* Add llama_beam_search().
* Add '// Beam search' heading to llama.{h,cpp} after llama_grammar_accept_token().
* Add space around * pointers and & references.
* Add spaces around comparison and assignment operators.
* Prefer west const.
* Use llama_ prefix for structs in global namespace.
* Delete obsolete comment from an earlier revision.
* Change eos to eob in llama_beam and llama_beam_view structs.
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
+ int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
add_subdirectory(simple)
add_subdirectory(embd-input)
add_subdirectory(llama-bench)
+ add_subdirectory(beam_search)
if (LLAMA_METAL)
add_subdirectory(metal)
endif()
--- /dev/null
+set(TARGET beam_search)
+add_executable(${TARGET} beam_search.cpp)
+install(TARGETS ${TARGET} RUNTIME)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
+if(TARGET BUILD_INFO)
+ add_dependencies(${TARGET} BUILD_INFO)
+endif()
--- /dev/null
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+
+#include "common.h"
+#include "llama.h"
+#include "build-info.h"
+
+#include <cassert>
+#include <cinttypes>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <ctime>
+#include <fstream>
+#include <iostream>
+#include <string>
+#include <vector>
+
+#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
+#include <signal.h>
+#include <unistd.h>
+#elif defined (_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#define NOMINMAX
+#include <windows.h>
+#include <signal.h>
+#endif
+
+// Used for debugging to print out beam tokens.
+struct ostream_beam_view {
+ llama_context * ctx;
+ llama_beam_view beam_view;
+};
+std::ostream& operator<<(std::ostream& os, const ostream_beam_view & obv) {
+ os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
+ for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
+ os << llama_token_to_str(obv.ctx, obv.beam_view.tokens[i]);
+ }
+ return os << ')';
+}
+
+// Put here anything you want back in beam_search_callback().
+struct beam_search_callback_data {
+ llama_context * ctx;
+ std::vector<llama_token> response;
+};
+
+// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
+// For example, eob can be flagged due to maximum token length, stop words, etc.
+bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, const size_t n_tokens) {
+ return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
+}
+
+// Function matching type llama_beam_search_callback_fn_t.
+// Custom callback example is called each time the beams lengths increase:
+// * Show progress by printing ',' following by number of convergent beam tokens if any.
+// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
+// This is also called when the stop condition is met.
+// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
+void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
+ auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
+ // Mark beams as EOS as needed.
+ for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
+ llama_beam_view& beam_view = beams_state.beam_views[i];
+ if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
+ beam_view.eob = true;
+ }
+ }
+ printf(","); // Show progress
+ if (const size_t n = beams_state.common_prefix_length) {
+ callback_data.response.resize(callback_data.response.size() + n);
+ assert(0u < beams_state.n_beams);
+ const llama_token * tokens = beams_state.beam_views[0].tokens;
+ std::copy(tokens, tokens + n, callback_data.response.end() - n);
+ printf("%lu", n);
+ }
+ fflush(stdout);
+#if 1 // DEBUG: print current beams for this iteration
+ std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
+ for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
+ std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
+ }
+#endif
+}
+
+int main(int argc, char ** argv)
+{
+ gpt_params params;
+ //params.n_gpu_layers = 200;
+
+ //---------------------------------
+ // Print help :
+ //---------------------------------
+
+ if ( argc < 2 || argv[1][0] == '-' )
+ {
+ printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
+ return 1 ;
+ }
+
+ //---------------------------------
+ // Load parameters :
+ //---------------------------------
+
+ params.model = argv[1];
+
+ params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
+
+ if ( argc > 3 )
+ {
+ params.prompt = argv[3];
+ }
+
+ if ( params.prompt.empty() )
+ {
+ params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
+ }
+
+ //---------------------------------
+ // Init LLM :
+ //---------------------------------
+
+ llama_backend_init(params.numa);
+
+ llama_model * model;
+ llama_context * ctx;
+
+ std::tie(model, ctx) = llama_init_from_gpt_params( params );
+
+ if ( model == NULL )
+ {
+ fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
+ return 1;
+ }
+
+ //---------------------------------
+ // Tokenize the prompt :
+ //---------------------------------
+
+ std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
+
+ const size_t max_context_size = llama_n_ctx( ctx );
+ const size_t max_tokens_list_size = max_context_size - 4 ;
+
+ if (tokens_list.size() > max_tokens_list_size)
+ {
+ fprintf( stderr , "%s: error: prompt too long (%lu tokens, max %lu)\n" ,
+ __func__ , tokens_list.size() , max_tokens_list_size );
+ return 1;
+ }
+
+ fprintf( stderr, "\n\n" );
+
+ // Print the tokens from the prompt :
+
+ for( auto id : tokens_list )
+ {
+ std::cout << llama_token_to_str(ctx, id);
+ }
+ std::cout << std::flush;
+
+ int n_past = llama_get_kv_cache_token_count(ctx);
+ if (llama_eval(ctx, tokens_list.data(), tokens_list.size(), n_past, params.n_threads))
+ {
+ fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
+ return 1;
+ }
+ n_past += tokens_list.size();
+
+ beam_search_callback_data callback_data{ctx, {}};
+ size_t const beam_width = static_cast<size_t>(params.n_beams);
+ int const n_predict = 256;
+ llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads);
+
+ std::cout << "\n\n";
+ for (llama_token const token_id : callback_data.response) {
+ std::cout << llama_token_to_str(ctx,token_id);
+ }
+ std::cout << std::endl;
+
+ llama_free( ctx );
+ llama_free_model( model );
+
+ llama_backend_free();
+
+ return 0;
+}
});
}
+bool is_at_eob(llama_server_context & server_context, const llama_token * tokens, const size_t n_tokens) {
+ return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
+}
+
+// Function matching type llama_beam_search_callback_fn_t.
+// Custom callback example is called each time the beams lengths increase:
+// * Show progress by printing ',' following by number of convergent beam tokens if any.
+// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
+// This is also called when the stop condition is met.
+// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
+void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
+ auto & llama = *static_cast<llama_server_context*>(callback_data);
+ // Mark beams as EOS as needed.
+ for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
+ llama_beam_view& beam_view = beams_state.beam_views[i];
+ if (!beam_view.eob && is_at_eob(llama, beam_view.tokens, beam_view.n_tokens)) {
+ beam_view.eob = true;
+ }
+ }
+ printf(","); // Show progress
+ if (const size_t n = beams_state.common_prefix_length) {
+ llama.generated_token_probs.resize(llama.generated_token_probs.size() + n);
+ assert(0u < beams_state.n_beams);
+ const llama_token * tokens = beams_state.beam_views[0].tokens;
+ const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
+ std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
+ printf("%lu", n);
+ }
+ fflush(stdout);
+#if 0 // DEBUG: print current beams for this iteration
+ std::cout << "\n\nCurrent beams:\n";
+ for (size_t i=0 ; i < beams_state.n_beams ; ++i) {
+ std::cout << "beams["<<i<<"]: " << ostream_beam_view{state.ctx,beams_state.beam_views[i]} << std::endl;
+ }
+#endif
+}
+
+struct token_translator {
+ llama_context * ctx;
+ std::string operator()(llama_token tok) const { return llama_token_to_str(ctx, tok); }
+ std::string operator()(completion_token_output cto) const { return (*this)(cto.tok); }
+};
+
+void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) {
+ auto & gtps = llama.generated_token_probs;
+ auto translator = token_translator{llama.ctx};
+ auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
+ const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
+ if (llama.generated_text.capacity() < llama.generated_text.size() + len) {
+ llama.generated_text.reserve(llama.generated_text.size() + len);
+ }
+ for (const completion_token_output & cto : gtps) {
+ llama.generated_text += translator(cto);
+ }
+}
+
int main(int argc, char **argv)
{
// own arguments required by this example
llama.beginCompletion();
if (!llama.stream) {
- size_t stop_pos = std::string::npos;
+ if (llama.params.n_beams) {
+ // Fill llama.generated_token_probs vector with final beam.
+ llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
+ llama.n_past, llama.n_remain, llama.params.n_threads);
+ // Translate llama.generated_token_probs to llama.generated_text.
+ append_to_generated_text_from_generated_token_probs(llama);
+ } else {
+ size_t stop_pos = std::string::npos;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
+ while (llama.has_next_token) {
+ const completion_token_output token_with_probs = llama.doCompletion();
+ const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
- stop_pos = llama.findStoppingStrings(llama.generated_text,
- token_text.size(), STOP_FULL);
- }
+ stop_pos = llama.findStoppingStrings(llama.generated_text,
+ token_text.size(), STOP_FULL);
+ }
- if (stop_pos == std::string::npos) {
- stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
- }
- if (stop_pos != std::string::npos) {
- llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
- llama.generated_text.end());
+ if (stop_pos == std::string::npos) {
+ stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
+ }
+ if (stop_pos != std::string::npos) {
+ llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
+ llama.generated_text.end());
+ }
}
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
+//
+// Beam search
+//
+
+struct llama_beam {
+ std::vector<llama_token> tokens;
+ float p; // Cumulative beam probability (renormalized relative to all beams)
+ bool eob; // Initialize end-of-beam to false. Callback sets this to true.
+ // Sort beams by probability. In case of ties, prefer beams at eob.
+ bool operator<(const llama_beam & rhs) const {
+ return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
+ }
+ // Shift off first n tokens and discard them.
+ void shift_tokens(const size_t n) {
+ if (n) {
+ std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
+ tokens.resize(tokens.size() - n);
+ }
+ }
+ llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
+};
+
+// A struct for calculating logit-related info.
+struct llama_logit_info {
+ const float * const logits;
+ const int n_vocab;
+ const float max_l;
+ const float normalizer;
+ struct sum_exp {
+ float max_l;
+ float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
+ };
+ llama_logit_info(llama_context * ctx)
+ : logits(llama_get_logits(ctx))
+ , n_vocab(llama_n_vocab(ctx))
+ , max_l(*std::max_element(logits, logits + n_vocab))
+ , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
+ { }
+ llama_token_data get_token_data(const llama_token token_id) const {
+ constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
+ return {token_id, logits[token_id], p};
+ }
+ // Return top k token_data by logit.
+ std::vector<llama_token_data> top_k(size_t k) {
+ std::vector<llama_token_data> min_heap; // min-heap by logit
+ const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
+ min_heap.reserve(k_min);
+ for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
+ min_heap.push_back(get_token_data(token_id));
+ }
+ auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
+ std::make_heap(min_heap.begin(), min_heap.end(), comp);
+ for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
+ if (min_heap.front().logit < logits[token_id]) {
+ std::pop_heap(min_heap.begin(), min_heap.end(), comp);
+ min_heap.back().id = token_id;
+ min_heap.back().logit = logits[token_id];
+ std::push_heap(min_heap.begin(), min_heap.end(), comp);
+ }
+ }
+ return min_heap;
+ }
+ float probability_from_logit(float logit) {
+ return normalizer * std::exp(logit - max_l);
+ }
+};
+
+struct llama_beam_search_data {
+ llama_context * ctx;
+ size_t n_beams;
+ int n_past;
+ int n_predict;
+ int n_threads;
+ std::vector<llama_beam> beams;
+ std::vector<llama_beam> next_beams;
+
+ // Re-calculated on each loop iteration
+ size_t common_prefix_length;
+
+ // Used to communicate to/from callback on beams state.
+ std::vector<llama_beam_view> beam_views;
+
+ llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads)
+ : ctx(ctx)
+ , n_beams(n_beams)
+ , n_past(n_past)
+ , n_predict(n_predict)
+ , n_threads(n_threads)
+ , beam_views(n_beams) {
+ beams.reserve(n_beams);
+ next_beams.reserve(n_beams);
+ }
+
+ // Collapse beams to a single beam given by index.
+ void collapse_beams(const size_t beam_idx) {
+ if (0u < beam_idx) {
+ std::swap(beams[0], beams[beam_idx]);
+ }
+ beams.resize(1);
+ }
+
+ // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
+ // The repetative patterns below reflect the 2 stages of heaps:
+ // * Gather elements until the vector is full, then call std::make_heap() on it.
+ // * If the heap is full and a new element is found that should be included, pop the
+ // least element to the back(), replace it with the new, then push it into the heap.
+ void fill_next_beams_by_top_probabilities(llama_beam & beam) {
+ // Min-heaps use a greater-than comparator.
+ const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
+ if (beam.eob) {
+ // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
+ if (next_beams.size() < n_beams) {
+ next_beams.push_back(std::move(beam));
+ if (next_beams.size() == n_beams) {
+ std::make_heap(next_beams.begin(), next_beams.end(), comp);
+ }
+ } else if (next_beams.front().p < beam.p) {
+ std::pop_heap(next_beams.begin(), next_beams.end(), comp);
+ next_beams.back() = std::move(beam);
+ std::push_heap(next_beams.begin(), next_beams.end(), comp);
+ }
+ } else {
+ // beam is not at end-of-sentence, so branch with next top_k tokens.
+ if (!beam.tokens.empty()) {
+ llama_eval(ctx, beam.tokens.data(), beam.tokens.size(), n_past, n_threads);
+ }
+ llama_logit_info logit_info(ctx);
+ std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
+ size_t i=0;
+ if (next_beams.size() < n_beams) {
+ for (; next_beams.size() < n_beams ; ++i) {
+ llama_beam next_beam = beam;
+ next_beam.tokens.push_back(next_tokens[i].id);
+ next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
+ next_beams.push_back(std::move(next_beam));
+ }
+ std::make_heap(next_beams.begin(), next_beams.end(), comp);
+ } else {
+ for (; next_beams.front().p == 0.0f ; ++i) {
+ std::pop_heap(next_beams.begin(), next_beams.end(), comp);
+ next_beams.back() = beam;
+ next_beams.back().tokens.push_back(next_tokens[i].id);
+ next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
+ std::push_heap(next_beams.begin(), next_beams.end(), comp);
+ }
+ }
+ for (; i < n_beams ; ++i) {
+ const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
+ if (next_beams.front().p < next_p) {
+ std::pop_heap(next_beams.begin(), next_beams.end(), comp);
+ next_beams.back() = beam;
+ next_beams.back().tokens.push_back(next_tokens[i].id);
+ next_beams.back().p = next_p;
+ std::push_heap(next_beams.begin(), next_beams.end(), comp);
+ }
+ }
+ }
+ }
+
+ // Find common_prefix_length based on beams.
+ // Requires beams is not empty.
+ size_t find_common_prefix_length() {
+ size_t common_prefix_length = beams[0].tokens.size();
+ for (size_t i = 1 ; i < beams.size() ; ++i) {
+ common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
+ for (size_t j = 0 ; j < common_prefix_length ; ++j) {
+ if (beams[0].tokens[j] != beams[i].tokens[j]) {
+ common_prefix_length = j;
+ break;
+ }
+ }
+ }
+ return common_prefix_length;
+ }
+
+ // Construct beams_state to send back to caller via the callback function.
+ // Side effect: set common_prefix_length = find_common_prefix_length();
+ llama_beams_state get_beams_state(const bool last_call) {
+ for (size_t i = 0 ; i < beams.size() ; ++i) {
+ beam_views[i] = beams[i].view();
+ }
+ common_prefix_length = find_common_prefix_length();
+ return {beam_views.data(), beams.size(), common_prefix_length, last_call};
+ }
+
+ // Loop:
+ // * while i < n_predict, AND
+ // * any of the beams have not yet reached end-of-beam (eob), AND
+ // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
+ // (since all other beam probabilities can only decrease)
+ void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
+ beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
+ const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
+ for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
+ !beams[top_beam_index()].eob ; ++i) {
+ callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
+ update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
+ if (common_prefix_length) {
+ llama_eval(ctx, beams[0].tokens.data(), common_prefix_length, n_past, n_threads);
+ n_past += common_prefix_length;
+ }
+ // Zero-out next_beam probabilities to place them last in following min-heap.
+ std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
+ for (llama_beam & beam : beams) {
+ beam.shift_tokens(common_prefix_length);
+ fill_next_beams_by_top_probabilities(beam);
+ }
+ // next_beams become the beams of next/final iteration. Swap them to re-use memory.
+ beams.swap(next_beams);
+ renormalize_beam_probabilities(beams);
+ }
+ collapse_beams(top_beam_index());
+ callback(callback_data, get_beams_state(true));
+ }
+
+ // As beams grow, the cumulative probabilities decrease.
+ // Renormalize them to avoid floating point underflow.
+ static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
+ const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
+ const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
+ std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
+ }
+
+ // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
+ size_t top_beam_index() {
+ return std::max_element(beams.begin(), beams.end()) - beams.begin();
+ }
+
+ // Copy (p,eob) for each beam which may have been changed by the callback.
+ void update_beams_from_beam_views() {
+ for (size_t i = 0 ; i < beams.size() ; ++i) {
+ beams[i].p = beam_views[i].p;
+ beams[i].eob = beam_views[i].eob;
+ }
+ }
+};
+
+void llama_beam_search(llama_context * ctx,
+ llama_beam_search_callback_fn_t callback, void * callback_data,
+ size_t n_beams, int n_past, int n_predict, int n_threads) {
+ assert(ctx);
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads);
+
+ beam_search_data.loop(callback, callback_data);
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+}
+
//
// quantization
//
/// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
+ //
+ // Beam search
+ //
+
+ struct llama_beam_view {
+ const llama_token * tokens;
+ size_t n_tokens;
+ float p; // Cumulative beam probability (renormalized relative to all beams)
+ bool eob; // Callback should set this to true when a beam is at end-of-beam.
+ };
+
+ // Passed to beam_search_callback function.
+ // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
+ // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
+ // These pointers are valid only during the synchronous callback, so should not be saved.
+ struct llama_beams_state {
+ llama_beam_view * beam_views;
+ size_t n_beams; // Number of elements in beam_views[].
+ size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
+ bool last_call; // True iff this is the last callback invocation.
+ };
+
+ // Type of pointer to the beam_search_callback function.
+ // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
+ // passed back to beam_search_callback. This avoids having to use global variables in the callback.
+ typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, llama_beams_state);
+
+ /// @details Deterministically returns entire sentence constructed by a beam search.
+ /// @param ctx Pointer to the llama_context.
+ /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
+ /// @param callback_data A pointer that is simply passed back to callback.
+ /// @param n_beams Number of beams to use.
+ /// @param n_past Number of tokens already evaluated.
+ /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
+ /// @param n_threads Number of threads as passed to llama_eval().
+ LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads);
+
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx);