#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
#define _USE_MATH_DEFINES // For M_PI on MSVC
+#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-quants.h"
#include "ggml.h"
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
+ "OPT_STEP_ADAMW",
};
-static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
+static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
+ "adamw(x)",
};
-static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79");
+static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
}
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
- memset(tensor->data, 0, ggml_nbytes(tensor));
+ if (tensor->buffer) {
+ ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
+ } else {
+ memset(tensor->data, 0, ggml_nbytes(tensor));
+ }
return tensor;
}
return result;
}
-////////////////////////////////////////////////////////////////////////////////
+// opt_step_adamw
-void ggml_set_param(
+struct ggml_tensor * ggml_opt_step_adamw(
struct ggml_context * ctx,
- struct ggml_tensor * tensor) {
+ struct ggml_tensor * a,
+ float alpha,
+ float beta1,
+ float beta2,
+ float eps,
+ float wd) {
+ GGML_ASSERT(a->grad);
+ GGML_ASSERT(alpha > 0.0f);
+ GGML_ASSERT(beta1 >= 0.0f && beta1 <= 1.0f);
+ GGML_ASSERT(beta2 >= 0.0f && beta2 <= 1.0f);
+ GGML_ASSERT(eps >= 0.0f);
+ GGML_ASSERT(wd >= 0.0f && wd <= 1.0f);
+
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ result->op = GGML_OP_OPT_STEP_ADAMW;
+ result->grad = NULL;
+ result->src[0] = a;
+ result->src[1] = a->grad;
+ result->src[2] = ggml_dup_tensor(ctx, a->grad);
+ result->src[3] = ggml_dup_tensor(ctx, a->grad);
+
+ const int64_t iter = 1;
+ memcpy(&result->op_params[0], &iter, sizeof(int64_t));
+ ggml_set_op_params_f32(result, 2, alpha);
+ ggml_set_op_params_f32(result, 3, beta1);
+ ggml_set_op_params_f32(result, 4, beta2);
+ ggml_set_op_params_f32(result, 5, eps);
+ ggml_set_op_params_f32(result, 6, wd);
+
+ return result;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
tensor->flags |= GGML_TENSOR_FLAG_PARAM;
GGML_ASSERT(tensor->grad == NULL);
ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
}
+void ggml_set_loss(struct ggml_tensor * tensor) {
+ GGML_ASSERT(ggml_is_scalar(tensor));
+ GGML_ASSERT(tensor->type == GGML_TYPE_F32);
+ GGML_ASSERT(tensor->grad);
+ tensor->flags |= GGML_TENSOR_FLAG_LOSS;
+}
+
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
- float * d = (float *) opt0->data;
+ const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
for (int64_t i1 = ir0; i1 < ir1; i1++) {
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
ggml_vec_sub_f32(nc, ds0, ds0, s1);
- ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
+ ggml_vec_scale_f32(nc, ds0, d_by_nr);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
}
}
+static void ggml_compute_forward_opt_step_adamw_f32(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+ const struct ggml_tensor * src0_grad = dst->src[1];
+ const struct ggml_tensor * src0_grad_m = dst->src[2];
+ const struct ggml_tensor * src0_grad_v = dst->src[3];
+ GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nr = ggml_nrows(src0);
+
+ GGML_TENSOR_UNARY_OP_LOCALS
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ /* const float gnorm = 1.0f; */
+ int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
+ const float alpha = ggml_get_op_params_f32(dst, 2);
+ const float beta1 = ggml_get_op_params_f32(dst, 3);
+ const float beta2 = ggml_get_op_params_f32(dst, 4);
+ const float eps = ggml_get_op_params_f32(dst, 5);
+ const float wd = ggml_get_op_params_f32(dst, 6);
+
+ const float beta1h = alpha/(1.0f - powf(beta1, iter));
+ const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
+
+ float * w = (float *) ((char *) src0->data + offset); // weight
+ const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
+ float * m = (float *) ((char *) src0_grad_m->data + offset);
+ float * v = (float *) ((char *) src0_grad_v->data + offset);
+
+ for (int i00 = 0; i00 < ne00; ++i00) {
+ m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
+ v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
+
+ const float mh = m[i00]*beta1h;
+ const float vh = sqrtf(v[i00]*beta2h) + eps;
+
+ // The weight decay is applied independently of the Adam momenta m and v.
+ // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
+ // See: https://arxiv.org/pdf/1711.05101v3.pdf
+ w[i00] = w[i00]*(1.0f - alpha*wd) - mh/vh;
+ }
+ }
+
+ ggml_barrier(params->threadpool);
+ if (ith != 0) {
+ return;
+ }
+
+ iter++;
+ memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
+}
+
+static void ggml_compute_forward_opt_step_adamw(
+ const struct ggml_compute_params * params,
+ struct ggml_tensor * dst) {
+
+ const struct ggml_tensor * src0 = dst->src[0];
+
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_opt_step_adamw_f32(params, dst);
+ } break;
+ default:
+ {
+ GGML_ABORT("fatal error");
+ }
+ }
+}
/////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
ggml_compute_forward_cross_entropy_loss_back(params, tensor);
}
break;
+ case GGML_OP_OPT_STEP_ADAMW:
+ {
+ ggml_compute_forward_opt_step_adamw(params, tensor);
+ }
+ break;
case GGML_OP_NONE:
{
// nop
struct ggml_tensor * * checkpoints,
int n_checkpoints) {
ggml_graph_cpy(gf, gb_tmp);
- ggml_build_backward_expand(ctx, gf, gb_tmp, true);
+ ggml_build_backward_expand(ctx, gf, gb_tmp, false, true);
if (n_checkpoints <= 0) {
ggml_graph_cpy(gb_tmp, gb);
ggml_hash_map_free(replacements);
}
-// functions to change gradients considering the case that input a might be initial gradient with zero value
-
-static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
+// utility functions to change gradients
+// if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
+// else if a is in zero_table, replace a
+// else, just add/subtract/etc. the gradients
+
+static struct ggml_tensor * ggml_add_or_set(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_hash_set * zero_table,
+ struct ggml_hash_set * acc_table) {
+ if (ggml_hash_contains(acc_table, a)) {
+ struct ggml_tensor * ret = ggml_add_impl(ctx, a, b, true);
+ const size_t insert_result = ggml_hash_insert(acc_table, ret);
+ GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
+ GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
+ return ret;
+ }
if (ggml_hash_contains(zero_table, a)) {
return b;
- } else {
- return ggml_add_impl(ctx, a, b, false);
}
+ return ggml_add_impl(ctx, a, b, false);
}
-static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set * zero_table) {
+static struct ggml_tensor * ggml_acc_or_set(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const size_t nb1,
+ const size_t nb2,
+ const size_t nb3,
+ const size_t offset,
+ struct ggml_hash_set * zero_table,
+ struct ggml_hash_set * acc_table) {
+ if (ggml_hash_contains(acc_table, a)) {
+ struct ggml_tensor * ret = ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
+ const size_t insert_result = ggml_hash_insert(acc_table, ret);
+ GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
+ GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
+ return ret;
+ }
if (ggml_hash_contains(zero_table, a)) {
- struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
+ struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
- } else {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
+ return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
-static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
+static struct ggml_tensor * ggml_add1_or_set(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_hash_set * zero_table,
+ struct ggml_hash_set * acc_table) {
+ if (ggml_hash_contains(acc_table, a)) {
+ struct ggml_tensor * ret = ggml_add1_impl(ctx, a, b, true);
+ const size_t insert_result = ggml_hash_insert(acc_table, ret);
+ GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
+ GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
+ return ret;
+ }
if (ggml_hash_contains(zero_table, a)) {
return ggml_repeat(ctx, b, a);
- } else {
- return ggml_add1_impl(ctx, a, b, false);
}
+ return ggml_add1_impl(ctx, a, b, false);
}
-static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
+static struct ggml_tensor * ggml_sub_or_set(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_hash_set * zero_table,
+ struct ggml_hash_set * acc_table) {
+ if (ggml_hash_contains(acc_table, a)) {
+ struct ggml_tensor * ret = ggml_sub_impl(ctx, a, b, true);
+ const size_t insert_result = ggml_hash_insert(acc_table, ret);
+ GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
+ GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
+ return ret;
+ }
if (ggml_hash_contains(zero_table, a)) {
return ggml_neg(ctx, b);
- } else {
- return ggml_sub_impl(ctx, a, b, false);
}
+ return ggml_sub_impl(ctx, a, b, false);
}
-static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table) {
+static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table, struct ggml_hash_set * acc_table) {
struct ggml_tensor * src0 = tensor->src[0];
struct ggml_tensor * src1 = tensor->src[1];
struct ggml_tensor * src2 = tensor->src[2];
case GGML_OP_DUP:
{
if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_OP_ADD:
{
if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
if (ggml_are_same_shape(src0, src1)) {
- src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
+ src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
} else {
- src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table);
+ src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table, acc_table);
}
}
} break;
case GGML_OP_ADD1:
{
if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
src1->grad = ggml_add_or_set(ctx,
src1->grad,
ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_ACC:
{
if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SUB:
{
if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
- src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
+ src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_OP_MUL:
ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx, src1, tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
if (src1->grad) {
src1->grad =
ggml_add_or_set(ctx,
src1->grad,
ggml_mul(ctx, src0, tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_DIV:
ggml_add_or_set(ctx,
src0->grad,
ggml_div(ctx, tensor->grad, src1),
- zero_table);
+ zero_table, acc_table);
}
if (src1->grad) {
src1->grad =
ggml_mul(ctx,
tensor->grad,
ggml_div(ctx, tensor, src1)),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SQR:
ggml_scale(ctx,
ggml_mul(ctx, src0, tensor->grad),
2.0f),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SQRT:
tensor->grad,
tensor),
0.5f),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_LOG:
ggml_div(ctx,
tensor->grad,
src0),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SIN:
ggml_mul(ctx,
tensor->grad,
ggml_cos(ctx, src0)),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_COS:
ggml_mul(ctx,
tensor->grad,
ggml_sin(ctx, src0)),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SUM:
ggml_add1_or_set(ctx,
src0->grad,
tensor->grad,
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SUM_ROWS:
ggml_repeat(ctx,
tensor->grad,
src0->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_MEAN:
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_repeat_back(ctx, tensor->grad, src0->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_REPEAT_BACK:
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_repeat(ctx, tensor->grad, src0->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_CONCAT:
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_RMS_NORM_BACK:
ggml_add_or_set(ctx,
src0->grad, // [n,m,q1,r1]
s1_tg, // [n,m,q1,r1]
- zero_table);
+ zero_table, acc_table);
}
if (src1->grad) {
src1->grad =
src0, // [n,m,q1,r1]
ggml_transpose(ctx, // [p,m,qq,rr]
tensor->grad)), // [m,p,qq,rr]
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_MUL_MAT_ID:
ggml_add_or_set(ctx,
src0->grad,
ggml_scale_impl(ctx, tensor->grad, s, false),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SET:
tensor->grad,
ggml_neg(ctx, tensor_grad_view),
nb1, nb2, nb3, offset, false),
- zero_table);
+ zero_table, acc_table);
}
if (src1->grad) {
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_CPY:
// tensor = src0 * 1 + src1 * 0
if (src0->grad) {
// dsrc0 = dtensor * 1
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
if (src1->grad) {
// dsrc1 = dtensor * 0 -> noop
if (src0->grad) {
GGML_ASSERT(ggml_is_contiguous(src0->grad));
GGML_ASSERT(ggml_is_contiguous(tensor->grad));
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_OP_RESHAPE:
? tensor->grad
: ggml_cont(ctx, tensor->grad),
src0->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_VIEW:
nb3 = (nb3 / n0) * ng;
}
- src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
+ src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table, acc_table);
}
} break;
case GGML_OP_PERMUTE:
axes_backward[1],
axes_backward[2],
axes_backward[3]),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_TRANSPOSE:
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_transpose(ctx, tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_GET_ROWS:
// last ggml_get_rows_back argument src0->grad is only
// necessary to setup correct output shape
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
- zero_table);
+ zero_table, acc_table);
}
if (src1->grad) {
// noop
/* ggml_diag_mask_inf_impl() shouldn't be here */
/* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_DIAG_MASK_ZERO:
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_SOFT_MAX:
src0->grad =
ggml_add_or_set(ctx, src0->grad,
ggml_soft_max_back(ctx, tensor->grad, tensor),
- zero_table);
+ zero_table, acc_table);
}
} break;
attn_factor,
beta_fast,
beta_slow),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_ROPE_BACK:
beta_fast,
beta_slow,
false),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_CLAMP:
src1->grad = ggml_add_or_set(ctx,
src1->grad,
ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_IM2COL_BACK:
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_POOL_2D_BACK:
src0->grad = ggml_add_or_set(ctx,
src0->grad,
grad_q,
- zero_table);
+ zero_table, acc_table);
}
if (src1->grad) {
struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
src1->grad = ggml_add_or_set(ctx,
src1->grad,
grad_k,
- zero_table);
+ zero_table, acc_table);
}
if (src2->grad) {
struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
src2->grad = ggml_add_or_set(ctx,
src2->grad,
grad_v,
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_FLASH_ATTN_BACK:
ggml_mul(ctx,
ggml_sgn(ctx, src0),
tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_NEG:
{
if (src0->grad) {
- src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
+ src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_STEP:
ggml_mul(ctx,
ggml_step(ctx, src0),
tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_SIGMOID:
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_silu_back(ctx, src0, tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_UNARY_OP_EXP:
src0->grad = ggml_add_or_set(ctx,
src0->grad,
ggml_mul(ctx, tensor, tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
default:
src0,
src1,
tensor->grad),
- zero_table);
+ zero_table, acc_table);
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
GGML_ABORT("fatal error"); // not supported
}
+ case GGML_OP_OPT_STEP_ADAMW:
+ {
+ GGML_ABORT("fatal error"); // not supported
+ }
case GGML_OP_NONE:
{
// nop
ggml_build_forward_impl(cgraph, tensor, true);
}
-void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
+void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate, bool keep) {
GGML_ASSERT(gf->n_nodes > 0);
GGML_ASSERT(gf->grads);
}
}
- // remember original gradients which start with zero values
+ // keep tables of original gradients for replacement/accumulation logic
struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
+ struct ggml_hash_set acc_table = ggml_hash_set_new(gf->size);
for (int i = 0; i < gf->n_nodes; i++) {
- if (gf->grads[i]) {
- ggml_hash_insert(&zero_table, gf->grads[i]);
+ struct ggml_tensor * node = gf->nodes[i];
+
+ if (node->grad) {
+ {
+ const size_t insert_result = ggml_hash_insert(&zero_table, node->grad);
+ GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
+ GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
+ }
+
+ // only gradients of trainable parameters should be accumulated
+ if (accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
+ const size_t insert_result = ggml_hash_insert(&acc_table, node->grad);
+ GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
+ GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
+ }
}
}
for (int i = gf->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = gf->nodes[i];
- // inplace operations to add gradients are not created by ggml_compute_backward
+ // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
// use allocator to automatically make inplace operations
if (node->grad) {
- ggml_compute_backward(ctx, node, &zero_table);
+ ggml_compute_backward(ctx, node, &zero_table, &acc_table);
}
}
}
ggml_hash_set_free(&zero_table);
+ ggml_hash_set_free(&acc_table);
+}
+
+void ggml_build_opt_adamw(
+ struct ggml_context * ctx,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb,
+ float alpha,
+ float beta1,
+ float beta2,
+ float eps,
+ float wd) {
+ for (int i = 0; i < gf->n_nodes; i++) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ if (node->flags & GGML_TENSOR_FLAG_PARAM) {
+ GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
+ struct ggml_tensor * opt_step = ggml_opt_step_adamw(ctx, node, alpha, beta1, beta2, eps, wd);
+ ggml_build_forward_expand(gb, opt_step);
+ }
+ }
}
+
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
void * ptr = *p;
ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
GGML_ASSERT(cgraph->grads != NULL);
for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * grad = cgraph->grads[i];
+ struct ggml_tensor * node = cgraph->nodes[i];
+
+ // initial gradients of loss should be 1, 0 otherwise
+ if (node->grad) {
+ if (node->flags & GGML_TENSOR_FLAG_LOSS) {
+ GGML_ASSERT(node->grad->buffer);
+ GGML_ASSERT(node->type == GGML_TYPE_F32);
+ GGML_ASSERT(ggml_is_scalar(node));
+
+ const float onef = 1.0f;
+ ggml_backend_tensor_set(node->grad, &onef, 0, ggml_nbytes(node->grad));
+ } else {
+ ggml_set_zero(node->grad);
+ }
+ }
- if (grad) {
- ggml_set_zero(grad);
+ GGML_ASSERT(node);
+ if (node->op == GGML_OP_OPT_STEP_ADAMW) {
+ // set iteration to 1 and clear momenta
+ ggml_set_op_params_i32(node, 0, 1);
+ ggml_set_zero(node->src[2]);
+ ggml_set_zero(node->src[3]);
}
}
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ case GGML_OP_OPT_STEP_ADAMW:
{
n_tasks = n_threads;
} break;
ggml_build_forward_expand(gf, f);
struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
- ggml_build_backward_expand(ctx, gf, gb, true);
+ ggml_build_backward_expand(ctx, gf, gb, false, true);
return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
}