-#include "arg.h"
-#include "common.h"
-#include "log.h"
#include "llama.h"
-
+#include <cstdio>
+#include <cstring>
+#include <string>
#include <vector>
static void print_usage(int, char ** argv) {
- LOG("\nexample usage:\n");
- LOG("\n %s -m model.gguf -p \"Hello my name is\" -n 32\n", argv[0]);
- LOG("\n");
+ printf("\nexample usage:\n");
+ printf("\n %s -m model.gguf [-n n_predict] [-ngl n_gpu_layers] [prompt]\n", argv[0]);
+ printf("\n");
}
int main(int argc, char ** argv) {
- gpt_params params;
-
- params.prompt = "Hello my name is";
- params.n_predict = 32;
-
- if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
- return 1;
+ // path to the model gguf file
+ std::string model_path;
+ // prompt to generate text from
+ std::string prompt = "Hello my name is";
+ // number of layers to offload to the GPU
+ int ngl = 99;
+ // number of tokens to predict
+ int n_predict = 32;
+
+ // parse command line arguments
+
+ {
+ int i = 1;
+ for (; i < argc; i++) {
+ if (strcmp(argv[i], "-m") == 0) {
+ if (i + 1 < argc) {
+ model_path = argv[++i];
+ } else {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else if (strcmp(argv[i], "-n") == 0) {
+ if (i + 1 < argc) {
+ try {
+ n_predict = std::stoi(argv[++i]);
+ } catch (...) {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else if (strcmp(argv[i], "-ngl") == 0) {
+ if (i + 1 < argc) {
+ try {
+ ngl = std::stoi(argv[++i]);
+ } catch (...) {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else {
+ print_usage(argc, argv);
+ return 1;
+ }
+ } else {
+ // prompt starts here
+ break;
+ }
+ }
+ if (model_path.empty()) {
+ print_usage(argc, argv);
+ return 1;
+ }
+ if (i < argc) {
+ prompt = argv[i++];
+ for (; i < argc; i++) {
+ prompt += " ";
+ prompt += argv[i];
+ }
+ }
}
- gpt_init();
-
- // total length of the sequence including the prompt
- const int n_predict = params.n_predict;
-
- // init LLM
-
- llama_backend_init();
- llama_numa_init(params.numa);
-
// initialize the model
- llama_model_params model_params = llama_model_params_from_gpt_params(params);
+ llama_model_params model_params = llama_model_default_params();
+ model_params.n_gpu_layers = ngl;
- llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
+ llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
+ // tokenize the prompt
+
+ // find the number of tokens in the prompt
+ const int n_prompt = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
+
+ // allocate space for the tokens and tokenize the prompt
+ std::vector<llama_token> prompt_tokens(n_prompt);
+ if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
+ fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
+ return 1;
+ }
+
// initialize the context
- llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
+ llama_context_params ctx_params = llama_context_default_params();
+ // n_ctx is the context size
+ ctx_params.n_ctx = n_prompt + n_predict - 1;
+ // n_batch is the maximum number of tokens that can be processed in a single call to llama_decode
+ ctx_params.n_batch = n_prompt;
+ // enable performance counters
+ ctx_params.no_perf = false;
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
return 1;
}
- auto sparams = llama_sampler_chain_default_params();
+ // initialize the sampler
+ auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
-
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
- // tokenize the prompt
-
- std::vector<llama_token> tokens_list;
- tokens_list = ::llama_tokenize(ctx, params.prompt, true);
-
- const int n_ctx = llama_n_ctx(ctx);
- const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size());
-
- LOG("\n");
- LOG_INF("%s: n_predict = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, n_kv_req);
-
- // make sure the KV cache is big enough to hold all the prompt and generated tokens
- if (n_kv_req > n_ctx) {
- LOG_ERR("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
- LOG_ERR("%s: either reduce n_predict or increase n_ctx\n", __func__);
- return 1;
- }
-
// print the prompt token-by-token
- LOG("\n");
-
- for (auto id : tokens_list) {
- LOG("%s", llama_token_to_piece(ctx, id).c_str());
- }
-
- // create a llama_batch with size 512
- // we use this object to submit token data for decoding
-
- llama_batch batch = llama_batch_init(512, 0, 1);
-
- // evaluate the initial prompt
- for (size_t i = 0; i < tokens_list.size(); i++) {
- llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
+ for (auto id : prompt_tokens) {
+ char buf[128];
+ int n = llama_token_to_piece(model, id, buf, sizeof(buf), 0, true);
+ if (n < 0) {
+ fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
+ return 1;
+ }
+ std::string s(buf, n);
+ printf("%s", s.c_str());
}
- // llama_decode will output logits only for the last token of the prompt
- batch.logits[batch.n_tokens - 1] = true;
+ // prepare a batch for the prompt
- if (llama_decode(ctx, batch) != 0) {
- LOG("%s: llama_decode() failed\n", __func__);
- return 1;
- }
+ llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size(), 0, 0);
// main loop
- int n_cur = batch.n_tokens;
+ const auto t_main_start = ggml_time_us();
int n_decode = 0;
+ llama_token new_token_id;
- const auto t_main_start = ggml_time_us();
+ for (int n_pos = 0; n_pos + batch.n_tokens < n_prompt + n_predict; ) {
+ // evaluate the current batch with the transformer model
+ if (llama_decode(ctx, batch)) {
+ fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
+ return 1;
+ }
+
+ n_pos += batch.n_tokens;
- while (n_cur <= n_predict) {
// sample the next token
{
- const llama_token new_token_id = llama_sampler_sample(smpl, ctx, -1);
+ new_token_id = llama_sampler_sample(smpl, ctx, -1);
// is it an end of generation?
- if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
- LOG("\n");
-
+ if (llama_token_is_eog(model, new_token_id)) {
break;
}
- LOG("%s", llama_token_to_piece(ctx, new_token_id).c_str());
+ char buf[128];
+ int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
+ if (n < 0) {
+ fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
+ return 1;
+ }
+ std::string s(buf, n);
+ printf("%s", s.c_str());
fflush(stdout);
- // prepare the next batch
- llama_batch_clear(batch);
-
- // push this new token for next evaluation
- llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
+ // prepare the next batch with the sampled token
+ batch = llama_batch_get_one(&new_token_id, 1, n_pos, 0);
n_decode += 1;
}
-
- n_cur += 1;
-
- // evaluate the current batch with the transformer model
- if (llama_decode(ctx, batch)) {
- LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
- return 1;
- }
}
- LOG("\n");
+ printf("\n");
const auto t_main_end = ggml_time_us();
- LOG_INF("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
+ fprintf(stderr, "%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
- LOG("\n");
+ fprintf(stderr, "\n");
llama_perf_sampler_print(smpl);
llama_perf_context_print(ctx);
+ fprintf(stderr, "\n");
- LOG("\n");
-
- llama_batch_free(batch);
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
- llama_backend_free();
-
return 0;
}