self.gguf_writer.add_add_bos_token(False)
+@Model.register("Phi3ForCausalLM")
+class Phi3MiniModel(Model):
+ model_arch = gguf.MODEL_ARCH.PHI3
+
+ def set_vocab(self):
+ from sentencepiece import SentencePieceProcessor
+
+ tokenizer_path = self.dir_model / 'tokenizer.model'
+
+ if not tokenizer_path.is_file():
+ print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
+ sys.exit(1)
+
+ tokenizer = SentencePieceProcessor(str(tokenizer_path))
+
+ vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
+
+ tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
+ scores: list[float] = [-10000.0] * vocab_size
+ toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
+
+ for token_id in range(tokenizer.vocab_size()):
+
+ piece = tokenizer.id_to_piece(token_id)
+ text = piece.encode("utf-8")
+ score = tokenizer.get_score(token_id)
+
+ toktype = SentencePieceTokenTypes.NORMAL
+ if tokenizer.is_unknown(token_id):
+ toktype = SentencePieceTokenTypes.UNKNOWN
+ elif tokenizer.is_control(token_id):
+ toktype = SentencePieceTokenTypes.CONTROL
+ elif tokenizer.is_unused(token_id):
+ toktype = SentencePieceTokenTypes.UNUSED
+ elif tokenizer.is_byte(token_id):
+ toktype = SentencePieceTokenTypes.BYTE
+
+ tokens[token_id] = text
+ scores[token_id] = score
+ toktypes[token_id] = toktype
+
+ added_tokens_file = self.dir_model / 'added_tokens.json'
+ if added_tokens_file.is_file():
+ with open(added_tokens_file, "r", encoding="utf-8") as f:
+ added_tokens_json = json.load(f)
+
+ for key in added_tokens_json:
+ token_id = added_tokens_json[key]
+ if (token_id >= vocab_size):
+ print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
+ continue
+
+ tokens[token_id] = key.encode("utf-8")
+ scores[token_id] = -1000.0
+ toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
+
+ self.gguf_writer.add_tokenizer_model("llama")
+ self.gguf_writer.add_token_list(tokens)
+ self.gguf_writer.add_token_scores(scores)
+ self.gguf_writer.add_token_types(toktypes)
+
+ special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
+ special_vocab.add_to_gguf(self.gguf_writer)
+
+ def set_gguf_parameters(self):
+ block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
+
+ rot_pct = 1.0
+ n_embd = self.find_hparam(["hidden_size", "n_embd"])
+ n_head = self.find_hparam(["num_attention_heads", "n_head"])
+ rms_eps = self.find_hparam(["rms_norm_eps"])
+
+ self.gguf_writer.add_name("Phi3")
+ self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
+
+ self.gguf_writer.add_embedding_length(n_embd)
+ self.gguf_writer.add_feed_forward_length(8192)
+ self.gguf_writer.add_block_count(block_count)
+ self.gguf_writer.add_head_count(n_head)
+ self.gguf_writer.add_head_count_kv(n_head)
+ self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
+ self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
+ self.gguf_writer.add_file_type(self.ftype)
+
+
@Model.register("PlamoForCausalLM")
class PlamoModel(Model):
model_arch = gguf.MODEL_ARCH.PLAMO
LLM_ARCH_QWEN2,
LLM_ARCH_QWEN2MOE,
LLM_ARCH_PHI2,
+ LLM_ARCH_PHI3,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
{ LLM_ARCH_QWEN2, "qwen2" },
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
{ LLM_ARCH_PHI2, "phi2" },
+ { LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PLAMO, "plamo" },
{ LLM_ARCH_CODESHELL, "codeshell" },
{ LLM_ARCH_ORION, "orion" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_PHI3,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ },
+ },
{
LLM_ARCH_PLAMO,
{
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+ switch (hparams.n_layer) {
+ case 24: model.type = e_model::MODEL_1B; break;
+ case 32: model.type = e_model::MODEL_3B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_PHI3:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
switch (hparams.n_layer) {
case 24: model.type = e_model::MODEL_1B; break;
case 32: model.type = e_model::MODEL_3B; break;
//vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
(t.first == "<|eot_id|>" ||
t.first == "<|im_end|>" ||
+ t.first == "<|end|>" ||
t.first == "<end_of_turn>"
)
) {
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
}
} break;
+ case LLM_ARCH_PHI3:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context* ctx_layer = ctx_for_layer(i);
+ ggml_context* ctx_split = ctx_for_layer_split(i);
+
+ auto& layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
+
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
+
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
+ }
+ } break;
case LLM_ARCH_PLAMO:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
- if (model.arch == LLM_ARCH_PHI2) {
+ if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
cur = ggml_add(ctx0, cur, model.output_b);
cb(cur, "result_output", -1);
+ ggml_build_forward_expand(gf, cur);
+ return gf;
+ }
+
+ struct ggml_cgraph * build_phi3() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ auto residual = inpL;
+
+ // self-attention
+ {
+ struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm,
+ NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(attn_norm_output, "attn_norm", il);
+
+ struct ggml_tensor * Qcur = nullptr;
+ struct ggml_tensor * Kcur = nullptr;
+ struct ggml_tensor * Vcur = nullptr;
+
+ if (model.layers[il].wqkv) {
+ cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
+ cb(cur, "wqkv", il);
+
+ Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
+ Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
+ Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
+ }
+ else {
+ Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
+ Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
+ Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
+ }
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+ Qcur = ggml_rope_custom(
+ ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_custom(
+ ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
+ freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor* inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ residual = ggml_get_rows(ctx0, residual, inp_out_ids);
+ }
+
+ cur = ggml_add(ctx0, cur, residual);
+ residual = cur;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // FF
+ // special-case: the up and gate tensors are merged into a single tensor
+ // TOOD: support into llm_build_ffn
+ {
+ struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
+ cb(up, "ffn_up", il);
+
+ auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
+ auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
+
+ y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
+ cb(y, "ffn_gate", il);
+
+ auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
+ cb(down, "ffn_down", il);
+
+ cur = down;
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = ggml_add(ctx0, residual, cur);
+ cb(cur, "l_out", il);
+
+ inpL = cur;
+ }
+
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.output_norm,
+ NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
+
struct ggml_cgraph * build_plamo() {
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
{
result = llm.build_phi2();
} break;
+ case LLM_ARCH_PHI3:
+ {
+ result = llm.build_phi3();
+ } break;
case LLM_ARCH_PLAMO:
{
result = llm.build_plamo();
case LLM_ARCH_QWEN2:
case LLM_ARCH_QWEN2MOE:
case LLM_ARCH_PHI2:
+ case LLM_ARCH_PHI3:
case LLM_ARCH_GEMMA:
case LLM_ARCH_STARCODER2:
return LLAMA_ROPE_TYPE_NEOX;