLAS";
GGML_UNUSED(backend);
}
-GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
+static void ggml_backend_blas_free(ggml_backend_t backend) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
delete ctx;
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(backend);
}
-GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
for (int i = 0; i < cgraph->n_nodes; i++) {
GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * src1 = op->src[1];
GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
GGML_UNUSED(backend);
/* .supports_op = */ ggml_backend_blas_supports_op,
/* .supports_buft = */ ggml_backend_blas_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_blas_guid(void) {
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_blas_guid(),
/* .interface = */ blas_backend_i,
+ /* .device = */ nullptr,
/* .context = */ ctx,
};
return backend;
}
-GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
+bool ggml_backend_is_blas(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
}
* @return A pointer to a C-string containing the name of the buffer.
*/
-GGML_CALL static const char* ggml_backend_cann_buffer_get_name(
+static const char* ggml_backend_cann_buffer_get_name(
ggml_backend_buffer_t buffer) {
return "CANN";
* @param buffer The buffer to check.
* @return true if the buffer is a CANN buffer, false otherwise.
*/
-GGML_CALL static bool ggml_backend_buffer_is_cann(
+static bool ggml_backend_buffer_is_cann(
ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cann_buffer_get_name;
}
*
* @param buffer The CANN buffer to free.
*/
-GGML_CALL static void ggml_backend_cann_buffer_free_buffer(
+static void ggml_backend_cann_buffer_free_buffer(
ggml_backend_buffer_t buffer) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
* @param buffer The CANN buffer whose base pointer is to be retrieved.
* @return A pointer to the base of the device memory allocated for the buffer.
*/
-GGML_CALL static void* ggml_backend_cann_buffer_get_base(
+static void* ggml_backend_cann_buffer_get_base(
ggml_backend_buffer_t buffer) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
- const void* src,
- void* dst) {
+static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
+ const void* src,
+ void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK4_0;
* @param dst Pointer to the destination buffer where the Q4.0 formatted data
* will be stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
+static void ggml_backend_cann_transform_back_q4_0(
const ggml_tensor* tensor, void* src, void* dst) {
int64_t n_elems = ggml_nelements(tensor);
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
- const void* src,
- void* dst) {
+static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
+ const void* src,
+ void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK8_0;
size_t quant_bytes = n_elems * sizeof(uint8_t);
* @param dst Pointer to the destination buffer where the Q8.0 formatted data
* will be stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_back_q8_0(
+static void ggml_backend_cann_transform_back_q8_0(
const ggml_tensor* tensor, const void* src, void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK8_0;
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
-GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor,
- const void* src, void* dst) {
+static void ggml_backend_cann_transform(ggml_tensor* tensor,
+ const void* src, void* dst) {
switch (tensor->type) {
case GGML_TYPE_Q4_0:
ggml_backend_cann_transform_q4_0(tensor, src, dst);
* @param dst Pointer to the destination buffer where transformed tensor data
* will be stored.
*/
-GGML_CALL static void ggml_backend_cann_transform_back(
+static void ggml_backend_cann_transform_back(
const ggml_tensor* tensor, void* src, void* dst) {
switch (tensor->type) {
case GGML_TYPE_Q4_0:
* @param type The tensor type to check.
* @return true if transformation is needed, false otherwise.
*/
-GGML_CALL static bool need_transform(ggml_type type) {
+static bool need_transform(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
* @param buffer The CANN buffer from which to initialize the tensor.
* @param tensor Pointer to the tensor to be initialized.
*/
-GGML_CALL static void ggml_backend_cann_buffer_init_tensor(
+static void ggml_backend_cann_buffer_init_tensor(
ggml_backend_buffer_t buffer, ggml_tensor* tensor) {
if (tensor->view_src != NULL && tensor->view_offs == 0) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
* @param offset Offset in the source data from where to start copying.
* @param size Size of the data to be copied, in bytes.
*/
-GGML_CALL static void ggml_backend_cann_buffer_set_tensor(
+static void ggml_backend_cann_buffer_set_tensor(
ggml_backend_buffer_t buffer, ggml_tensor *tensor, const void *data,
size_t offset, size_t size) {
ggml_backend_cann_buffer_context *ctx =
* @param offset Offset in the destination buffer where to start copying.
* @param size Size of the data to be copied, in bytes.
*/
-GGML_CALL static void ggml_backend_cann_buffer_get_tensor(
+static void ggml_backend_cann_buffer_get_tensor(
ggml_backend_buffer_t buffer, const ggml_tensor* tensor, void* data,
size_t offset, size_t size) {
ggml_backend_cann_buffer_context* ctx =
* @param dst Pointer to the destination tensor where the data will be copied.
* @return true if the copy operation succeeded, false otherwise.
*/
-GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor(
+static bool ggml_backend_cann_buffer_cpy_tensor(
ggml_backend_buffer_t buffer, const ggml_tensor* src, ggml_tensor* dst) {
if (ggml_backend_buffer_is_cann(src->buffer)) {
ggml_backend_cann_buffer_context* src_ctx =
* @param buffer The CANN buffer to be cleared.
* @param value The value to which each byte in the buffer will be set.
*/
-GGML_CALL static void ggml_backend_cann_buffer_clear(
+static void ggml_backend_cann_buffer_clear(
ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
* @param buft Pointer to the buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
-GGML_CALL static const char* ggml_backend_cann_buffer_type_name(
+static const char* ggml_backend_cann_buffer_type_name(
ggml_backend_buffer_type_t buft) {
return "CANN";
* @param size Size in bytes of the buffer to allocate.
* @return Pointer to the allocated buffer, or nullptr if allocation fails.
*/
-GGML_CALL static ggml_backend_buffer_t
+static ggml_backend_buffer_t
ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) {
ggml_backend_cann_buffer_type_context* buft_ctx =
* @return The alignment requirement in bytes (fixed at 128 bytes for CANN
* buffers).
*/
-GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment(
+static size_t ggml_backend_cann_buffer_type_get_alignment(
ggml_backend_buffer_type_t buft) {
return 128;
* @return The total allocation size in bytes required for the tensor in the
* CANN buffer.
*/
-GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alloc_size(
+static size_t ggml_backend_cann_buffer_type_get_alloc_size(
ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
* @return A pointer to the buffer type interface for the specified device, or
* nullptr if the device index is out of range.
*/
-GGML_CALL ggml_backend_buffer_type_t
+ggml_backend_buffer_type_t
ggml_backend_cann_buffer_type(int32_t device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
* @param buft Pointer to the host buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
-GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return "CANN_Host";
GGML_UNUSED(buft);
* @param buft Pointer to the host buffer context.
* @return Const pointer to the C-style string containing the name.
*/
-GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) {
return "CANN_Host";
GGML_UNUSED(buffer);
*
* @param buffer The CANN host buffer to free.
*/
-GGML_CALL static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
ACL_CHECK(aclrtFreeHost(buffer->context));
}
* @param size Size in bytes of the host buffer to allocate.
* @return Pointer to the allocated host buffer, or CPU buffer pointer if allocation fails.
*/
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * hostPtr = ggml_cann_host_malloc(size);
if (hostPtr == nullptr) {
* Provides function pointers for allocating, querying properties, and managing
* memory for CANN buffer types in the GGML backend.
*/
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
+ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cann_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cann_host_buffer_type_name,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ nullptr,
/* .context = */ nullptr,
};
* @param backend Pointer to the CANN backend structure.
* @return A pointer to a constant string representing the backend name.
*/
-GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) {
+static const char* ggml_backend_cann_name(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
*
* @param backend Pointer to the CANN backend structure to be freed.
*/
-GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) {
+static void ggml_backend_cann_free(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ACL_CHECK(aclrtSynchronizeDevice());
* @param backend Pointer to the CANN backend structure.
* @return Pointer to the buffer type structure for the CANN backend.
*/
-GGML_CALL static ggml_backend_buffer_type_t
+static ggml_backend_buffer_type_t
ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
* @param offset Offset in bytes within the host data.
* @param size Size of the data to copy in bytes.
*/
-GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
- ggml_tensor *tensor,
- const void *data,
- size_t offset,
- size_t size) {
+static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
+ ggml_tensor *tensor,
+ const void *data,
+ size_t offset,
+ size_t size) {
ggml_backend_cann_context *cann_ctx =
(ggml_backend_cann_context *)backend->context;
}
}
-GGML_CALL static void ggml_backend_cann_get_tensor_async(
+static void ggml_backend_cann_get_tensor_async(
ggml_backend_t backend, const ggml_tensor *tensor, void *data,
size_t offset, size_t size) {
ggml_backend_cann_context *cann_ctx =
* @param dst Pointer to the destination tensor to copy data to.
* @return true if the copy operation succeeds, false otherwise.
*/
-GGML_CALL static bool ggml_backend_cann_cpy_tensor_async(
+static bool ggml_backend_cann_cpy_tensor_async(
ggml_backend_t backend_src, ggml_backend_t backend_dst,
const ggml_tensor* src, ggml_tensor* dst) {
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
*
* @param backend Pointer to the CANN backend structure to synchronize.
*/
-GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
+static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
* @return enum ggml_status Returns GGML_STATUS_SUCCESS if computation
* completes successfully, otherwise an appropriate error status.
*/
-GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute(
+static enum ggml_status ggml_backend_cann_graph_compute(
ggml_backend_t backend, ggml_cgraph* cgraph) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
* @return bool Returns true if the operation is supported by the backend,
* otherwise false.
*/
-GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
+static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
const ggml_tensor* op) {
switch (op->op) {
case GGML_OP_UNARY:
* @return bool Returns true if the CANN backend supports the buffer type,
* otherwise false.
*/
-GGML_CALL static bool ggml_backend_cann_supports_buft(
+static bool ggml_backend_cann_supports_buft(
ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (ggml_backend_buft_is_cann(buft)) {
ggml_backend_cann_context * cann_ctx =
* @return bool Returns true if the operation should be offloaded, otherwise
* false.
*/
-GGML_CALL static bool ggml_backend_cann_offload_op(ggml_backend_t backend,
+static bool ggml_backend_cann_offload_op(ggml_backend_t backend,
const ggml_tensor* op) {
const int min_batch_size = 32;
GGML_UNUSED(backend);
/* .supports_op = */ ggml_backend_cann_supports_op,
/* .supports_buft = */ ggml_backend_cann_supports_buft,
/* .offload_op = */ ggml_backend_cann_offload_op,
- /* .event_new = */ ggml_backend_cann_event_new,
- /* .event_free = */ ggml_backend_cann_event_free,
/* .event_record = */ ggml_backend_cann_event_record,
/* .event_wait = */ ggml_backend_cann_event_wait,
- /* .event_synchronize = */ ggml_backend_cann_event_synchronize,
};
/**
return &guid;
}
-GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
+ggml_backend_t ggml_backend_cann_init(int32_t device) {
aclInit(nullptr);
if (device < 0 || device >= ggml_backend_cann_get_device_count()) {
GGML_CANN_LOG_ERROR("%s: error: invalid device %d\n", __func__, device);
ggml_backend_t cann_backend =
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
/* .interface = */ ggml_backend_cann_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx};
return cann_backend;
}
-GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend) {
+bool ggml_backend_is_cann(ggml_backend_t backend) {
return backend != NULL &&
ggml_guid_matches(backend->guid, ggml_backend_cann_guid());
}
-GGML_CALL int32_t ggml_backend_cann_get_device_count() {
+int32_t ggml_backend_cann_get_device_count() {
return ggml_cann_info().device_count;
}
-GGML_CALL void ggml_backend_cann_get_device_description(
+void ggml_backend_cann_get_device_description(
int32_t device, char* description, size_t description_size) {
ggml_cann_set_device(device);
const char* soc_name = aclrtGetSocName();
snprintf(description, description_size, "%s", soc_name);
}
-GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
- size_t* total) {
+void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
+ size_t* total) {
ggml_cann_set_device(device);
ACL_CHECK(aclrtGetMemInfo(ACL_HBM_MEM, free, total));
}
-
-// backend registry
-/**
- * @brief Initializes a CANN backend based on the provided parameters.
- *
- * This function initializes a CANN backend using the device index and then
- * initializes the backend using `ggml_backend_cann_init`.
- *
- * @param params Parameters for initialization (unused in this implementation).
- * @param user_data User data containing the device index to initialize the
- * backend.
- * @return ggml_backend_t The initialized CANN backend.
- */
-GGML_CALL static ggml_backend_t ggml_backend_reg_cann_init(const char* params,
- void* user_data) {
- ggml_backend_t cann_backend =
- ggml_backend_cann_init((int)(intptr_t)user_data);
- return cann_backend;
-
- GGML_UNUSED(params);
-}
-
-extern "C" GGML_CALL int ggml_backend_cann_reg_devices();
-
-/**
- * @brief Registers CANN (Ascend) devices as backend options.
- *
- * This function initializes ACL, retrieves the number of available CANN
- * devices, and registers each device as a backend option using
- * `ggml_backend_register`. Each device is given a unique name based on
- * `GGML_CANN_NAME` followed by its index.
- *
- * @return int The number of CANN devices registered.
- */
-GGML_CALL int ggml_backend_cann_reg_devices() {
- uint32_t device_count = ggml_backend_cann_get_device_count();
- // initialization
- for (uint32_t i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "CANN%d", i);
- ggml_backend_register(name, ggml_backend_reg_cann_init,
- ggml_backend_cann_buffer_type(i),
- (void*)(intptr_t)i);
- }
- return device_count;
-}
int id = -1; // in case cudaGetDevice fails
cudaGetDevice(&id);
- GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg);
+ GGML_CUDA_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
GGML_CUDA_LOG_ERROR(" %s\n", stmt);
- // abort with GGML_ASSERT to get a stack trace
- GGML_ABORT("CUDA error");
+ // abort with GGML_ABORT to get a stack trace
+ GGML_ABORT(GGML_CUDA_NAME " error");
}
// this is faster on Windows
return;
}
}
- GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
+ GGML_CUDA_LOG_WARN(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
ggml_cuda_set_device(device);
CUDA_CHECK(cudaFree(ptr));
pool_size -= size;
}
};
-GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->name.c_str();
}
-GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
+static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
}
-GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
delete ctx;
}
-GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->dev_ptr;
}
-GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
if (tensor->view_src != NULL) {
}
}
-GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
+static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_cuda(src->buffer)) {
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaDeviceSynchronize());
}
-static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
+static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
std::string name;
};
-GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cuda_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_cuda_buffer_type_name;
+ return buft->iface.get_name == ggml_backend_cuda_buffer_type_get_name;
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
ggml_cuda_set_device(buft_ctx->device);
return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
}
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
GGML_UNUSED(buft);
}
-static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_type_name,
+static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .is_host = */ NULL,
};
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
+ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static bool ggml_backend_cuda_buffer_type_initialized = false;
if (!ggml_backend_cuda_buffer_type_initialized) {
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
+ for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) {
ggml_backend_cuda_buffer_types[i] = {
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i),
/* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
};
}
std::vector<ggml_tensor_extra_gpu *> tensor_extras;
};
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buffer);
GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
delete ctx;
}
-GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
return (void *)0x1000;
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
tensor->extra = extra;
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
}
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
// split tensors must always be set in their entirety at once
GGML_ASSERT(offset == 0);
GGML_ASSERT(size == ggml_nbytes(tensor));
}
}
-GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
GGML_UNUSED(buffer);
GGML_UNUSED(value);
}
-static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
+static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
// cuda split buffer type
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buft);
}
static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name;
+ return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_get_name;
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
// instead, we allocate them for each tensor separately in init_tensor
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
}
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
size_t total_size = 0;
return total_size;
}
-GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
GGML_UNUSED(buft);
}
-static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
+static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_split_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
};
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
+ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
struct ggml_backend_buffer_type buft {
/* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
/* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
};
// host buffer type
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Host";
GGML_UNUSED(buft);
}
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Host";
GGML_UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
return ptr;
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr = ggml_cuda_host_malloc(size);
if (ptr == nullptr) {
return buffer;
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
+ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
/* .context = */ nullptr,
};
// backend
-GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
+static const char * ggml_backend_cuda_get_name(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return cuda_ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
+static void ggml_backend_cuda_free(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
delete cuda_ctx;
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return ggml_backend_cuda_buffer_type(cuda_ctx->device);
}
-GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}
-GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}
-GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
return true;
}
-GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
+static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
return true;
}
-GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_cuda_set_device(cuda_ctx->device);
return GGML_STATUS_SUCCESS;
}
-GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
+static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+
+ CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
+}
+
+static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+
+ if (ggml_backend_is_cuda(backend)) {
+ CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
+ } else {
+#if 0
+ // untested
+ auto wait_fn = [](void * user_data) {
+ ggml_backend_event_t event = (ggml_backend_event_t)user_data;
+ ggml_backend_event_synchronize(event);
+ };
+
+ CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
+#endif
+ GGML_ABORT("fatal error");
+ }
+}
+
+static const ggml_backend_i ggml_backend_cuda_interface = {
+ /* .get_name = */ ggml_backend_cuda_get_name,
+ /* .free = */ ggml_backend_cuda_free,
+ /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
+ /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
+ /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
+ /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
+ /* .synchronize = */ ggml_backend_cuda_synchronize,
+ /* .graph_plan_create = */ NULL,
+ /* .graph_plan_free = */ NULL,
+ /* .graph_plan_update = */ NULL,
+ /* .graph_plan_compute = */ NULL,
+ /* .graph_compute = */ ggml_backend_cuda_graph_compute,
+ /* .supports_op = */ NULL, // moved to device
+ /* .supports_buft = */ NULL, // moved to device
+ /* .offload_op = */ NULL, // moved to device
+ /* .event_record = */ ggml_backend_cuda_event_record,
+ /* .event_wait = */ ggml_backend_cuda_event_wait,
+};
+
+static ggml_guid_t ggml_backend_cuda_guid() {
+ static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
+ return &guid;
+}
+
+bool ggml_backend_is_cuda(ggml_backend_t backend) {
+ return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
+}
+
+int ggml_backend_cuda_get_device_count() {
+ return ggml_cuda_info().device_count;
+}
+
+void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
+ cudaDeviceProp prop;
+ CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
+ snprintf(description, description_size, "%s", prop.name);
+}
+
+void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
+ ggml_cuda_set_device(device);
+
+ CUDA_CHECK(cudaMemGetInfo(free, total));
+}
+
+bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
+ if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
+ return false;
+ }
+
+#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
+ cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
+ if (err != cudaSuccess) {
+ // clear the error
+ cudaGetLastError();
+
+ GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
+ size / 1024.0 / 1024.0, cudaGetErrorString(err));
+ return false;
+ }
+ return true;
+#else
+ return false;
+#endif
+}
+
+void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
+ if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
+ return;
+ }
+
+ cudaError_t err = cudaHostUnregister(buffer);
+ if (err != cudaSuccess) {
+ // clear the error
+ cudaGetLastError();
+ }
+}
+
+
+// backend device
+
+struct ggml_backend_cuda_device_context {
+ int device;
+ std::string name;
+ std::string description;
+};
+
+static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ctx->name.c_str();
+}
+
+static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ctx->description.c_str();
+}
+
+static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ ggml_cuda_set_device(ctx->device);
+ CUDA_CHECK(cudaMemGetInfo(free, total));
+}
+
+static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) {
+ GGML_UNUSED(dev);
+ return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
+}
+
+static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
+ props->name = ggml_backend_cuda_device_get_name(dev);
+ props->description = ggml_backend_cuda_device_get_description(dev);
+ props->type = ggml_backend_cuda_device_get_type(dev);
+ ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
+
+ bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
+#ifdef GGML_CUDA_NO_PEER_COPY
+ bool events = false;
+#else
+ bool events = true;
+#endif
+
+ props->caps = {
+ /* async */ true,
+ /* host_buffer */ host_buffer,
+ /* events */ events,
+ };
+}
+
+static ggml_backend_t ggml_backend_cuda_device_init(ggml_backend_dev_t dev, const char * params) {
+ GGML_UNUSED(params);
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ggml_backend_cuda_init(ctx->device);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_buffer_type(ggml_backend_dev_t dev) {
+ ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
+ return ggml_backend_cuda_buffer_type(ctx->device);
+}
+
+static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(ggml_backend_dev_t dev) {
+ GGML_UNUSED(dev);
+ return ggml_backend_cuda_host_buffer_type();
+}
+
+static ggml_backend_buffer_t ggml_backend_cuda_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
+ GGML_UNUSED(dev);
+ GGML_UNUSED(ptr);
+ GGML_UNUSED(size);
+ GGML_UNUSED(max_tensor_size);
+ return nullptr;
+}
+
+// TODO: move these functions here
+static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
+ ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
+
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
return true;
}
- const int cc = ggml_cuda_info().devices[cuda_ctx->device].cc;
+ const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
}
case GGML_OP_CROSS_ENTROPY_LOSS:
default:
return false;
}
-
- GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
if (ggml_backend_buft_is_cuda_split(buft)) {
return true;
}
if (ggml_backend_buft_is_cuda(buft)) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+ ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- return buft_ctx->device == cuda_ctx->device;
+ return buft_ctx->device == dev_ctx->device;
}
return false;
}
-GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
- GGML_UNUSED(backend);
+ GGML_UNUSED(dev);
}
-static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
+static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
#ifdef GGML_CUDA_NO_PEER_COPY
return nullptr;
#else
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+ ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
- ggml_cuda_set_device(cuda_ctx->device);
+ ggml_cuda_set_device(dev_ctx->device);
cudaEvent_t event;
CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
return new ggml_backend_event {
- /* .backend = */ backend,
+ /* .device = */ dev,
/* .context = */ event,
};
#endif
}
-static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
- CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
+static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
+ GGML_UNUSED(dev);
+ CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
delete event;
}
-static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
+static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
+ GGML_UNUSED(dev);
+ CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
+}
+
+static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
+ /* .get_name = */ ggml_backend_cuda_device_get_name,
+ /* .get_description = */ ggml_backend_cuda_device_get_description,
+ /* .get_memory = */ ggml_backend_cuda_device_get_memory,
+ /* .get_type = */ ggml_backend_cuda_device_get_type,
+ /* .get_props = */ ggml_backend_cuda_device_get_props,
+ /* .init_backend = */ ggml_backend_cuda_device_init,
+ /* .get_buffer_type = */ ggml_backend_cuda_device_get_buffer_type,
+ /* .get_host_buffer_type = */ ggml_backend_cuda_device_get_host_buffer_type,
+ /* .buffer_from_host_ptr = */ ggml_backend_cuda_device_buffer_from_host_ptr,
+ /* .supports_op = */ ggml_backend_cuda_device_supports_op,
+ /* .supports_buft = */ ggml_backend_cuda_device_supports_buft,
+ /* .offload_op = */ ggml_backend_cuda_device_offload_op,
+ /* .event_new = */ ggml_backend_cuda_device_event_new,
+ /* .event_free = */ ggml_backend_cuda_device_event_free,
+ /* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
+};
- CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
+// backend reg
+
+struct ggml_backend_cuda_reg_context {
+ std::vector<ggml_backend_dev_t> devices;
+};
+
+static const char * ggml_backend_cuda_reg_get_name(ggml_backend_reg_t reg) {
+ GGML_UNUSED(reg);
+ return GGML_CUDA_NAME;
}
-static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) {
+ ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
+ return ctx->devices.size();
+}
- if (ggml_backend_is_cuda(event->backend)) {
- CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
- } else {
-#if 0
- // untested
- auto wait_fn = [](void * user_data) {
- ggml_backend_event_t event = (ggml_backend_event_t)user_data;
- ggml_backend_event_synchronize(event);
- };
+static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) {
+ ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
+ GGML_ASSERT(index < ctx->devices.size());
+ return ctx->devices[index];
+}
- CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
-#endif
- GGML_ABORT("fatal error");
+static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
+ GGML_UNUSED(reg);
+ if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
+ return (void *)ggml_backend_cuda_split_buffer_type;
+ }
+ if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
+ return (void *)ggml_backend_cuda_register_host_buffer;
}
+ if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
+ return (void *)ggml_backend_cuda_unregister_host_buffer;
+ }
+ return nullptr;
}
-static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
- CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
+static void ggml_backend_cuda_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data) {
+ GGML_UNUSED(reg);
+ ggml_backend_cuda_log_set_callback(log_callback, user_data);
}
-static ggml_backend_i ggml_backend_cuda_interface = {
- /* .get_name = */ ggml_backend_cuda_name,
- /* .free = */ ggml_backend_cuda_free,
- /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
- /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
- /* .synchronize = */ ggml_backend_cuda_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_cuda_graph_compute,
- /* .supports_op = */ ggml_backend_cuda_supports_op,
- /* .supports_buft = */ ggml_backend_cuda_supports_buft,
- /* .offload_op = */ ggml_backend_cuda_offload_op,
- /* .event_new = */ ggml_backend_cuda_event_new,
- /* .event_free = */ ggml_backend_cuda_event_free,
- /* .event_record = */ ggml_backend_cuda_event_record,
- /* .event_wait = */ ggml_backend_cuda_event_wait,
- /* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
+static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = {
+ /* .get_name = */ ggml_backend_cuda_reg_get_name,
+ /* .get_device_count = */ ggml_backend_cuda_reg_get_device_count,
+ /* .get_device_get = */ ggml_backend_cuda_reg_get_device,
+ /* .get_proc_address = */ ggml_backend_cuda_reg_get_proc_address,
+ /* .set_log_callback = */ ggml_backend_cuda_reg_set_log_callback,
};
-static ggml_guid_t ggml_backend_cuda_guid() {
- static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
- return &guid;
+// backend registry
+ggml_backend_reg_t ggml_backend_cuda_reg() {
+ static ggml_backend_reg reg;
+ static bool initialized = false;
+
+ {
+ static std::mutex mutex;
+ std::lock_guard<std::mutex> lock(mutex);
+ if (!initialized) {
+ ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
+
+ for (int i = 0; i < ggml_cuda_info().device_count; i++) {
+ ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
+ dev_ctx->device = i;
+ dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
+
+ ggml_cuda_set_device(i);
+ cudaDeviceProp prop;
+ CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
+ dev_ctx->description = prop.name;
+
+ ggml_backend_dev_t dev = new ggml_backend_device {
+ /* .interface = */ ggml_backend_cuda_device_interface,
+ /* .reg = */ ®,
+ /* .context = */ dev_ctx
+ };
+ ctx->devices.push_back(dev);
+ }
+
+ reg = ggml_backend_reg {
+ /* .interface = */ ggml_backend_cuda_reg_interface,
+ /* .context = */ ctx
+ };
+ }
+
+ initialized = true;
+ }
+
+ return ®
}
-GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
+ggml_backend_t ggml_backend_cuda_init(int device) {
if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
GGML_CUDA_LOG_ERROR("%s: invalid device %d\n", __func__, device);
return nullptr;
ggml_backend_t cuda_backend = new ggml_backend {
/* .guid = */ ggml_backend_cuda_guid(),
/* .interface = */ ggml_backend_cuda_interface,
- /* .context = */ ctx
+ /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
+ /* .context = */ ctx,
};
return cuda_backend;
}
-
-GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
-}
-
-GGML_CALL int ggml_backend_cuda_get_device_count() {
- return ggml_cuda_info().device_count;
-}
-
-GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
- snprintf(description, description_size, "%s", prop.name);
-}
-
-GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
- ggml_cuda_set_device(device);
-
- CUDA_CHECK(cudaMemGetInfo(free, total));
-}
-
-GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return false;
- }
-
-#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
- cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
-
- GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
- size / 1024.0 / 1024.0, cudaGetErrorString(err));
- return false;
- }
- return true;
-#else
- return false;
-#endif
-}
-
-GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return;
- }
-
- cudaError_t err = cudaHostUnregister(buffer);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- }
-}
-
-// backend registry
-GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
- ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
- return cuda_backend;
-
- GGML_UNUSED(params);
-}
-
-extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
-
-GGML_CALL int ggml_backend_cuda_reg_devices() {
- int device_count = ggml_backend_cuda_get_device_count();
- //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
- for (int i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
- }
- return device_count;
-}
for (const auto & dev : devices) {
vec.push_back({
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
});
}
/* .supports_op = */ ggml_backend_kompute_supports_op,
/* .supports_buft = */ ggml_backend_kompute_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_kompute_guid() {
ggml_backend_t kompute_backend = new ggml_backend {
/* .guid = */ ggml_backend_kompute_guid(),
/* .interface = */ kompute_backend_i,
+ /* .device = */ nullptr,
/* .context = */ s_kompute_context,
};
bool ggml_backend_is_kompute(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
}
-
-static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
- GGML_UNUSED(params);
- return ggml_backend_kompute_init(intptr_t(user_data));
-}
-
-extern "C" int ggml_backend_kompute_reg_devices();
-
-int ggml_backend_kompute_reg_devices() {
- auto devices = ggml_vk_available_devices_internal(0);
- for (const auto & device : devices) {
- ggml_backend_register(
- ggml_kompute_format_name(device.index).c_str(),
- ggml_backend_reg_kompute_init,
- ggml_backend_kompute_buffer_type(device.index),
- reinterpret_cast<void *>(intptr_t(device.index))
- );
- }
- return devices.size();
-}
}
}
-GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
return "Metal";
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
for (int i = 0; i < ctx->n_buffers; i++) {
free(ctx);
}
-GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
return ctx->all_data;
}
-GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
UNUSED(buffer);
}
-GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
+static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
memset(ctx->all_data, value, ctx->all_size);
// default buffer type
-GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "Metal";
UNUSED(buft);
UNUSED(size_aligned);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
const size_t size_page = sysconf(_SC_PAGESIZE);
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
}
-GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 32;
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
id<MTLDevice> device = ggml_backend_metal_get_device();
size_t max_size = device.maxBufferLength;
ggml_backend_metal_free_device();
UNUSED(buft);
}
-GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
UNUSED(buft);
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
+ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
},
+ /* .device = */ NULL,
/* .context = */ NULL,
};
// buffer from ptr
-GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
+ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
ctx->all_data = data;
// backend
-GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) {
+static const char * ggml_backend_metal_name(ggml_backend_t backend) {
return "Metal";
UNUSED(backend);
}
-GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) {
+static void ggml_backend_metal_free(ggml_backend_t backend) {
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
ggml_metal_free(ctx);
free(backend);
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_metal_buffer_type();
UNUSED(backend);
}
-GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
return ggml_metal_graph_compute(metal_ctx, cgraph);
}
-GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
+static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
return ggml_metal_supports_op(metal_ctx, op);
}
-GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name;
UNUSED(backend);
/* .supports_op = */ ggml_backend_metal_supports_op,
/* .supports_buft = */ ggml_backend_metal_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
*backend = (struct ggml_backend) {
/* .guid = */ ggml_backend_metal_guid(),
/* .interface = */ ggml_backend_metal_i,
+ /* .device = */ NULL,
/* .context = */ ctx,
};
ctx->capture_next_compute = true;
}
-GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
+ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
-GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
+ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
return ggml_backend_metal_init();
GGML_UNUSED(params);
return sock;
}
-GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | remote_ptr (8 bytes) |
std::vector<uint8_t> input(sizeof(uint64_t), 0);
delete ctx;
}
-GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
return ctx->base_cache[buffer];
return result;
}
-GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
UNUSED(buffer);
if (ggml_is_quantized(tensor->type)) {
// TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
}
}
-GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
GGML_ASSERT(status);
}
-GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
memcpy(data, output.data(), size);
}
-GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
// check if src and dst are on the same server
ggml_backend_buffer_t src_buffer = src->buffer;
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
return output[0];
}
-GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// serialization format: | bufptr (8 bytes) | value (1 byte) |
int input_size = sizeof(uint64_t) + sizeof(uint8_t);
/* .reset = */ NULL,
};
-GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->name.c_str();
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
// input serialization format: | size (8 bytes) |
int input_size = sizeof(uint64_t);
return alignment;
}
-GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->alignment;
}
return max_size;
}
-GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
return buft_ctx->max_size;
}
-GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
UNUSED(buft);
return ggml_nbytes(tensor);
}
/* .is_host = */ NULL,
};
-GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
+static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return rpc_ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
+static void ggml_backend_rpc_free(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
delete rpc_ctx;
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
}
-GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
+static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
UNUSED(backend);
// this is no-op because we don't have any async operations
}
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
}
-GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
std::vector<uint8_t> input;
serialize_graph(cgraph, input);
return (enum ggml_status)output[0];
}
-GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
UNUSED(backend);
UNUSED(op);
//TODO: call the remote backend and cache the results
return true;
}
-GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
return false;
}
/* .supports_op = */ ggml_backend_rpc_supports_op,
/* .supports_buft = */ ggml_backend_rpc_supports_buft,
/* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
-GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
+GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
// NOTE: buffer types are allocated and never freed; this is by design
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ buft_ctx
};
buft_map[endpoint] = buft;
return buft;
}
-GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
+ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx
};
return backend;
}
-GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
+GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
}
*total = total_mem;
}
-GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
+GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
auto sock = get_socket(endpoint);
if (sock == nullptr) {
*free = 0;
return true;
}
-GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
+GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
for(int i=0;i<max_len;i++) id_list[i] = -1;
std::exit(1);
}
-GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
+GGML_API void ggml_sycl_get_device_description(int device, char *description,
size_t description_size) try {
GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_device_description\n");
dpct::device_info prop;
std::exit(1);
}
-GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free,
+void ggml_backend_sycl_get_device_memory(int device, size_t *free,
size_t *total) try {
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
ggml_sycl_set_device(device);
}
};
-GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
return ctx->name.c_str();
}
-GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
+static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
}
return ctx->dev_ptr;
}
-GGML_CALL static void
+static void
ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor) try {
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
std::exit(1);
}
-GGML_CALL static bool
+static bool
ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *src,
ggml_tensor *dst) try {
queue_ptr stream = nullptr;
};
-GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
-GGML_CALL static ggml_backend_buffer_t
+static ggml_backend_buffer_t
ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) try {
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
std::exit(1);
}
-GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
UNUSED(buft);
}
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
queue_ptr stream = &(device_i.default_queue());
ggml_backend_sycl_buffer_types[i] = {
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
};
}
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
ggml_backend_sycl_buffer_types[i] = {
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
};
}
std::vector<queue_ptr> streams;
};
-GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
return GGML_SYCL_NAME "_Split";
UNUSED(buffer);
return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
}
-GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
delete ctx;
}
-GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
return (void *)0x1000;
UNUSED(buffer);
}
-GGML_CALL static void
+static void
ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor) try {
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
std::exit(1);
}
-GGML_CALL static void
+static void
ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor, const void *data,
size_t offset, size_t size) try {
std::exit(1);
}
-GGML_CALL static void
+static void
ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *tensor, void *data,
size_t offset, size_t size) try {
std::exit(1);
}
-GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
UNUSED(buffer);
UNUSED(value);
}
/* .reset = */ NULL,
};
-GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_SYCL_NAME "_Split";
UNUSED(buft);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
// instead, we allocate them for each tensor separately in init_tensor
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
}
-GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return 128;
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
size_t total_size = 0;
return total_size;
}
-GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return false;
UNUSED(buft);
/* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
};
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
+ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
struct ggml_backend_buffer_type buft {
/* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
};
// host buffer type
-GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_SYCL_NAME "_Host";
UNUSED(buft);
}
-GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_SYCL_NAME "_Host";
UNUSED(buffer);
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ nullptr,
/* .context = */ nullptr,
};
// backend
-GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
+static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
return sycl_ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
+static void ggml_backend_sycl_free(ggml_backend_t backend) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
delete sycl_ctx;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
return ggml_backend_sycl_buffer_type(sycl_ctx->device);
}
-GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
+static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
ggml_tensor *tensor,
const void *data, size_t offset,
size_t size) try {
std::exit(1);
}
-GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
+static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
const ggml_tensor *tensor,
void *data, size_t offset,
size_t size) try {
std::exit(1);
}
-GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
- const ggml_tensor *src,
- ggml_tensor *dst) try {
+static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
+ const ggml_tensor *src,
+ ggml_tensor *dst) try {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
/*
std::exit(1);
}
-GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
ggml_sycl_set_main_device(sycl_ctx->device);
return GGML_STATUS_SUCCESS;
}
-GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_CONV_TRANSPOSE_1D:
{
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
GGML_UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
return false;
}
/* .supports_op = */ ggml_backend_sycl_supports_op,
/* .supports_buft = */ ggml_backend_sycl_supports_buft,
/* .offload_op = */ ggml_backend_sycl_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_sycl_guid() {
return &guid;
}
-GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
+ggml_backend_t ggml_backend_sycl_init(int device) {
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
ggml_check_sycl();
ggml_backend_t sycl_backend = new ggml_backend {
/* .guid = */ ggml_backend_sycl_guid(),
/* .interface = */ ggml_backend_sycl_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx
};
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
}
-GGML_CALL int ggml_backend_sycl_get_device_count() {
+int ggml_backend_sycl_get_device_count() {
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
return ggml_sycl_info().device_count;
}
-
-GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
- ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
- return sycl_backend;
-
- UNUSED(params);
-}
-
-extern "C" int ggml_backend_sycl_reg_devices();
-
-int ggml_backend_sycl_reg_devices() {
- assert(ggml_sycl_info().device_count>0);
- for (int i = 0; i < ggml_sycl_info().device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
- }
- return ggml_sycl_info().device_count;
-}
vk_device device;
};
-GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
-GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
+static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
+static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
+static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
+static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
+static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
/* .get_name = */ ggml_backend_vk_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
-GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend);
+static void ggml_backend_vk_free(ggml_backend_t backend);
// variables to track number of compiles in progress
static uint32_t compile_count = 0;
device->buffer_type = {
/* .iface = */ ggml_backend_vk_buffer_type_interface,
+ /* .device = */ nullptr,
/* .context = */ new ggml_backend_vk_buffer_type_context{ device->name, device },
};
ctx->device->device.destroyFence(ctx->fence);
}
-GGML_CALL static int ggml_vk_get_device_count() {
+static int ggml_vk_get_device_count() {
ggml_vk_instance_init();
return vk_instance.device_indices.size();
}
-GGML_CALL static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
+static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
ggml_vk_instance_init();
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
// device backend
-GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
return ctx->name.c_str();
}
-GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
+static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_vk_buffer_get_name;
}
-GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()");
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
}
-GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
+static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
return vk_ptr_base;
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")");
if (tensor->view_src != nullptr) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
}
}
-GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
vk_buffer buf = buf_ctx->dev_buffer;
ggml_vk_buffer_write(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_buffer_read(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_vk(src->buffer)) {
ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size);
};
// vk buffer type
-GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")");
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size);
}
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ctx->device->properties.limits.minStorageBufferOffsetAlignment;
}
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
return ctx->device->max_memory_allocation_size;
}
-GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(buft);
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
+ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
ggml_vk_instance_init();
VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")");
// host buffer type
-GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
return GGML_VK_NAME "_Host";
UNUSED(buft);
}
-GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
+static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_VK_NAME "_Host";
UNUSED(buffer);
}
-GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")");
size += 32; // Behave like the CPU buffer type
UNUSED(buft);
}
-GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment;
UNUSED(buft);
// Should be changed to return device-specific host buffer type
// but that probably requires changes in llama.cpp
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
+ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
/* .iface = */ {
/* .get_name = */ ggml_backend_vk_host_buffer_type_name,
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
},
+ /* .device = */ nullptr,
/* .context = */ nullptr,
};
// backend
-GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) {
+static const char * ggml_backend_vk_name(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
return ctx->name.c_str();
}
-GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
+static void ggml_backend_vk_free(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")");
delete backend;
}
-GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
+static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
return &ctx->device->buffer_type;
}
-GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
ggml_vk_buffer_write_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
ggml_vk_buffer_read_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
}
-GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
+static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
return false;
}
-GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
+static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
if(ctx->transfer_ctx.expired()) {
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
}
-GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
+static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
// ggml_backend_vk_context * ctx = (ggml_backend_vk_context *) backend->context;
switch (op->op) {
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
+static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
UNUSED(backend);
}
-GGML_CALL static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
+static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) {
return false;
}
/* .supports_op = */ ggml_backend_vk_supports_op,
/* .supports_buft = */ ggml_backend_vk_supports_buft,
/* .offload_op = */ ggml_backend_vk_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_vk_guid() {
return &guid;
}
-GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
+ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")");
ggml_backend_vk_context * ctx = new ggml_backend_vk_context;
ggml_backend_t vk_backend = new ggml_backend {
/* .guid = */ ggml_backend_vk_guid(),
/* .interface = */ ggml_backend_vk_interface,
+ /* .device = */ nullptr,
/* .context = */ ctx,
};
return vk_backend;
}
-GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
+bool ggml_backend_is_vk(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
}
-GGML_CALL int ggml_backend_vk_get_device_count() {
+int ggml_backend_vk_get_device_count() {
return ggml_vk_get_device_count();
}
-GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
+void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
ggml_vk_get_device_description(device, description, description_size);
}
-GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
+void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
GGML_ASSERT(device < (int) vk_instance.device_indices.size());
vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]];
}
}
-// backend registry
-GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) {
- ggml_backend_t vk_backend = ggml_backend_vk_init((int) (intptr_t) user_data);
- return vk_backend;
-
- UNUSED(params);
-}
-
-extern "C" GGML_CALL int ggml_backend_vk_reg_devices();
-
-GGML_CALL int ggml_backend_vk_reg_devices() {
- ggml_vk_instance_init();
-
- for (size_t i = 0; i < vk_instance.device_indices.size(); i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%ld", GGML_VK_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_vk_init, ggml_backend_vk_buffer_type(i), (void *) (intptr_t) i); // NOLINT
- }
- return vk_instance.device_indices.size();
-}
-
// Extension availability
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
#ifdef GGML_VULKAN_VALIDATE
} ggml_arm_arch_features = {-1, -1, -1, 0};
#endif
-GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
+const char * ggml_status_to_string(enum ggml_status status) {
switch (status) {
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
GGML_PRINT("%s: --- end ---\n", __func__);
}
-GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
+int64_t ggml_nelements(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
-GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
+int64_t ggml_nrows(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
-GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
+size_t ggml_nbytes(const struct ggml_tensor * tensor) {
size_t nbytes;
size_t blck_size = ggml_blck_size(tensor->type);
if (blck_size == 1) {
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
}
-GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
+int64_t ggml_blck_size(enum ggml_type type) {
return type_traits[type].blck_size;
}
-GGML_CALL size_t ggml_type_size(enum ggml_type type) {
+size_t ggml_type_size(enum ggml_type type) {
return type_traits[type].type_size;
}
-GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
+size_t ggml_row_size(enum ggml_type type, int64_t ne) {
assert(ne % ggml_blck_size(type) == 0);
return ggml_type_size(type)*ne/ggml_blck_size(type);
}
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
}
-GGML_CALL const char * ggml_type_name(enum ggml_type type) {
+const char * ggml_type_name(enum ggml_type type) {
return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
}
-GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
+bool ggml_is_quantized(enum ggml_type type) {
return type_traits[type].is_quantized;
}
-GGML_CALL const char * ggml_op_name(enum ggml_op op) {
+const char * ggml_op_name(enum ggml_op op) {
return GGML_OP_NAME[op];
}
return GGML_UNARY_OP_NAME[op];
}
-GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
+const char * ggml_op_desc(const struct ggml_tensor * t) {
if (t->op == GGML_OP_UNARY) {
enum ggml_unary_op uop = ggml_get_unary_op(t);
return ggml_unary_op_name(uop);
return ggml_op_name(t->op);
}
-GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
+size_t ggml_element_size(const struct ggml_tensor * tensor) {
return ggml_type_size(tensor->type);
}
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
}
-GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
+bool ggml_is_transposed(const struct ggml_tensor * tensor) {
return tensor->nb[0] > tensor->nb[1];
}
return true;
}
-GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_0(tensor);
}
-GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 0);
}
-GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 1);
}
-GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
+bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
return ggml_is_contiguous_n(tensor, 2);
}
-GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
+bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
-GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
+bool ggml_is_empty(const struct ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
if (tensor->ne[i] == 0) {
// empty if any dimension has no elements
return (float *)(tensor->data);
}
-GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
+enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
}
GGML_TENSOR_BINARY_OP_LOCALS
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+
const int ith = params->ith;
const int nth = params->nth;
}
}
-GGML_CALL void ggml_rope_yarn_corr_dims(
+void ggml_rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
// start and end correction dims
# src/ggml-aarch64.h -> ggml/src/ggml-aarch64.h
# src/ggml-alloc.c -> ggml/src/ggml-alloc.c
# src/ggml-backend-impl.h -> ggml/src/ggml-backend-impl.h
- # src/ggml-backend.c -> ggml/src/ggml-backend.c
+ # src/ggml-backend.cpp -> ggml/src/ggml-backend.cpp
# src/ggml-cann/* -> ggml/src/ggml-cann/
# src/ggml-cann.cpp -> ggml/src/ggml-cann.cpp
# src/ggml-common.h -> ggml/src/ggml-common.h
-e 's/([[:space:]]|[ab]\/)src\/ggml-aarch64\.h/\1ggml\/src\/ggml-aarch64.h/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-alloc\.c/\1ggml\/src\/ggml-alloc.c/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-backend-impl\.h/\1ggml\/src\/ggml-backend-impl.h/g' \
- -e 's/([[:space:]]|[ab]\/)src\/ggml-backend\.c/\1ggml\/src\/ggml-backend.c/g' \
+ -e 's/([[:space:]]|[ab]\/)src\/ggml-backend\.cpp/\1ggml\/src\/ggml-backend.cpp/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-cann\//\1ggml\/src\/ggml-cann\//g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-cann\.cpp/\1ggml\/src\/ggml-cann.cpp/g' \
-e 's/([[:space:]]|[ab]\/)src\/ggml-common\.h/\1ggml\/src\/ggml-common.h/g' \
cp -rpv ../ggml/src/ggml-aarch64.h ./ggml/src/ggml-aarch64.h
cp -rpv ../ggml/src/ggml-alloc.c ./ggml/src/ggml-alloc.c
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml/src/ggml-backend-impl.h
-cp -rpv ../ggml/src/ggml-backend.c ./ggml/src/ggml-backend.c
+cp -rpv ../ggml/src/ggml-backend.cpp ./ggml/src/ggml-backend.cpp
cp -rpv ../ggml/src/ggml-cann/* ./ggml/src/ggml-cann/
cp -rpv ../ggml/src/ggml-cann.cpp ./ggml/src/ggml-cann.cpp
cp -rpv ../ggml/src/ggml-common.h ./ggml/src/ggml-common.h
# include "ggml-rpc.h"
#endif
-#ifdef GGML_USE_CUDA
-# include "ggml-cuda.h"
-#elif defined(GGML_USE_VULKAN)
+#if defined(GGML_USE_VULKAN)
# include "ggml-vulkan.h"
#elif defined(GGML_USE_SYCL)
# include "ggml-sycl.h"
return piece;
}
-static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
- ggml_backend_buffer_type_t buft = nullptr;
-
-#if defined(GGML_USE_CUDA)
- // host buffers should only be used when data is expected to be copied to/from the GPU
- if (host_buffer) {
- buft = ggml_backend_cuda_host_buffer_type();
- }
-#elif defined(GGML_USE_SYCL)
- if (host_buffer) {
- buft = ggml_backend_sycl_host_buffer_type();
- }
-#elif defined(GGML_USE_CANN)
- if (host_buffer) {
- buft = ggml_backend_cann_host_buffer_type();
- }
-#elif defined(GGML_USE_CPU_HBM)
- buft = ggml_backend_cpu_hbm_buffer_type();
-#elif defined(GGML_USE_VULKAN)
- if (host_buffer) {
- buft = ggml_backend_vk_host_buffer_type();
- }
-#endif
-
- if (buft == nullptr) {
- buft = ggml_backend_cpu_buffer_type();
- }
- return buft;
-
- GGML_UNUSED(host_buffer);
-}
-
//
// globals
//
struct llama_state {
llama_state() {
-#ifdef GGML_USE_METAL
- ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
-#elif defined(GGML_USE_CUDA)
- ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
-#elif defined(GGML_USE_CANN)
- ggml_backend_cann_log_set_callback(log_callback, log_callback_user_data);
-#endif
+ llama_log_set(log_callback, log_callback_user_data);
}
// We save the log callback globally
std::vector<llama_layer> layers;
+ // gguf metadata
+ std::unordered_map<std::string, std::string> gguf_kv;
+
llama_split_mode split_mode;
int main_gpu;
int n_gpu_layers;
- std::vector<std::string> rpc_servers;
+ // list of devices used in this model
+ std::vector<ggml_backend_dev_t> devices;
- // gguf metadata
- std::unordered_map<std::string, std::string> gguf_kv;
+ std::vector<std::string> rpc_servers;
// layer -> buffer type mapping
struct layer_buft {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
-#ifdef GGML_USE_CUDA
- if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
- ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
- }
-#endif
ggml_backend_buffer_free(buf);
}
while (!lora_adapters.empty()) {
}
};
-static size_t llama_get_device_count(const llama_model & model) {
- size_t count = 1;
-#if defined(GGML_USE_CUDA)
- count = ggml_backend_cuda_get_device_count();
+static int llama_get_device_count(const llama_model & model) {
+ int count = (int) model.devices.size();
+
+#if defined(GGML_USE_RPC)
+ count += (int) model.rpc_servers.size();
+#endif
+
+#if defined(GGML_USE_METAL)
+ count += 1;
#elif defined(GGML_USE_SYCL)
- count = ggml_backend_sycl_get_device_count();
+ count += ggml_backend_sycl_get_device_count();
#elif defined(GGML_USE_VULKAN)
- count = ggml_backend_vk_get_device_count();
+ count += ggml_backend_vk_get_device_count();
#elif defined(GGML_USE_CANN)
- return ggml_backend_cann_get_device_count();
-#endif
-#if defined(GGML_USE_RPC)
- count += model.rpc_servers.size();
+ count += ggml_backend_cann_get_device_count();
#endif
+
return count;
+
GGML_UNUSED(model);
}
-static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
+static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(const llama_model & model, bool host_buffer) {
ggml_backend_buffer_type_t buft = nullptr;
-#ifdef GGML_USE_RPC
- int rpc_count = (int)model.rpc_servers.size();
-#else
- int rpc_count = 0;
+ if (host_buffer) {
+ for (auto * dev : model.devices) {
+ buft = ggml_backend_dev_host_buffer_type(dev);
+ if (buft != nullptr) {
+ break;
+ }
+ }
+ }
+
+#if defined(GGML_USE_SYCL)
+ if (host_buffer) {
+ buft = ggml_backend_sycl_host_buffer_type();
+ }
+#elif defined(GGML_USE_CANN)
+ if (host_buffer) {
+ buft = ggml_backend_cann_host_buffer_type();
+ }
+#elif defined(GGML_USE_CPU_HBM)
+ buft = ggml_backend_cpu_hbm_buffer_type();
+#elif defined(GGML_USE_VULKAN)
+ if (host_buffer) {
+ buft = ggml_backend_vk_host_buffer_type();
+ }
#endif
- int local_gpu = gpu - rpc_count;
+
+ if (buft == nullptr) {
+ buft = ggml_backend_cpu_buffer_type();
+ }
+ return buft;
+
+ GGML_UNUSED(host_buffer);
+}
+
+static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int device) {
+ ggml_backend_buffer_type_t buft = nullptr;
+
#if defined(GGML_USE_RPC)
- if (gpu < rpc_count) {
- const char * endpoint = model.rpc_servers[gpu].c_str();
+ int rpc_count = (int)model.rpc_servers.size();
+ if (device < rpc_count) {
+ const char * endpoint = model.rpc_servers[device].c_str();
return ggml_backend_rpc_buffer_type(endpoint);
}
+ device -= rpc_count;
#endif
+
+ if (device < (int)model.devices.size()) {
+ return ggml_backend_dev_buffer_type(model.devices[device]);
+ }
+ device -= (int)model.devices.size();
+
#if defined(GGML_USE_METAL)
buft = ggml_backend_metal_buffer_type();
-#elif defined(GGML_USE_CUDA)
- buft = ggml_backend_cuda_buffer_type(local_gpu);
#elif defined(GGML_USE_VULKAN)
- buft = ggml_backend_vk_buffer_type(local_gpu);
+ buft = ggml_backend_vk_buffer_type(device);
#elif defined(GGML_USE_SYCL)
- buft = ggml_backend_sycl_buffer_type(local_gpu);
+ buft = ggml_backend_sycl_buffer_type(device);
#elif defined(GGML_USE_KOMPUTE)
- buft = ggml_backend_kompute_buffer_type(local_gpu);
- if (buft == nullptr) {
- LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, local_gpu);
- }
+ buft = ggml_backend_kompute_buffer_type(device);
#elif defined(GGML_USE_CANN)
- buft = ggml_backend_cann_buffer_type(local_gpu);
+ buft = ggml_backend_cann_buffer_type(device);
#endif
if (buft == nullptr) {
- buft = llama_default_buffer_type_cpu(true);
+ buft = llama_default_buffer_type_cpu(model, true);
}
return buft;
+
GGML_UNUSED(model);
- GGML_UNUSED(local_gpu);
}
static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
ggml_backend_buffer_type_t buft = nullptr;
-#ifdef GGML_USE_CUDA
- if (ggml_backend_cuda_get_device_count() > 1) {
- buft = ggml_backend_cuda_split_buffer_type(tensor_split);
+ // find a backend that supports split buffers
+ for (size_t i = 0; i < ggml_backend_reg_count(); ++i) {
+ ggml_backend_reg_t reg = ggml_backend_reg_get(i);
+
+ auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
+ if (ggml_backend_split_buffer_type_fn) {
+ buft = ggml_backend_split_buffer_type_fn(tensor_split);
+ if (buft != nullptr) {
+ break;
+ }
+ }
}
-#endif
#ifdef GGML_USE_SYCL
if (ggml_backend_sycl_get_device_count() > 1) {
}
static size_t llama_get_device_memory(const llama_model & model, int device) {
-#ifdef GGML_USE_RPC
- int rpc_count = (int)model.rpc_servers.size();
-#else
- int rpc_count = 0;
-#endif
- int local_device = device - rpc_count;
#if defined(GGML_USE_RPC)
+ int rpc_count = (int)model.rpc_servers.size();
if (device < rpc_count) {
size_t total;
size_t free;
ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
return free;
}
+ device = device - rpc_count;
#endif
-#if defined(GGML_USE_CUDA)
- size_t total;
- size_t free;
- ggml_backend_cuda_get_device_memory(local_device, &free, &total);
- return free;
-#elif defined(GGML_USE_SYCL)
+
+ if (device < (int)model.devices.size()) {
+ ggml_backend_dev_t dev = model.devices[device];
+ size_t total;
+ size_t free;
+ ggml_backend_dev_memory(dev, &free, &total);
+ return free;
+ }
+
+#if defined(GGML_USE_SYCL)
size_t total;
size_t free;
- ggml_backend_sycl_get_device_memory(local_device, &free, &total);
+ ggml_backend_sycl_get_device_memory(device, &free, &total);
return free;
#elif defined(GGML_USE_VULKAN)
size_t total;
size_t free;
- ggml_backend_vk_get_device_memory(local_device, &free, &total);
+ ggml_backend_vk_get_device_memory(device, &free, &total);
return free;
#elif defined(GGML_USE_CANN)
size_t total;
size_t free;
- ggml_backend_cann_get_device_memory(local_device, &free, &total);
+ ggml_backend_cann_get_device_memory(device, &free, &total);
return free;
#else
return 1;
#endif
GGML_UNUSED(model);
- GGML_UNUSED(local_device);
+ GGML_UNUSED(device);
}
//
buft_layer_count[model.buft_layer[i].buft]++;
}
} else {
- buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
+ buft_layer_count[llama_default_buffer_type_cpu(model, true)] = n_layer;
}
// create a context for each buffer type
// Returns false if cancelled by progress_callback
bool load_all_data(
struct ggml_context * ctx,
- llama_buf_map & bufs_mmap,
+ llama_buf_map & bufs,
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
std::vector<no_init<uint8_t>> read_buf;
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
-#if defined(GGML_USE_CUDA)
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
// NVMe raid configurations might require more / larger buffers.
constexpr size_t n_buffers = 4;
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
std::vector<ggml_backend_buffer_t> host_buffers;
- std::vector<void*> host_ptrs;
std::vector<ggml_backend_event_t> events;
+ std::vector<void *> host_ptrs;
size_t buffer_idx = 0; // buffer to use for async loads
-
- ggml_backend_t cuda_backend = nullptr;
- if (!use_mmap && !check_tensors) {
+ ggml_backend_t upload_backend = [&](const char * fn) -> ggml_backend_t {
+ if (use_mmap || check_tensors) {
+ return nullptr;
+ }
// When not using mmaped io use async uploads from pinned memory to GPU memory.
- // First determine if the CUDA backend is active, and if so, determine the device ID.
- ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
- if (buf) {
- ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
- for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
- auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
- if (buffer_type == cuda_buffer_type) {
- cuda_backend = ggml_backend_cuda_init(i);
- break;
- }
- }
+ // First determine if the backend supports the necessary features for async uploads.
+ auto * buf = bufs.count(0) ? bufs.at(0) : nullptr;
+ if (!buf) {
+ LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", fn);
+ return nullptr;
+ }
+
+ auto * buft = ggml_backend_buffer_get_type(buf);
+ auto * dev = ggml_backend_buft_get_device(buft);
+ if (!dev) {
+ LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", fn,
+ ggml_backend_buft_name(buft));
+ return nullptr;
+ }
+
+ if (buft != ggml_backend_dev_buffer_type(dev)) {
+ LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", fn,
+ ggml_backend_buft_name(buft), ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ ggml_backend_dev_props props;
+ ggml_backend_dev_get_props(dev, &props);
+ if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) {
+ LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
+ if (!host_buft) {
+ LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
}
- // If the cuda backend is active create pinned memory buffers and events for synchronisation.
- if (cuda_backend) {
- for (size_t idx = 0; idx < n_buffers; ++idx) {
- host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
- host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
- events.emplace_back(ggml_backend_event_new(cuda_backend));
+ // If the backend is supported, create pinned memory buffers and events for synchronisation.
+ for (size_t idx = 0; idx < n_buffers; ++idx) {
+ auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
+ if (!buf) {
+ LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
}
+
+ host_buffers.emplace_back(buf);
+ host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf));
+
+ auto * event = ggml_backend_event_new(dev);
+ if (!event) {
+ LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
+ }
+
+ events.emplace_back(event);
+ }
+
+ ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
+ if (!backend) {
+ LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", fn,
+ ggml_backend_dev_name(dev));
+ return nullptr;
}
+
+ return backend;
+ }(__func__);
+
+ if (upload_backend) {
+ LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__,
+ ggml_backend_dev_name(ggml_backend_get_device(upload_backend)),
+ ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))),
+ ggml_backend_name(upload_backend));
}
-#endif
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
if (use_mmap) {
const auto & mapping = mappings.at(weight->idx);
ggml_backend_buffer_t buf_mmap = nullptr;
- if (bufs_mmap.count(weight->idx)) {
- buf_mmap = bufs_mmap.at(weight->idx);
+ if (bufs.count(weight->idx)) {
+ buf_mmap = bufs.at(weight->idx);
}
uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
}));
}
} else {
-#if defined(GGML_USE_CUDA)
- // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
- if (cuda_backend) {
+ // If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
+ if (upload_backend) {
file->seek(weight->offs, SEEK_SET);
size_t bytes_read = 0;
ggml_backend_event_synchronize(events[buffer_idx]);
file->read_raw(host_ptrs[buffer_idx], read_iteration);
- ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
- ggml_backend_event_record(events[buffer_idx]);
+ ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
+ ggml_backend_event_record(events[buffer_idx], upload_backend);
bytes_read += read_iteration;
++buffer_idx;
buffer_idx %= n_buffers;
}
- }
- else
-#endif
- {
+ } else {
read_buf.resize(n_size);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
size_done += n_size;
}
-#if defined(GGML_USE_CUDA)
- // free temporary resources used for async cuda uploads
- if (cuda_backend) {
- for (size_t idx = 0; idx < n_buffers;++idx) {
- ggml_backend_event_synchronize(events[idx]);
- ggml_backend_event_free(events[idx]);
- ggml_backend_buffer_free(host_buffers[idx]);
- }
- ggml_backend_free(cuda_backend);
+ // free temporary resources used for async uploads
+ for (auto * event : events) {
+ ggml_backend_event_synchronize(event);
+ ggml_backend_event_free(event);
}
-#endif
+ for (auto * buf : host_buffers) {
+ ggml_backend_buffer_free(buf);
+ }
+ ggml_backend_free(upload_backend);
// check validation results
bool validation_failed = false;
void * progress_callback_user_data) {
auto & hparams = model.hparams;
+ // check if the value of main_gpu is valid
+ if (llama_get_device_count(model) > 0 &&
+ split_mode != LLAMA_SPLIT_MODE_LAYER &&
+ (main_gpu < 0 || main_gpu >= llama_get_device_count(model))) {
+ throw std::runtime_error(format("invalid value for main_gpu: %d (available devices: %d)", main_gpu, llama_get_device_count(model)));
+ }
+
model.split_mode = split_mode;
model.main_gpu = main_gpu;
model.n_gpu_layers = n_gpu_layers;
bool use_mmap_buffer = true;
// there is very little benefit to offloading the input layer, so always keep it on the CPU
- model.buft_input = llama_default_buffer_type_cpu(true);
+ model.buft_input = llama_default_buffer_type_cpu(model, true);
//model.buft_input = llama_default_buffer_type_offload(main_gpu);
model.buft_layer.resize(n_layer);
// assign cpu layers
for (int i = 0; i < i_gpu_start; ++i) {
- model.buft_layer[i] = llama_default_buffer_type_cpu(true);
+ model.buft_layer[i] = llama_default_buffer_type_cpu(model, true);
}
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
} else {
- model.buft_output = llama_default_buffer_type_cpu(true);
+ model.buft_output = llama_default_buffer_type_cpu(model, true);
}
} else {
ggml_backend_buffer_type_t split_buft;
llama_default_buffer_type_offload(model, main_gpu)
};
} else {
- model.buft_output = llama_default_buffer_type_cpu(true);
+ model.buft_output = llama_default_buffer_type_cpu(model, true);
}
}
// only the mmap region containing the tensors in the model is mapped to the backend buffer
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
+ if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(model, true)) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
void * addr = nullptr;
size_t first, last;
}
model.bufs.push_back(buf);
bufs.emplace(idx, buf);
-#ifdef GGML_USE_CUDA
- if (n_layer >= n_gpu_layers) {
- ggml_backend_cuda_register_host_buffer(
- ggml_backend_buffer_get_base(buf),
- ggml_backend_buffer_get_size(buf));
- }
-#endif
}
}
#ifdef GGML_USE_METAL
lctx.embd = nullptr;
}
- lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
+ lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(lctx.model, true), new_size);
if (lctx.buf_output == nullptr) {
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
return 0;
}
size_t llama_max_devices(void) {
-#if defined(GGML_USE_RPC)
- return GGML_RPC_MAX_SERVERS;
-#elif defined(GGML_USE_METAL)
- return 1;
-#elif defined(GGML_USE_CUDA)
- return GGML_CUDA_MAX_DEVICES;
-#elif defined(GGML_USE_SYCL)
- return GGML_SYCL_MAX_DEVICES;
-#elif defined(GGML_USE_VULKAN)
- return GGML_VK_MAX_DEVICES;
-#elif defined(GGML_USE_CANN)
- return GGML_CANN_MAX_DEVICES;
-#else
- return 1;
-#endif
+ return 16;
}
bool llama_supports_mmap(void) {
}
bool llama_supports_gpu_offload(void) {
-#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
+#if defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
return true;
#else
- return false;
+ return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr ||
+ ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL) != nullptr;
#endif
}
return true;
};
}
+
if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
// split the servers set them into model->rpc_servers
std::string servers(params.rpc_servers);
size_t pos = 0;
- while ((pos = servers.find(",")) != std::string::npos) {
+ while ((pos = servers.find(',')) != std::string::npos) {
std::string server = servers.substr(0, pos);
model->rpc_servers.push_back(server);
servers.erase(0, pos + 1);
}
model->rpc_servers.push_back(servers);
}
+
+ // create list of devices to use with this model
+ // currently, we use all available devices
+ // TODO: rework API to give user more control over device selection
+ for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+ // skip the CPU backend since it is handled separately
+ if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU_FULL) {
+ model->devices.push_back(dev);
+ }
+ }
+
int status = llama_model_load(path_model, *model, params);
GGML_ASSERT(status <= 0);
if (status < 0) {
if (!hparams.vocab_only) {
// initialize backends
+ int main_gpu = model->main_gpu;
+
+ // with registry
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ if (main_gpu >= 0 && main_gpu < (int)model->devices.size()) {
+ ggml_backend_dev_t main_dev = model->devices[main_gpu];
+ ggml_backend_t backend = ggml_backend_dev_init(main_dev, nullptr);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(main_dev));
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ } else {
+ // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+ for (auto * dev : model->devices) {
+ ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev));
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
+ }
+ if (main_gpu >= (int)model->devices.size()) {
+ main_gpu -= (int)model->devices.size();
+ }
+
#if defined(GGML_USE_RPC)
if (model->n_gpu_layers > 0) {
for (const auto & endpoint : model->rpc_servers) {
ctx->backends.push_back(backend);
}
}
+ if (main_gpu >= (int)model->rpc_servers.size()) {
+ main_gpu -= (int)model->rpc_servers.size();
+ }
#endif
#if defined(GGML_USE_METAL)
}
ctx->backends.push_back(ctx->backend_metal);
}
-#elif defined(GGML_USE_CUDA)
- if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
- ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
- for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_cuda_init(device);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- }
- }
#elif defined(GGML_USE_VULKAN)
if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
return nullptr;
}
if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
- ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
+ ggml_backend_t backend = ggml_backend_vk_init(main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
llama_free(ctx);
#elif defined(GGML_USE_SYCL)
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
+ ggml_backend_t backend = ggml_backend_sycl_init(main_gpu);
if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
+ LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, main_gpu);
llama_free(ctx);
return nullptr;
}
}
#elif defined(GGML_USE_KOMPUTE)
if (model->n_gpu_layers > 0) {
- auto * backend = ggml_backend_kompute_init(model->main_gpu);
+ auto * backend = ggml_backend_kompute_init(main_gpu);
if (backend == nullptr) {
LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
llama_free(ctx);
ctx->backends.push_back(backend);
}
#elif defined(GGML_USE_CANN)
- // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
- // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
- if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
- if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
- llama_free(ctx);
- return nullptr;
- }
- ctx->backends.push_back(backend);
- } else {
- // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
- // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
- for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
- ggml_backend_t backend = ggml_backend_cann_init(device);
+ // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
+ // TODO: ggml_backend_cann is not support split tensor now, just leave code here.
+ if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
+ ggml_backend_t backend = ggml_backend_cann_init(main_gpu);
if (backend == nullptr) {
- LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
+ LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, main_gpu);
llama_free(ctx);
return nullptr;
}
ctx->backends.push_back(backend);
+ } else {
+ // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
+ // TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
+ for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
+ ggml_backend_t backend = ggml_backend_cann_init(device);
+ if (backend == nullptr) {
+ LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
+ llama_free(ctx);
+ return nullptr;
+ }
+ ctx->backends.push_back(backend);
+ }
}
- }
#endif
#ifdef GGML_USE_BLAS
for (auto * backend : ctx->backends) {
if (ggml_backend_is_cpu(backend)) {
// use host buffers for the CPU backend compute buffer
- backend_buft.push_back(llama_default_buffer_type_cpu(true));
+ backend_buft.push_back(llama_default_buffer_type_cpu(*model, true));
} else {
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
}
// buffer used to store the computation graph and the tensor meta data
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
+ // TODO: move these checks to ggml_backend_sched
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
bool pipeline_parallel =
llama_get_device_count(*model) > 1 &&
model->n_gpu_layers > (int)model->hparams.n_layer &&
model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
params.offload_kqv;
-#ifndef GGML_USE_CUDA
- // pipeline parallelism requires support for async compute and events
- // currently this is only implemented in the CUDA backend
- pipeline_parallel = false;
-#endif
+
+ // pipeline parallelism requires support for async compute and events in all devices
+ if (pipeline_parallel) {
+ for (auto * backend : ctx->backends) {
+ if (ggml_backend_is_cpu(backend)) {
+ // ignore CPU backend
+ continue;
+ }
+ auto * dev = ggml_backend_get_device(backend);
+ if (!dev) {
+ // backend is using old interface, not supported
+ pipeline_parallel = false;
+ break;
+ }
+ ggml_backend_dev_props props;
+ ggml_backend_dev_get_props(dev, &props);
+ if (!props.caps.async || !props.caps.events) {
+ // device does not support async compute or events
+ pipeline_parallel = false;
+ break;
+ }
+ }
+ }
+
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
if (pipeline_parallel) {
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
g_state.log_callback_user_data = user_data;
+
+ ggml_backend_set_log_callback(log_callback, user_data);
+
#ifdef GGML_USE_METAL
ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
-#elif defined(GGML_USE_CUDA)
- ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#elif defined(GGML_USE_CANN)
ggml_backend_cann_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
#endif
}
// run
- ggml_backend_synchronize(backend);
-
int64_t total_time_us = 0;
int total_runs = 0;
do {
int64_t start_time = ggml_time_us();
ggml_backend_graph_compute(backend, gf);
- ggml_backend_synchronize(backend);
int64_t end_time = ggml_time_us();
total_time_us += end_time - start_time;
}
// enumerate backends
- printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
+ printf("Testing %zu devices\n\n", ggml_backend_dev_count());
size_t n_ok = 0;
- for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
- printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
+ for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
+ ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+
+ printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
- if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
+ if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
printf(" Skipping\n");
n_ok++;
continue;
}
- ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
+ ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
GGML_ASSERT(backend != NULL);
if (backend_filter == NULL && ggml_backend_is_cpu(backend) && mode != MODE_GRAD) {
ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2);
}
- printf(" Backend name: %s\n", ggml_backend_name(backend));
+ printf(" Device description: %s\n", ggml_backend_dev_description(dev));
+ size_t free, total; // NOLINT
+ ggml_backend_dev_memory(dev, &free, &total);
+ printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
+ printf("\n");
bool ok = test_backend(backend, mode, op_name_filter);
ggml_backend_free(backend);
}
- printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
+ printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
- if (n_ok != ggml_backend_reg_get_count()) {
+ if (n_ok != ggml_backend_dev_count()) {
printf("\033[1;31mFAIL\033[0m\n");
return 1;
}