zig-out/
zig-cache/
+*.o
*.dot
*.sw?
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ${CLBLAST_LIB} ${OPENCL_LIB})
set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_CLBLAST)
- set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h)
+ set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
link_libraries("-Wl,--copy-dt-needed-entries")
else()
if (CUDAToolkit_FOUND)
message(STATUS "CUDA found")
+ if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
+ # 52 == lowest CUDA 12 standard
+ # 60 == f16 CUDA intrinsics
+ # 61 == integer CUDA intrinsics
+ # 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
+ if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
+ set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics
+ else()
+ set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
+ #set(CMAKE_CUDA_ARCHITECTURES "OFF") # use this to compile much faster, but only F16 models work
+ endif()
+ endif()
+
+ message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
+
enable_language(CUDA)
- file(GLOB GGML_CUDA_SOURCES "ggml-cuda/*.cu")
- list(APPEND GGML_CUDA_SOURCES ggml-cuda.h)
- list(APPEND GGML_CUDA_SOURCES ggml-cuda.cu)
+ file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
+ list(APPEND GGML_SOURCES_CUDA ggml-cuda.h)
+ list(APPEND GGML_SOURCES_CUDA ggml-cuda.cu)
+
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/mmq*.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+
+ if (GGML_CUDA_FA_ALL_QUANTS)
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
+ else()
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ endif()
set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_CUDA)
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/mmq*.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+
+ if (GGML_CUDA_FA_ALL_QUANTS)
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
+ else()
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ endif()
+
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
if (GGML_CUDA_FORCE_DMMV)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
- set(GGML_METAL_SOURCES ggml-metal.m ggml-metal.h)
+ set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
set(GGML_EXTRA_FLAGS ${GGML_EXTRA_FLAGS} -DGGML_USE_METAL)
COMMENT "Generate assembly for embedded Metal library"
)
- set(GGML_METAL_SOURCES ${GGML_METAL_SOURCES} ${METALLIB_EMBED_ASM})
+ set(GGML_SOURCES_METAL ${GGML_SOURCES_METAL} ${METALLIB_EMBED_ASM})
else()
if (GGML_METAL_SHADER_DEBUG)
# custom command to do the following:
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} ws2_32)
endif()
- set(GGML_RPC_SOURCES ggml-rpc.cpp)
+ set(GGML_SOURCES_RPC ggml-rpc.cpp)
endif()
if (GGML_VULKAN)
../include/ggml/ggml.h
../include/ggml/ggml-alloc.h
../include/ggml/ggml-backend.h
- ${GGML_CUDA_SOURCES}
- ${GGML_OPENCL_SOURCES}
- ${GGML_METAL_SOURCES}
- ${GGML_RPC_SOURCES}
+ ${GGML_SOURCES_CUDA}
+ ${GGML_SOURCES_OPENCL}
+ ${GGML_SOURCES_METAL}
+ ${GGML_SOURCES_RPC}
)
target_include_directories(${TARGET} PUBLIC
)
endif()
-if (GGML_CUDA_SOURCES)
+if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found")
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
# Only configure gmml CUDA architectures is not globally set
+++ /dev/null
-#include "common.cuh"
-#include "fattn-common.cuh"
-#include "fattn-vec-f16.cuh"
-
-template<int D, int ncols, int parallel_blocks> // D == head size
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-__launch_bounds__(D, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void flash_attn_vec_ext_f16(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
-#if FP16_AVAILABLE
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
-
- const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
-
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + ne11*ic0;
-
- const int stride_KV = nb11 / sizeof(half);
- const int stride_KV2 = nb11 / sizeof(half2);
-
- const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
- const half slopeh = __float2half(slopef);
-
- static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
- constexpr int nwarps = D / WARP_SIZE;
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- __builtin_assume(tid < D);
-
- __shared__ half KQ[ncols*D];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- KQ[j*D + tid] = -HALF_MAX_HALF;
- }
- half2 * KQ2 = (half2 *) KQ;
-
- half kqmax[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax[j] = -HALF_MAX_HALF;
- }
- half kqsum[ncols] = {0.0f};
-
- __shared__ half kqmax_shared[ncols][WARP_SIZE];
- __shared__ half kqsum_shared[ncols][WARP_SIZE];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- if (threadIdx.y == 0) {
- kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
- kqsum_shared[j][threadIdx.x] = 0.0f;
- }
- }
- __syncthreads();
-
- // Convert Q to half2 and store in registers:
- half2 Q_h2[ncols][D/(2*WARP_SIZE)];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
-
- const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
- Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
- }
- }
-
- half2 VKQ[ncols] = {{0.0f, 0.0f}};
-
- const int k_start = parallel_blocks == 1 ? 0 : ip*D;
- for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
- // Calculate KQ tile and keep track of new maximum KQ values:
-
- // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
- // see https://github.com/ggerganov/llama.cpp/pull/7061 .
- // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
- half kqmax_new = kqmax[0];
- half kqmax_new_arr[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax_new_arr[j] = kqmax[j];
- }
-
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
- const int i_KQ = i_KQ_0 + threadIdx.y;
-
- if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
- break;
- }
-
- half2 sum2[ncols] = {{0.0f, 0.0f}};
-#pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
-
- const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum2[j] = warp_reduce_sum(sum2[j]);
- half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
- sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
-
- if (ncols == 1) {
- kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
- } else {
- kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
- }
-
- if (threadIdx.x == 0) {
- KQ[j*D + i_KQ] = sum;
- }
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
-
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
- if (threadIdx.x == 0) {
- kqmax_shared[j][threadIdx.y] = kqmax_new_j;
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- half kqmax_new_j = kqmax_shared[j][threadIdx.x];
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
-
- const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
- kqmax[j] = kqmax_new_j;
-
- const half val = hexp(KQ[j*D + tid] - kqmax[j]);
- kqsum[j] = kqsum[j]*KQ_max_scale + val;
- KQ[j*D + tid] = val;
-
- VKQ[j] *= __half2half2(KQ_max_scale);
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int k0 = 0; k0 < D; k0 += 2) {
- if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
- break;
- }
-
- half2 V_k;
- reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
- reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
- }
- }
-
- __syncthreads();
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqsum[j] = warp_reduce_sum(kqsum[j]);
- if (threadIdx.x == 0) {
- kqsum_shared[j][threadIdx.y] = kqsum[j];
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
- if (ncols > 2 && ic0 + j_VKQ >= ne01) {
- break;
- }
-
- kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
- kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
-
- half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
- if (parallel_blocks == 1) {
- dst_val /= kqsum[j_VKQ];
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
- dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
- }
-
- if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
- dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
- }
-#else
- NO_DEVICE_CODE;
-#endif // FP16_AVAILABLE
-}
-
-void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- ggml_tensor * KQV = dst;
- ggml_tensor * Q = dst->src[0];
-
- const int32_t precision = KQV->op_params[2];
- GGML_ASSERT(precision == GGML_PREC_DEFAULT);
-
- constexpr int cols_per_block = 1;
- constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64: {
- constexpr int D = 64;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 128: {
- constexpr int D = 128;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 256: {
- constexpr int D = 256;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- default:
- GGML_ASSERT(false);
- break;
- }
-}
-
-template <int cols_per_block, int parallel_blocks>
-void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- switch (Q->ne[0]) {
- case 64: {
- constexpr int D = 64;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 128: {
- constexpr int D = 128;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- default: {
- GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
- } break;
- }
-}
-
-void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * KQV = dst;
- const ggml_tensor * Q = dst->src[0];
-
- const int32_t precision = KQV->op_params[2];
- GGML_ASSERT(precision == GGML_PREC_DEFAULT);
-
- if (Q->ne[1] == 1) {
- ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
- return;
- }
-
- if (Q->ne[1] == 2) {
- constexpr int cols_per_block = 2;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 4) {
- constexpr int cols_per_block = 4;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 8) {
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
-
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 1;
- launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
-}
+++ /dev/null
-#include "common.cuh"
-#include "fattn-common.cuh"
-#include "fattn-vec-f32.cuh"
-
-template<int D, int ncols, int parallel_blocks> // D == head size
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-__launch_bounds__(D, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void flash_attn_vec_ext_f32(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
-
- const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
-
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + ne11*ic0;
-
- const int stride_KV = nb11 / sizeof(half);
- const int stride_KV2 = nb11 / sizeof(half2);
-
- const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
-
- static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
- constexpr int nwarps = D / WARP_SIZE;
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- __builtin_assume(tid < D);
-
- __shared__ float KQ[ncols*D];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- KQ[j*D + tid] = -FLT_MAX/2.0f;
- }
-
- float kqmax[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax[j] = -FLT_MAX/2.0f;
- }
- float kqsum[ncols] = {0.0f};
-
- __shared__ float kqmax_shared[ncols][WARP_SIZE];
- __shared__ float kqsum_shared[ncols][WARP_SIZE];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- if (threadIdx.y == 0) {
- kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
- kqsum_shared[j][threadIdx.x] = 0.0f;
- }
- }
- __syncthreads();
-
- // Convert Q to half2 and store in registers:
- float2 Q_h2[ncols][D/(2*WARP_SIZE)];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
-
- Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
- Q_h2[j][i0/WARP_SIZE].x *= scale;
- Q_h2[j][i0/WARP_SIZE].y *= scale;
- }
- }
-
- float VKQ[ncols] = {0.0f};
-
- const int k_start = parallel_blocks == 1 ? 0 : ip*D;
- for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
- // Calculate KQ tile and keep track of new maximum KQ values:
-
- float kqmax_new_arr[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax_new_arr[j] = kqmax[j];
- }
-
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
- const int i_KQ = i_KQ_0 + threadIdx.y;
-
- if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
- break;
- }
-
- float sum[ncols] = {0.0f};
-#pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
-
- const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x;
- sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y;
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum[j] = warp_reduce_sum(sum[j]);
- sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
-
- kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]);
-
- if (threadIdx.x == 0) {
- KQ[j*D + i_KQ] = sum[j];
- }
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- float kqmax_new_j = kqmax_new_arr[j];
-
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
- if (threadIdx.x == 0) {
- kqmax_shared[j][threadIdx.y] = kqmax_new_j;
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- float kqmax_new_j = kqmax_shared[j][threadIdx.x];
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
-
- const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
- kqmax[j] = kqmax_new_j;
-
- const float val = expf(KQ[j*D + tid] - kqmax[j]);
- kqsum[j] = kqsum[j]*KQ_max_scale + val;
- KQ[j*D + tid] = val;
-
- VKQ[j] *= KQ_max_scale;
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int k = 0; k < D; ++k) {
- if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
- break;
- }
-
- const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]);
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- VKQ[j] += V_ki*KQ[j*D + k];
- }
- }
-
- __syncthreads();
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqsum[j] = warp_reduce_sum(kqsum[j]);
- if (threadIdx.x == 0) {
- kqsum_shared[j][threadIdx.y] = kqsum[j];
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
- if (ncols > 2 && ic0 + j_VKQ >= ne01) {
- break;
- }
-
- kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
- kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
-
- float dst_val = VKQ[j_VKQ];
- if (parallel_blocks == 1) {
- dst_val /= kqsum[j_VKQ];
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
- dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
- }
-
- if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
- dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
- }
-}
-
-template <int cols_per_block, int parallel_blocks>
-void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- switch (Q->ne[0]) {
- case 64: {
- constexpr int D = 64;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 128: {
- constexpr int D = 128;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- default: {
- GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
- } break;
- }
-}
-
-void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
-
- if (Q->ne[1] == 1) {
- constexpr int cols_per_block = 1;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
-
- if (Q->ne[1] == 2) {
- constexpr int cols_per_block = 2;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 4) {
- constexpr int cols_per_block = 4;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 8) {
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
- return;
- }
-
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 1;
- launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
-}