Split N into chunks to fit into shared memory.
If K > 128, use a larger workgroup with enough invocations.
Add perf tests matching qwen3next.
for (auto &s : device->pipeline_solve_tri_f32) {
const vk_solve_tri_pipeline_state &state = s.first;
+
+ // Max number of rows to load at a time, limited by shared memory
+ const uint32_t batch_N = device->properties.limits.maxComputeSharedMemorySize / ((state.N + state.K) * sizeof(float));
+ // Need at least K invocations, and prefer a minimum of 128 to spread out loading shared memory
+ const uint32_t block_size = std::max(128u, 1u << (uint32_t)ceilf(log2f(float(state.K))));
+
ggml_vk_create_pipeline(
device, s.second, "solve_tri_f32",
solve_tri_f32_len, solve_tri_f32_data, "main", 3,
- sizeof(vk_op_binary_push_constants), {1, 1, 1}, { 0, state.N, state.K }, 1, true);
+ sizeof(vk_op_binary_push_constants), {1, 1, 1}, { 0, state.N, state.K, batch_N, block_size }, 1, true);
}
#define IM2COL(bda) \
const uint32_t N = op->src[0]->ne[0];
const uint32_t K = op->src[1]->ne[0];
// K dimension limited to workgroup size
- if (K > 128) {
+ if (K > 1u << device->max_workgroup_size_log2) {
return false;
}
- if (N * N * sizeof(float) + N * K * sizeof(float) > device->properties.limits.maxComputeSharedMemorySize) {
+ const uint32_t batch_N = device->properties.limits.maxComputeSharedMemorySize / ((N + K) * sizeof(float));
+
+ if (batch_N == 0) {
return false;
}
return true;
layout (constant_id = 1) const uint N = 64;
layout (constant_id = 2) const uint K = 32;
+layout (constant_id = 3) const uint BATCH_N = 32;
-layout(local_size_x = 128, local_size_y = 1, local_size_z = 1) in;
+layout(local_size_x_id = 4, local_size_y = 1, local_size_z = 1) in;
uint a_base, b_base, x_base;
data_d[x_base + r * p.nb21 + c * p.nb20] = D_TYPE(v);
}
-shared FLOAT_TYPE shA[N * N];
-shared FLOAT_TYPE shB[N * K];
+shared FLOAT_TYPE shA[BATCH_N * N];
+shared FLOAT_TYPE shB[BATCH_N * K];
void main() {
const uint batch = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x;
b_base = get_boffset() + i2 * p.nb12 + i3 * p.nb13;
x_base = get_doffset() + i2 * p.nb22 + i3 * p.nb23;
- // Load the A matrix into shA
- [[unroll]] for (uint i = 0; i < N * N; i += gl_WorkGroupSize.x) {
- uint idx = i + tid;
- if (((N * N) % gl_WorkGroupSize.x == 0) || idx < N * N) {
- shA[idx] = get_a(idx / N, idx % N);
+ FLOAT_TYPE X[N];
+
+ // Loop over batches of rows
+ [[unroll]] for (uint row_base = 0; row_base < N; row_base += BATCH_N) {
+ const uint cur_N = min(BATCH_N, N - row_base);
+
+ // Load the A matrix batch into shA
+ [[unroll]] for (uint i = 0; i < cur_N * N; i += gl_WorkGroupSize.x) {
+ uint idx = i + tid;
+ if (((cur_N * N) % gl_WorkGroupSize.x == 0) || idx < cur_N * N) {
+ shA[idx] = get_a(row_base + idx / N, idx % N);
+ }
}
- }
- // Load the B matrix into shB
- [[unroll]] for (uint i = 0; i < N * K; i += gl_WorkGroupSize.x) {
- uint idx = i + tid;
- if (((N * K) % gl_WorkGroupSize.x == 0) || idx < N * K) {
- shB[idx] = get_b(idx / K, idx % K);
+ // Load the B matrix batch into shB
+ [[unroll]] for (uint i = 0; i < cur_N * K; i += gl_WorkGroupSize.x) {
+ uint idx = i + tid;
+ if (((cur_N * K) % gl_WorkGroupSize.x == 0) || idx < cur_N * K) {
+ shB[idx] = get_b(row_base + idx / K, idx % K);
+ }
}
- }
- barrier();
+ barrier();
- FLOAT_TYPE X[N];
- // Each thread solves one column
- if (tid < K) {
- [[unroll]] for (int r = 0; r < N; ++r) {
- FLOAT_TYPE b = shB[r * K + tid];
- // Compute x[r,c] = (b[r,c] - sum(a[r,c]*x[c])) / a[r,r]
- [[unroll]] for (int c = 0; c < r; ++c) {
- b -= shA[r * N + c] * X[c];
+ // Each thread solves one column
+ if (tid < K) {
+ [[unroll]] for (uint row_offset = 0; row_offset < cur_N; ++row_offset) {
+ uint r = row_base + row_offset;
+ FLOAT_TYPE b = shB[row_offset * K + tid];
+ // Compute x[r,c] = (b[r,c] - sum(a[r,c]*x[c])) / a[r,r]
+ [[unroll]] for (int c = 0; c < r; ++c) {
+ b -= shA[row_offset * N + c] * X[c];
+ }
+ FLOAT_TYPE x = b / shA[row_offset * N + r];
+ X[r] = x;
+ store_x(r, tid, x);
}
- FLOAT_TYPE x = b / shA[r * N + r];
- X[r] = x;
- store_x(r, tid, x);
}
+ barrier();
}
}
std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
+ uint64_t op_flops(ggml_tensor * t) override {
+ GGML_UNUSED(t);
+ int64_t n = ne_lhs[0];
+ int64_t k = ne_rhs[0];
+ int64_t batch = ne_lhs[2] * ne_lhs[3];
+ // n * (n + 1) / 2 non-zero elements of lhs, 2 flops each, for each col of rhs
+ return n * (n + 1) * k * batch;
+ }
+
test_solve_tri(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
+ test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 4 }, { 31, 128, 4, 4 }));
+ test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 300, 64, 4, 4 }));
for (bool v : {false, true}) {
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v));
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 2 }, { 6, 64, 4, 2 }));
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 1 }, { 8, 128, 4, 1 }));
+ // qwen3next with CHUNK_SIZE 64
+ test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 8, 32 }, { 64, 64, 8, 32 }));
+ // qwen3next with CHUNK_SIZE 128
+ test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 32 }, { 128, 128, 4, 32 }));
test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER, GGML_TYPE_F32, { 256, 256, 4, 4 }));
test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG, GGML_TYPE_F32, { 1024, 1024, 8, 4 }));