#include "ggml-common.h"
#include <algorithm>
+#include <array>
#include <assert.h>
#include <atomic>
#include <cinttypes>
#include <cstdint>
#include <float.h>
#include <limits>
+#include <map>
+#include <memory>
+#include <mutex>
#include <stdint.h>
#include <stdio.h>
#include <string>
#include <vector>
-#include <map>
-#include <array>
// stringize macro for converting __CUDA_ARCH_LIST__ (list of integers) to string
#define STRINGIZE_IMPL(...) #__VA_ARGS__
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
#define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
#define cublasCreate hipblasCreate
+#define cublasDestroy hipblasDestroy
#define cublasGemmEx hipblasGemmEx
#define cublasGemmBatchedEx hipblasGemmBatchedEx
#define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
#define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
#define cudaSetDevice hipSetDevice
#define cudaStreamCreateWithFlags hipStreamCreateWithFlags
+#define cudaStreamDestroy hipStreamDestroy
#define cudaStreamFireAndForget hipStreamFireAndForget
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
-#define GGML_CUDA_MAX_NODES 8192
-
// define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
// on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
// for large computational tasks. the drawback is that this requires some extra amount of VRAM:
#define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
#define MMQ_MAX_BATCH_SIZE 32 // max batch size to use MMQ kernels when tensor cores are available
-#if defined(GGML_USE_HIPBLAS)
-#define __CUDA_ARCH__ 1300
-
-#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
- defined(__gfx1150__) || defined(__gfx1151__)
-#define RDNA3
-#endif
-
-#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
- defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
-#define RDNA2
-#endif
-
-#ifndef __has_builtin
- #define __has_builtin(x) 0
-#endif
-
-typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
-typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
-static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
-#if __has_builtin(__builtin_elementwise_sub_sat)
- const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
- return reinterpret_cast<const int &>(c);
-#else
- int8x4_t c;
- int16_t tmp;
-#pragma unroll
- for (int i = 0; i < 4; i++) {
- tmp = va[i] - vb[i];
- if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
- if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
- c[i] = tmp;
- }
- return reinterpret_cast<int &>(c);
-#endif // __has_builtin(__builtin_elementwise_sub_sat)
-}
-
-static __device__ __forceinline__ int __vsub4(const int a, const int b) {
- return __vsubss4(a, b);
-}
-
-static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
- const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
- const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
- unsigned int c;
- uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
-#pragma unroll
- for (int i = 0; i < 4; ++i) {
- vc[i] = va[i] == vb[i] ? 0xff : 0x00;
- }
- return c;
-}
+#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
-static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
-#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
- c = __builtin_amdgcn_sdot4(a, b, c, false);
-#elif defined(RDNA3)
- c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
-#elif defined(__gfx1010__) || defined(__gfx900__)
- int tmp1;
- int tmp2;
- asm("\n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- "
- : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
- : "v"(a), "v"(b)
- );
-#else
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
-#endif
- return c;
-}
-#endif // defined(GGML_USE_HIPBLAS)
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#define GGML_CUDA_ASSUME(x)
#endif // CUDART_VERSION >= 11100
-#ifdef GGML_CUDA_F16
-typedef half dfloat; // dequantize float
-typedef half2 dfloat2;
-#else
-typedef float dfloat; // dequantize float
-typedef float2 dfloat2;
-#endif //GGML_CUDA_F16
-
-static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
+#define GGML_CUDA_MAX_STREAMS 8
- return x32;
-}
+struct ggml_tensor_extra_gpu {
+ void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
+ cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
+};
-static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+// this is faster on Windows
+// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
+static void ggml_cuda_set_device(const int device) {
+ int current_device;
+ CUDA_CHECK(cudaGetDevice(¤t_device));
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
+ if (device == current_device) {
+ return;
+ }
- return x32;
+ CUDA_CHECK(cudaSetDevice(device));
}
-static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+static int ggml_cuda_get_device() {
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ return id;
}
-static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
-}
+struct ggml_cuda_device_info {
+ int device_count;
-template<typename T>
-using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
-typedef to_t_cuda_t<float> to_fp32_cuda_t;
-typedef to_t_cuda_t<half> to_fp16_cuda_t;
+ struct cuda_device_info {
+ int cc; // compute capability
+ size_t smpb; // max. shared memory per block
+ bool vmm; // virtual memory support
+ size_t vmm_granularity; // granularity of virtual memory
+ size_t total_vram;
+ };
-typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
-typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
-typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
-typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
-typedef void (*ggml_cuda_op_mul_mat_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream);
-typedef void (*ggml_cuda_op_flatten_t)(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream);
+ cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
-typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
-typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
-typedef void (*load_tiles_cuda_t)(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
-typedef float (*vec_dot_q_mul_mat_cuda_t)(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
+ std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
+};
-#define WARP_SIZE 32
-#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
+static ggml_cuda_device_info ggml_cuda_init() {
+#ifdef __HIP_PLATFORM_AMD__
+ // Workaround for a rocBLAS bug when using multiple graphics cards:
+ // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
+ rocblas_initialize();
+ CUDA_CHECK(cudaDeviceSynchronize());
+#endif
-#define CUDA_GELU_BLOCK_SIZE 256
-#define CUDA_SILU_BLOCK_SIZE 256
-#define CUDA_TANH_BLOCK_SIZE 256
-#define CUDA_RELU_BLOCK_SIZE 256
-#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
-#define CUDA_HARDSWISH_BLOCK_SIZE 256
-#define CUDA_SQR_BLOCK_SIZE 256
-#define CUDA_CPY_BLOCK_SIZE 32
-#define CUDA_SCALE_BLOCK_SIZE 256
-#define CUDA_CLAMP_BLOCK_SIZE 256
-#define CUDA_ROPE_BLOCK_SIZE 256
-#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
-#define CUDA_ALIBI_BLOCK_SIZE 32
-#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
-#define CUDA_QUANTIZE_BLOCK_SIZE 256
-#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
-#define CUDA_GET_ROWS_BLOCK_SIZE 256
-#define CUDA_UPSCALE_BLOCK_SIZE 256
-#define CUDA_CONCAT_BLOCK_SIZE 256
-#define CUDA_PAD_BLOCK_SIZE 256
-#define CUDA_ARANGE_BLOCK_SIZE 256
-#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
-#define CUDA_ACC_BLOCK_SIZE 256
-#define CUDA_IM2COL_BLOCK_SIZE 256
-#define CUDA_POOL2D_BLOCK_SIZE 256
+ ggml_cuda_device_info info = {};
-#define CUDA_Q8_0_NE_ALIGN 2048
+ if (cudaGetDeviceCount(&info.device_count) != cudaSuccess) {
+ fprintf(stderr, "%s: no " GGML_CUDA_NAME " devices found, " GGML_CUDA_NAME " will be disabled\n", __func__);
+ return info;
+ }
-// dmmv = dequantize_mul_mat_vec
-#ifndef GGML_CUDA_DMMV_X
-#define GGML_CUDA_DMMV_X 32
-#endif
-#ifndef GGML_CUDA_MMV_Y
-#define GGML_CUDA_MMV_Y 1
-#endif
+ GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
-#ifndef K_QUANTS_PER_ITERATION
-#define K_QUANTS_PER_ITERATION 2
+ int64_t total_vram = 0;
+#if defined(GGML_CUDA_FORCE_MMQ)
+ fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
#else
-static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
+ fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
+#endif
+#if defined(CUDA_USE_TENSOR_CORES)
+ fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
+#else
+ fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
#endif
+ fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
+ for (int id = 0; id < info.device_count; ++id) {
+ int device_vmm = 0;
-#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
-#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
-#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
+#if !defined(GGML_USE_HIPBLAS)
+ CUdevice device;
+ CU_CHECK(cuDeviceGet(&device, id));
+ CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
-#define MUL_MAT_SRC1_COL_STRIDE 128
+ if (device_vmm) {
+ CUmemAllocationProp alloc_prop = {};
+ alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
+ alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+ alloc_prop.location.id = id;
+ CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
+ }
+#endif // !defined(GGML_USE_HIPBLAS)
+ info.devices[id].vmm = !!device_vmm;
-#define MAX_STREAMS 8
-static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { { nullptr } };
+ cudaDeviceProp prop;
+ CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
+ fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
-struct ggml_tensor_extra_gpu {
- void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
- cudaEvent_t events[GGML_CUDA_MAX_DEVICES][MAX_STREAMS]; // events for synchronizing multiple GPUs
-};
+ info.default_tensor_split[id] = total_vram;
+ total_vram += prop.totalGlobalMem;
-// this is faster on Windows
-// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
-static void ggml_cuda_set_device(const int device) {
- int current_device;
- CUDA_CHECK(cudaGetDevice(¤t_device));
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
+#else
+ info.devices[id].cc = 100*prop.major + 10*prop.minor;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ info.devices[id].smpb = prop.sharedMemPerBlock;
+ }
- if (device == current_device) {
- return;
+ for (int id = 0; id < info.device_count; ++id) {
+ info.default_tensor_split[id] /= total_vram;
}
- CUDA_CHECK(cudaSetDevice(device));
+ // configure logging to stdout
+ // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
+
+ return info;
}
-static int g_device_count = -1;
-static int g_main_device = 0;
-static std::array<float, GGML_CUDA_MAX_DEVICES> g_default_tensor_split = {};
+static const ggml_cuda_device_info & get_cuda_global_info() {
+ static ggml_cuda_device_info info = ggml_cuda_init();
+ return info;
+}
-struct cuda_device_capabilities {
- int cc; // compute capability
- size_t smpb; // max. shared memory per block
- bool vmm; // virtual memory support
- size_t vmm_granularity; // granularity of virtual memory
-};
+// #define DEBUG_CUDA_MALLOC
-static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, 0, false, 0} };
+// buffer pool for cuda (legacy)
+struct ggml_cuda_pool {
+ virtual ~ggml_cuda_pool() = default;
-static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
+ virtual void * alloc(size_t size, size_t * actual_size) = 0;
+ virtual void free(void * ptr, size_t size) = 0;
-[[noreturn]]
-static __device__ void no_device_code(
- const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
+ ggml_cuda_pool() = default;
+ ggml_cuda_pool(const ggml_cuda_pool &) = delete;
+ ggml_cuda_pool(ggml_cuda_pool &&) = delete;
+ ggml_cuda_pool& operator=(const ggml_cuda_pool &) = delete;
+ ggml_cuda_pool& operator=(ggml_cuda_pool &&) = delete;
+};
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
- file_name, line, function_name, arch);
- (void) arch_list;
-#else
- printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
- file_name, line, function_name, arch, arch_list);
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- __trap();
+struct ggml_cuda_pool_leg : public ggml_cuda_pool {
+ static const int MAX_BUFFERS = 256;
- (void) no_device_code; // suppress unused function warning
-}
+ int device;
+ struct ggml_cuda_buffer {
+ void * ptr = nullptr;
+ size_t size = 0;
+ };
-#ifdef __CUDA_ARCH__
-#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
-#else
-#define NO_DEVICE_CODE GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
-#endif // __CUDA_ARCH__
+ ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
+ size_t pool_size = 0;
-static __device__ __forceinline__ float warp_reduce_sum(float x) {
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, mask, 32);
+ explicit ggml_cuda_pool_leg(int device) :
+ device(device) {
}
- return x;
-}
-static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
- a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
+ ~ggml_cuda_pool_leg() {
+ ggml_cuda_set_device(device);
+ for (int i = 0; i < MAX_BUFFERS; ++i) {
+ ggml_cuda_buffer & b = buffer_pool[i];
+ if (b.ptr != nullptr) {
+ CUDA_CHECK(cudaFree(b.ptr));
+ pool_size -= b.size;
+ }
+ }
+ GGML_ASSERT(pool_size == 0);
}
- return a;
-}
-
-#ifdef GGML_CUDA_F16
-static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
- }
- return a;
-#else
- (void) a;
- NO_DEVICE_CODE;
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
-}
-#endif // GGML_CUDA_F16
-static __device__ __forceinline__ float warp_reduce_max(float x) {
-#pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+ void * alloc(size_t size, size_t * actual_size) override {
+#ifdef DEBUG_CUDA_MALLOC
+ int nnz = 0;
+ size_t max_size = 0;
+#endif
+ size_t best_diff = 1ull << 36;
+ int ibest = -1;
+ for (int i = 0; i < MAX_BUFFERS; ++i) {
+ ggml_cuda_buffer& b = buffer_pool[i];
+ if (b.ptr != nullptr) {
+#ifdef DEBUG_CUDA_MALLOC
+ ++nnz;
+ if (b.size > max_size) max_size = b.size;
+#endif
+ if (b.size >= size) {
+ size_t diff = b.size - size;
+ if (diff < best_diff) {
+ best_diff = diff;
+ ibest = i;
+ if (!best_diff) {
+ void * ptr = b.ptr;
+ *actual_size = b.size;
+ b.ptr = nullptr;
+ b.size = 0;
+ return ptr;
+ }
+ }
+ }
+ }
+ }
+ if (ibest >= 0) {
+ ggml_cuda_buffer& b = buffer_pool[ibest];
+ void * ptr = b.ptr;
+ *actual_size = b.size;
+ b.ptr = nullptr;
+ b.size = 0;
+ return ptr;
+ }
+ void * ptr;
+ size_t look_ahead_size = (size_t) (1.05 * size);
+ look_ahead_size = 256 * ((look_ahead_size + 255)/256);
+ ggml_cuda_set_device(device);
+ CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
+ *actual_size = look_ahead_size;
+ pool_size += look_ahead_size;
+#ifdef DEBUG_CUDA_MALLOC
+ fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
+ (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
+#endif
+ return ptr;
}
- return x;
-}
-//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
-//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
-//#pragma unroll
-// for (int mask = 16; mask > 0; mask >>= 1) {
-// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
-// }
-// return x;
-//#else
-// (void) x;
-// NO_DEVICE_CODE;
-//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
-//}
+ void free(void * ptr, size_t size) override {
+ for (int i = 0; i < MAX_BUFFERS; ++i) {
+ ggml_cuda_buffer& b = buffer_pool[i];
+ if (b.ptr == nullptr) {
+ b.ptr = ptr;
+ b.size = size;
+ return;
+ }
+ }
+ fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
+ ggml_cuda_set_device(device);
+ CUDA_CHECK(cudaFree(ptr));
+ pool_size -= size;
+ }
+};
-static __device__ __forceinline__ float op_repeat(const float a, const float b) {
- return b;
- GGML_UNUSED(a);
-}
+// pool with virtual memory
+#if !defined(GGML_USE_HIPBLAS)
+struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
+ static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
-static __device__ __forceinline__ float op_add(const float a, const float b) {
- return a + b;
-}
+ int device;
+ CUdeviceptr pool_addr = 0;
+ size_t pool_used = 0;
+ size_t pool_size = 0;
+ size_t granularity;
-static __device__ __forceinline__ float op_mul(const float a, const float b) {
- return a * b;
-}
+ explicit ggml_cuda_pool_vmm(int device) :
+ device(device),
+ granularity(get_cuda_global_info().devices[device].vmm_granularity) {
+ }
-static __device__ __forceinline__ float op_div(const float a, const float b) {
- return a / b;
-}
+ ~ggml_cuda_pool_vmm() {
+ if (pool_addr != 0) {
+ CU_CHECK(cuMemUnmap(pool_addr, pool_size));
+ CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
+ }
+ }
-template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
-static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13) {
- const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
- const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
- const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
- const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
+ void * alloc(size_t size, size_t * actual_size) override {
+ // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
+ const size_t alignment = 128;
+ size = alignment * ((size + alignment - 1) / alignment);
- if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
+ size_t avail = pool_size - pool_used;
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
+ if (size > avail) {
+ // round up to the next multiple of the granularity
+ size_t reserve_size = size - avail;
+ reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
+ GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
+ // allocate more physical memory
+ CUmemAllocationProp prop = {};
+ prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
+ prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+ prop.location.id = device;
+ CUmemGenericAllocationHandle handle;
+ CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
- for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
-}
+ // reserve virtual address space (if not already reserved)
+ if (pool_addr == 0) {
+ CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
+ }
-template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
-static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13) {
+ // map at the end of the pool
+ CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ // the memory allocation handle is no longer needed after mapping
+ CU_CHECK(cuMemRelease(handle));
- const int i3 = i/(ne2*ne1*ne0);
- const int i2 = (i/(ne1*ne0)) % ne2;
- const int i1 = (i/ne0) % ne1;
- const int i0 = i % ne0;
+ // set access
+ CUmemAccessDesc access = {};
+ access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+ access.location.id = device;
+ access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
+ CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
- if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
+ // add to the pool
+ pool_size += reserve_size;
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
+ //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
+ // id, (unsigned long long) (pool_size[id]/1024/1024),
+ // (unsigned long long) (reserve_size/1024/1024));
+ }
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
+ GGML_ASSERT(pool_addr != 0);
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
+ void * ptr = (void *) (pool_addr + pool_used);
+ *actual_size = size;
+ pool_used += size;
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
-}
+#ifdef DEBUG_CUDA_MALLOC
+ printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
+#endif
-static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, int offset) {
- const int i = blockDim.x * blockIdx.x + threadIdx.x;
- if (i >= ne) {
- return;
- }
- int src1_idx = i - offset;
- int oz = src1_idx / nb2;
- int oy = (src1_idx - (oz * nb2)) / nb1;
- int ox = src1_idx % nb1;
- if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
- dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
- } else {
- dst[i] = x[i];
+ return ptr;
}
-}
-static __global__ void gelu_f32(const float * x, float * dst, const int k) {
- const float GELU_COEF_A = 0.044715f;
- const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ void free(void * ptr, size_t size) override {
+#ifdef DEBUG_CUDA_MALLOC
+ printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
+#endif
- if (i >= k) {
- return;
+ pool_used -= size;
+
+ // all deallocations must be in reverse order of the allocations
+ GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
}
+};
+#endif // !defined(GGML_USE_HIPBLAS)
- float xi = x[i];
- dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
-}
+template<typename T>
+struct ggml_cuda_pool_alloc {
+ ggml_cuda_pool * pool = nullptr;
+ T * ptr = nullptr;
+ size_t actual_size = 0;
-static __global__ void silu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ ggml_cuda_pool_alloc() = default;
- if (i >= k) {
- return;
+ explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
}
- dst[i] = x[i] / (1.0f + expf(-x[i]));
-}
-static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
- const float GELU_QUICK_COEF = -1.702f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
+ ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
+ alloc(size);
}
- dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
-}
-static __global__ void tanh_f32(const float * x, float * dst, int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
+ ~ggml_cuda_pool_alloc() {
+ if (ptr != nullptr) {
+ pool->free(ptr, actual_size);
+ }
}
- dst[i] = tanhf(x[i]);
-}
-
-static __global__ void relu_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
+ // size is in number of elements
+ T * alloc(size_t size) {
+ GGML_ASSERT(pool != nullptr);
+ GGML_ASSERT(ptr == nullptr);
+ ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
+ return ptr;
}
- dst[i] = fmaxf(x[i], 0);
-}
-static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ T * alloc(ggml_cuda_pool & pool, size_t size) {
+ this->pool = &pool;
+ return alloc(size);
+ }
- if (i >= k) {
- return;
+ T * get() {
+ return ptr;
}
- dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
-}
-static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
+ ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
+ ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
+ ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
+};
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
-}
-static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
+// backend interface
+
+struct ggml_backend_cuda_context {
+ int device;
+ std::string name;
+ cudaEvent_t copy_event = nullptr;
+
+ cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
+ cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
+
+ explicit ggml_backend_cuda_context(int device) :
+ device(device),
+ name(GGML_CUDA_NAME + std::to_string(device)) {
}
- dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
-}
-static __global__ void sqr_f32(const float * x, float * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ ~ggml_backend_cuda_context() {
+ if (copy_event != nullptr) {
+ CUDA_CHECK(cudaEventDestroy(copy_event));
+ }
+ for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
+ for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
+ if (streams[i][j] != nullptr) {
+ CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
+ }
+ }
+ if (cublas_handles[i] != nullptr) {
+ CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
+ }
+ }
+ }
- if (i >= k) {
- return;
+ cudaStream_t stream(int device, int stream) {
+ if (streams[device][stream] == nullptr) {
+ ggml_cuda_set_device(device);
+ CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
+ }
+ return streams[device][stream];
}
- dst[i] = x[i] * x[i];
-}
-template <int block_size>
-static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
+ cudaStream_t stream() {
+ return stream(device, 0);
+ }
- float2 mean_var = make_float2(0.f, 0.f);
+ cublasHandle_t cublas_handle(int device) {
+ if (cublas_handles[device] == nullptr) {
+ ggml_cuda_set_device(device);
+ CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
+ CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
+ }
+ return cublas_handles[device];
+ }
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- mean_var.x += xi;
- mean_var.y += xi * xi;
+ cublasHandle_t cublas_handle() {
+ return cublas_handle(device);
}
- // sum up partial sums
- mean_var = warp_reduce_sum(mean_var);
- if (block_size > WARP_SIZE) {
- __shared__ float2 s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = mean_var;
+ // pool
+ std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
+
+ static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device) {
+#if !defined(GGML_USE_HIPBLAS)
+ if (get_cuda_global_info().devices[device].vmm) {
+ return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
}
- __syncthreads();
- mean_var = s_sum[lane_id];
- mean_var = warp_reduce_sum(mean_var);
+#endif
+ return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
}
- const float mean = mean_var.x / ncols;
- const float var = mean_var.y / ncols - mean * mean;
- const float inv_std = rsqrtf(var + eps);
+ ggml_cuda_pool & pool(int device) {
+ if (pools[device] == nullptr) {
+ pools[device] = new_pool_for_device(device);
+ }
+ return *pools[device];
+ }
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
+ ggml_cuda_pool & pool() {
+ return pool(device);
}
-}
+};
-static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
+// cuda buffer
+
+struct ggml_backend_cuda_buffer_context {
+ int device;
+ void * dev_ptr = nullptr;
+ std::string name;
+
+ ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
+ device(device), dev_ptr(dev_ptr),
+ name(GGML_CUDA_NAME + std::to_string(device)) {
}
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (blockIdx.z < ne02) { // src0
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- (blockIdx.z - ne02) * ne0 * gridDim.y;
- dst[offset_dst] = y[offset_src];
+
+ ~ggml_backend_cuda_buffer_context() {
+ CUDA_CHECK(cudaFree(dev_ptr));
}
+};
+
+GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+ return ctx->name.c_str();
}
-static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
- // blockIdx.z: idx of ne02*ne03
- // blockIdx.y: idx of ne01*scale_factor, aka ne1
- // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
- // ne00xne01: ne00 * ne01
- int ne0 = ne00 * scale_factor;
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- // operation
- int i00 = nidx / scale_factor;
- int i01 = blockIdx.y / scale_factor;
- int offset_src =
- i00 +
- i01 * ne00 +
- blockIdx.z * ne00xne01;
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
+GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
}
-static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
- // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
- // blockIdx.y: idx of ne1
- // blockIDx.x: idx of ne0 / BLOCK_SIZE
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
+GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+ delete ctx;
+}
- // operation
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
- int offset_src =
- nidx +
- blockIdx.y * ne00 +
- blockIdx.z * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- dst[offset_dst] = 0.0f;
- }
+GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+ return ctx->dev_ptr;
}
-static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
- // blockIDx.x: idx of ne0 / BLOCK_SIZE
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
+GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+
+ if (tensor->view_src != NULL && tensor->view_offs == 0) {
+ assert(tensor->view_src->buffer->buft == buffer->buft);
+ tensor->backend = tensor->view_src->backend;
+ tensor->extra = tensor->view_src->extra;
return;
}
- dst[nidx] = start + step * nidx;
-}
-static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
- // blockIDx.y: idx of timesteps->ne[0]
- // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
- int i = blockIdx.y;
- int j = threadIdx.x + blockIdx.x * blockDim.x;
- float * embed_data = (float *)((char *)dst + i*nb1);
+ if (ggml_is_quantized(tensor->type)) {
+ // initialize padding to 0 to avoid possible NaN values
+ size_t original_size = ggml_nbytes(tensor);
+ size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
- if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
- embed_data[dim] = 0.f;
+ if (padded_size > original_size && tensor->view_src == nullptr) {
+ ggml_cuda_set_device(ctx->device);
+ CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
+ }
}
+}
- int half = dim / 2;
- if (j >= half) {
- return;
- }
+GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- float timestep = timesteps[i];
- float freq = (float)expf(-logf(max_period) * j / half);
- float arg = timestep * freq;
- embed_data[j] = cosf(arg);
- embed_data[j + half] = sinf(arg);
+ ggml_cuda_set_device(ctx->device);
+ CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
+ CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-template <int block_size>
-static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
- // blockIdx.x: num_groups idx
- // threadIdx.x: block_size idx
- int start = blockIdx.x * group_size;
- int end = start + group_size;
+GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- start += threadIdx.x;
+ ggml_cuda_set_device(ctx->device);
+ CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
+ CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
+}
- if (end >= ne_elements) {
- end = ne_elements;
+GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
+ if (ggml_backend_buffer_is_cuda(src->buffer)) {
+ ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
+ ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
+ if (src_ctx->device == dst_ctx->device) {
+ CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
+ } else {
+ CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
+ }
+ CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
+ return true;
}
+ return false;
- float tmp = 0.0f; // partial sum for thread in warp
+ GGML_UNUSED(buffer);
+}
- for (int j = start; j < end; j += block_size) {
- tmp += x[j];
- }
+GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
+ ggml_cuda_set_device(ctx->device);
+ CUDA_CHECK(cudaDeviceSynchronize());
+ CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
+ CUDA_CHECK(cudaDeviceSynchronize());
+}
- float mean = tmp / group_size;
- tmp = 0.0f;
+static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
+ /* .get_name = */ ggml_backend_cuda_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_cuda_buffer_get_base,
+ /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
+ /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
+ /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
+ /* .clear = */ ggml_backend_cuda_buffer_clear,
+ /* .reset = */ NULL,
+};
- for (int j = start; j < end; j += block_size) {
- float xi = x[j] - mean;
- dst[j] = xi;
- tmp += xi * xi;
- }
+// cuda buffer type
+struct ggml_backend_cuda_buffer_type_context {
+ int device;
+ std::string name;
+};
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
+GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- float variance = tmp / group_size;
- float scale = rsqrtf(variance + eps);
- for (int j = start; j < end; j += block_size) {
- dst[j] *= scale;
- }
+ return ctx->name.c_str();
}
-template <int block_size>
-static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- const int tid = threadIdx.x;
-
- float tmp = 0.0f; // partial sum for thread in warp
-
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- // sum up partial sums
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __shared__ float s_sum[32];
- int warp_id = threadIdx.x / WARP_SIZE;
- int lane_id = threadIdx.x % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- __syncthreads();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
+ ggml_cuda_set_device(buft_ctx->device);
- const float mean = tmp / ncols;
- const float scale = rsqrtf(mean + eps);
+ size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
+ void * dev_ptr;
+ cudaError_t err = cudaMalloc(&dev_ptr, size);
+ if (err != cudaSuccess) {
+ fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
+ return nullptr;
}
-}
-
-static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const dfloat d = x[ib].d;
+ ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
- const int vui = x[ib].qs[iqs];
+ return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
+}
- v.x = vui & 0xF;
- v.y = vui >> 4;
+GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 128;
-#ifdef GGML_CUDA_F16
- v = __hsub2(v, {8.0f, 8.0f});
- v = __hmul2(v, {d, d});
-#else
- v.x = (v.x - 8.0f) * d;
- v.y = (v.y - 8.0f) * d;
-#endif // GGML_CUDA_F16
+ GGML_UNUSED(buft);
}
-static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q4_1 * x = (const block_q4_1 *) vx;
-
- const dfloat d = __low2half(x[ib].dm);
- const dfloat m = __high2half(x[ib].dm);
+GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ size_t size = ggml_nbytes(tensor);
+ int64_t ne0 = tensor->ne[0];
- const int vui = x[ib].qs[iqs];
+ if (ggml_is_quantized(tensor->type)) {
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+ }
- v.x = vui & 0xF;
- v.y = vui >> 4;
+ return size;
-#ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
-#else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
-#endif // GGML_CUDA_F16
+ GGML_UNUSED(buft);
}
-static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_0 * x = (const block_q5_0 *) vx;
-
- const dfloat d = x[ib].d;
-
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
-
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
+GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+ if (!ggml_backend_is_cuda(backend)) {
+ return false;
+ }
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
+ ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+ ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
-#ifdef GGML_CUDA_F16
- v = __hsub2(v, {16.0f, 16.0f});
- v = __hmul2(v, {d, d});
-#else
- v.x = (v.x - 16.0f) * d;
- v.y = (v.y - 16.0f) * d;
-#endif // GGML_CUDA_F16
+ return buft_ctx->device == cuda_ctx->device;
}
-static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q5_1 * x = (const block_q5_1 *) vx;
+static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_buffer_type_name,
+ /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
+ /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
+ /* .is_host = */ NULL,
+};
- const dfloat d = __low2half(x[ib].dm);
- const dfloat m = __high2half(x[ib].dm);
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
+ static std::mutex mutex;
+ std::lock_guard<std::mutex> lock(mutex);
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
+ if (device >= ggml_backend_cuda_get_device_count()) {
+ return nullptr;
+ }
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
+ static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
- v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
+ static bool ggml_backend_cuda_buffer_type_initialized = false;
-#ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
- v = __hadd2(v, {m, m});
-#else
- v.x = (v.x * d) + m;
- v.y = (v.y * d) + m;
-#endif // GGML_CUDA_F16
-}
+ if (!ggml_backend_cuda_buffer_type_initialized) {
+ for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
+ ggml_backend_cuda_buffer_types[i] = {
+ /* .iface = */ ggml_backend_cuda_buffer_type_interface,
+ /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
+ };
+ }
+ ggml_backend_cuda_buffer_type_initialized = true;
+ }
-static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const block_q8_0 * x = (const block_q8_0 *) vx;
+ return &ggml_backend_cuda_buffer_types[device];
+}
- const dfloat d = x[ib].d;
+// cuda split buffer
- v.x = x[ib].qs[iqs + 0];
- v.y = x[ib].qs[iqs + 1];
+static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
+ int64_t min_compute_capability = INT_MAX;
+ int64_t max_compute_capability = INT_MIN;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
+ if (min_compute_capability > get_cuda_global_info().devices[id].cc) {
+ min_compute_capability = get_cuda_global_info().devices[id].cc;
+ }
+ if (max_compute_capability < get_cuda_global_info().devices[id].cc) {
+ max_compute_capability = get_cuda_global_info().devices[id].cc;
+ }
+ }
+ }
-#ifdef GGML_CUDA_F16
- v = __hmul2(v, {d, d});
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ switch(type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ return max_compute_capability >= CC_RDNA2 ? 128 : 64;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_F32:
+ return 1;
+ case GGML_TYPE_Q2_K:
+ return max_compute_capability >= CC_RDNA2 ? 128 : 32;
+ case GGML_TYPE_Q3_K:
+ return min_compute_capability < CC_RDNA2 ? 128 : 64;
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ return max_compute_capability >= CC_RDNA2 ? 128 : 64;
+ default:
+ GGML_ASSERT(false);
+ }
#else
- v.x *= d;
- v.y *= d;
-#endif // GGML_CUDA_F16
+ switch(type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ return max_compute_capability >= CC_VOLTA ? 128 : 64;
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ return 64;
+ case GGML_TYPE_F16:
+ case GGML_TYPE_F32:
+ return 1;
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_IQ2_XXS:
+ case GGML_TYPE_IQ2_XS:
+ case GGML_TYPE_IQ2_S:
+ case GGML_TYPE_IQ3_XXS:
+ case GGML_TYPE_IQ1_S:
+ case GGML_TYPE_IQ4_NL:
+ case GGML_TYPE_IQ4_XS:
+ case GGML_TYPE_IQ3_S:
+ return max_compute_capability >= CC_VOLTA ? 128 : 64;
+ case GGML_TYPE_Q6_K:
+ return 64;
+ default:
+ GGML_ASSERT(false);
+ }
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
}
-template<typename dst_t>
-static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
+ const int64_t nrows = ggml_nrows(tensor);
+ const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
- const int i = blockIdx.x;
+ *row_low = id == 0 ? 0 : nrows*tensor_split[id];
+ *row_low -= *row_low % rounding;
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
+ if (id == ggml_backend_cuda_get_device_count() - 1) {
+ *row_high = nrows;
+ } else {
+ *row_high = nrows*tensor_split[id + 1];
+ *row_high -= *row_high % rounding;
}
+}
- dst_t * y = yy + 256*i + 32*ir + 4*il;
+static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- const block_q4_0 * x = (const block_q4_0 *)vx + ib;
- const float d = __half2float(x->d);
- const float dm = -8*d;
+ return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
+}
- const uint8_t * q = x->qs + 4*il;
+struct ggml_backend_cuda_split_buffer_type_context {
+ std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
+};
- for (int l = 0; l < 4; ++l) {
- y[l+ 0] = d * (q[l] & 0xF) + dm;
- y[l+16] = d * (q[l] >> 4) + dm;
+struct ggml_backend_cuda_split_buffer_context {
+ ~ggml_backend_cuda_split_buffer_context() {
+ for (ggml_tensor_extra_gpu * extra : tensor_extras) {
+ for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
+ for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
+ if (extra->events[id][is] != nullptr) {
+ CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
+ }
+ }
+ if (extra->data_device[id] != nullptr) {
+ CUDA_CHECK(cudaFree(extra->data_device[id]));
+ }
+ }
+ delete extra;
+ }
}
-}
-template<typename dst_t>
-static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
+ std::vector<ggml_tensor_extra_gpu *> tensor_extras;
+};
- const int i = blockIdx.x;
+GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
+ return GGML_CUDA_NAME "_Split";
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
+ GGML_UNUSED(buffer);
+}
- dst_t * y = yy + 256*i + 32*ir + 4*il;
+static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
+ return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
+ GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
+}
- const block_q4_1 * x = (const block_q4_1 *)vx + ib;
- const float2 d = __half22float2(x->dm);
+GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
+ delete ctx;
+}
- const uint8_t * q = x->qs + 4*il;
+GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
+ // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
+ return (void *)0x1000;
- for (int l = 0; l < 4; ++l) {
- y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
- y[l+16] = d.x * (q[l] >> 4) + d.y;
- }
+ GGML_UNUSED(buffer);
}
-//================================== k-quants
+GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
+ GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
-template<typename dst_t>
-static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int i = blockIdx.x;
- const block_q2_K * x = (const block_q2_K *) vx;
+ const int64_t ne0 = tensor->ne[0];
- const int tid = threadIdx.x;
-#if QK_K == 256
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
+ ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
+ ctx->tensor_extras.push_back(extra);
- const uint8_t q = x[i].qs[32*n + l];
- dst_t * y = yy + i*QK_K + 128*n;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- float dall = __low2half(x[i].dm);
- float dmin = __high2half(x[i].dm);
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
-#else
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const uint8_t q = x[i].qs[il] >> (2*is);
- dst_t * y = yy + i*QK_K + 16*is + il;
- float dall = __low2half(x[i].dm);
- float dmin = __high2half(x[i].dm);
- y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
-#endif
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
-}
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
-template<typename dst_t>
-static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
- const int i = blockIdx.x;
- const block_q3_K * x = (const block_q3_K *) vx;
+ // FIXME: do not crash if cudaMalloc fails
+ // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
+ ggml_cuda_set_device(id);
+ char * buf;
+ CUDA_CHECK(cudaMalloc(&buf, size));
-#if QK_K == 256
- const int r = threadIdx.x/4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16*is0 + 4*(threadIdx.x%4);
- const int n = tid / 4;
- const int j = tid - 4*n;
+ // set padding to 0 to avoid possible NaN values
+ if (size > original_size) {
+ CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
+ }
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
+ extra->data_device[id] = buf;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
+ for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
+ CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
+ }
+ }
+ tensor->extra = extra;
+}
- dst_t * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
+GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
+ // split tensors must always be set in their entirety at once
+ GGML_ASSERT(offset == 0);
+ GGML_ASSERT(size == ggml_nbytes(tensor));
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
-#else
- const int tid = threadIdx.x;
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const int im = il/8; // 0...1
- const int in = il%8; // 0...7
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- dst_t * y = yy + i*QK_K + 16*is + il;
+ const int64_t ne0 = tensor->ne[0];
+ const size_t nb1 = tensor->nb[1];
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- const uint8_t q = x[i].qs[il] >> (2*is);
- const uint8_t h = x[i].hmask[in] >> (2*is + im);
- const float d = (float)x[i].d;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- if (is == 0) {
- y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- } else {
- y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- }
-#endif
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
-}
+ const size_t offset_split = row_low*nb1;
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
-#if QK_K == 256
-static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ const char * buf_host = (const char *)data + offset_split;
+ CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
+ }
+
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
}
-#endif
-template<typename dst_t>
-static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q4_K * x = (const block_q4_K *) vx;
+GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
+ // split tensors must always be set in their entirety at once
+ GGML_ASSERT(offset == 0);
+ GGML_ASSERT(size == ggml_nbytes(tensor));
- const int i = blockIdx.x;
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
-#if QK_K == 256
- // assume 32 threads
- const int tid = threadIdx.x;
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
+ const int64_t ne0 = tensor->ne[0];
+ const size_t nb1 = tensor->nb[1];
+ ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- dst_t * y = yy + i*QK_K + 64*il + n*ir;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
- const uint8_t * q = x[i].qs + 32*il + n*ir;
+ const size_t offset_split = row_low*nb1;
+ size_t size = ggml_nbytes_split(tensor, nrows_split);
+ const size_t original_size = size;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+
+ char * buf_host = (char *)data + offset_split;
+ CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
+ }
+
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
-#else
- const int tid = threadIdx.x;
- const uint8_t * q = x[i].qs;
- dst_t * y = yy + i*QK_K;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
- y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
-#endif
}
-template<typename dst_t>
-static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q5_K * x = (const block_q5_K *) vx;
+GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
+ GGML_UNUSED(buffer);
+ GGML_UNUSED(value);
+}
- const int i = blockIdx.x;
-
-#if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
+static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
+ /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
+ /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
+ /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
+ /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
+ /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
+ /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
+ /* .cpy_tensor = */ NULL,
+ /* .clear = */ ggml_backend_cuda_split_buffer_clear,
+ /* .reset = */ NULL,
+};
- dst_t * y = yy + i*QK_K + 64*il + 2*ir;
+// cuda split buffer type
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
+GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ return GGML_CUDA_NAME "_Split";
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
+ GGML_UNUSED(buft);
+}
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
+ // instead, we allocate them for each tensor separately in init_tensor
+ // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
+ // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
+ ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
-#else
- const int tid = threadIdx.x;
- const uint8_t q = x[i].qs[tid];
- const int im = tid/8; // 0...3
- const int in = tid%8; // 0...7
- const int is = tid/16; // 0 or 1
- const uint8_t h = x[i].qh[in] >> im;
- const float d = x[i].d;
- dst_t * y = yy + i*QK_K + tid;
- y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
- y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
-#endif
+ return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
}
-template<typename dst_t>
-static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const block_q6_K * x = (const block_q6_K *) vx;
+GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
+ return 128;
- const int i = blockIdx.x;
-#if QK_K == 256
+ GGML_UNUSED(buft);
+}
- // assume 64 threads - this is very slightly better than the one below
- const int tid = threadIdx.x;
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
+GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
+ ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
- dst_t * y = yy + i*QK_K + 128*ip + il;
+ size_t total_size = 0;
- const float d = x[i].d;
+ const int64_t ne0 = tensor->ne[0];
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ int64_t row_low, row_high;
+ get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
-#else
+ int64_t nrows_split = row_high - row_low;
+ if (nrows_split == 0) {
+ continue;
+ }
- // assume 32 threads
- const int tid = threadIdx.x;
- const int ip = tid/16; // 0 or 1
- const int il = tid - 16*ip; // 0...15
+ total_size += ggml_nbytes_split(tensor, nrows_split);
- dst_t * y = yy + i*QK_K + 16*ip + il;
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
+ if (ne0 % MATRIX_ROW_PADDING != 0) {
+ total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ }
+ }
- const float d = x[i].d;
+ return total_size;
+}
- const uint8_t ql = x[i].ql[16*ip + il];
- const uint8_t qh = x[i].qh[il] >> (2*ip);
- const int8_t * sc = x[i].scales;
+GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
+ return ggml_backend_is_cuda(backend);
- y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
-#endif
+ GGML_UNUSED(buft);
}
-inline bool ggml_cuda_supports_mmq(enum ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- return true;
- default:
- return false;
- }
+GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
+ return false;
+
+ GGML_UNUSED(buft);
}
-template<typename dst_t>
-static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
+ /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
+ /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
+ /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
+ /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
+};
- const int i = blockIdx.x;
- const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
+ static std::mutex mutex;
+ std::lock_guard<std::mutex> lock(mutex);
- const int tid = threadIdx.x;
-#if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
-#else
- assert(false);
-#endif
+ static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
-}
+ std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
-template<typename dst_t>
-static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
+ if (all_zero) {
+ tensor_split_arr = get_cuda_global_info().default_tensor_split;
+ } else {
+ float split_sum = 0.0f;
+ for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
+ tensor_split_arr[i] = split_sum;
+ split_sum += tensor_split[i];
+ }
+ for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
+ tensor_split_arr[i] /= split_sum;
+ }
+ }
- const int i = blockIdx.x;
- const block_iq2_xs * x = (const block_iq2_xs *) vx;
+ auto it = buft_map.find(tensor_split_arr);
+ if (it != buft_map.end()) {
+ return &it->second;
+ }
- const int tid = threadIdx.x;
-#if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
-#else
- assert(false);
-#endif
+ struct ggml_backend_buffer_type buft {
+ /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
+ /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
+ };
+ auto result = buft_map.emplace(tensor_split_arr, buft);
+ return &result.first->second;
}
-template<typename dst_t>
-static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
- const int i = blockIdx.x;
- const block_iq2_s * x = (const block_iq2_s *) vx;
+// host buffer type
- const int tid = threadIdx.x;
-#if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
-#else
- assert(false);
-#endif
+GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
+ return GGML_CUDA_NAME "_Host";
+ GGML_UNUSED(buft);
}
-template<typename dst_t>
-static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
- const int i = blockIdx.x;
- const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
+GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
+ return GGML_CUDA_NAME "_Host";
- const int tid = threadIdx.x;
-#if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * q3 = x[i].qs + 8*ib;
- const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
- const uint32_t aux32 = gas[0] | (gas[1] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
- const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
-#else
- assert(false);
-#endif
+ GGML_UNUSED(buffer);
+}
+GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
+ CUDA_CHECK(cudaFreeHost(buffer->context));
}
-template<typename dst_t>
-static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+static void * ggml_cuda_host_malloc(size_t size) {
+ if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
+ return nullptr;
+ }
- const int i = blockIdx.x;
- const block_iq3_s * x = (const block_iq3_s *) vx;
-
- const int tid = threadIdx.x;
-#if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * qs = x[i].qs + 8*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
- const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
- const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
- const uint8_t signs = x[i].signs[4*ib + il];
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
+ void * ptr = nullptr;
+ cudaError_t err = cudaMallocHost((void **) &ptr, size);
+ if (err != cudaSuccess) {
+ // clear the error
+ cudaGetLastError();
+ fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
+ size/1024.0/1024.0, cudaGetErrorString(err));
+ return nullptr;
}
-#else
- assert(false);
-#endif
+ return ptr;
}
-template<typename dst_t>
-static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-
- const int i = blockIdx.x;
- const block_iq1_s * x = (const block_iq1_s *) vx;
+GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+ void * ptr = ggml_cuda_host_malloc(size);
- const int tid = threadIdx.x;
-#if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
- const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
- uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
- grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
- grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
- grid32[0] &= 0x0f0f0f0f;
- for (int j = 0; j < 8; ++j) {
- y[j] = d * (q[j] + delta);
+ if (ptr == nullptr) {
+ // fallback to cpu buffer
+ return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
}
-#else
- assert(false);
-#endif
+ ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
+ buffer->buft = buft;
+ buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
+ buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
+
+ return buffer;
}
-static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
+GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
+ static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
+ /* .iface = */ {
+ /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
+ /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
+ /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
+ /* .get_max_size = */ NULL, // defaults to SIZE_MAX
+ /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
+ /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
+ /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
+ },
+ /* .context = */ nullptr,
+ };
-template<typename dst_t>
-static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ return &ggml_backend_cuda_buffer_type_host;
+}
- const int i = blockIdx.x;
- const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
+//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
+// return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
+//}
- const int tid = threadIdx.x;
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[ib].qs + 4*il;
- const float d = (float)x[ib].d;
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
- }
+
+/// kernels
+
+
+#if defined(GGML_USE_HIPBLAS)
+#define __CUDA_ARCH__ 1300
+
+#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
+ defined(__gfx1150__) || defined(__gfx1151__)
+#define RDNA3
+#endif
+
+#if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
+ defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
+#define RDNA2
+#endif
+
+#ifndef __has_builtin
+ #define __has_builtin(x) 0
+#endif
+
+typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
+typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
+static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+#if __has_builtin(__builtin_elementwise_sub_sat)
+ const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
+ return reinterpret_cast<const int &>(c);
+#else
+ int8x4_t c;
+ int16_t tmp;
+#pragma unroll
+ for (int i = 0; i < 4; i++) {
+ tmp = va[i] - vb[i];
+ if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
+ if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
+ c[i] = tmp;
+ }
+ return reinterpret_cast<int &>(c);
+#endif // __has_builtin(__builtin_elementwise_sub_sat)
}
-#if QK_K != 64
-template<typename dst_t>
-static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- const int i = blockIdx.x;
- const block_iq4_xs * x = (const block_iq4_xs *)vx;
+static __device__ __forceinline__ int __vsub4(const int a, const int b) {
+ return __vsubss4(a, b);
+}
- const int tid = threadIdx.x;
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
- const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
+static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
+ const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
+ const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
+ unsigned int c;
+ uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
+#pragma unroll
+ for (int i = 0; i < 4; ++i) {
+ vc[i] = va[i] == vb[i] ? 0xff : 0x00;
}
+ return c;
}
-#endif
-static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
+#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
+ c = __builtin_amdgcn_sdot4(a, b, c, false);
+#elif defined(RDNA3)
+ c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
+#elif defined(__gfx1010__) || defined(__gfx900__)
+ int tmp1;
+ int tmp2;
+ asm("\n \
+ v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
+ v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
+ v_add3_u32 %0, %1, %2, %0 \n \
+ v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
+ v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
+ v_add3_u32 %0, %1, %2, %0 \n \
+ "
+ : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
+ : "v"(a), "v"(b)
+ );
+#else
+ const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
+ const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
+ c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
+#endif
+ return c;
+}
+#endif // defined(GGML_USE_HIPBLAS)
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
+#ifdef GGML_CUDA_F16
+typedef half dfloat; // dequantize float
+typedef half2 dfloat2;
+#else
+typedef float dfloat; // dequantize float
+typedef float2 dfloat2;
+#endif //GGML_CUDA_F16
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
+static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
+ const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
+ int x32 = 0;
+ x32 |= x16[0] << 0;
+ x32 |= x16[1] << 16;
- float tmp = 0; // partial sum for thread in warp
+ return x32;
+}
-#if QK_K == 256
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
+static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
+ const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- const int step = 16/K_QUANTS_PER_ITERATION;
+ int x32 = 0;
+ x32 |= x16[0] << 0;
+ x32 |= x16[1] << 16;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
+ return x32;
+}
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
+static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
+ return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
+static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
+ return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+template<typename T>
+using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, int k, cudaStream_t stream);
+typedef to_t_cuda_t<float> to_fp32_cuda_t;
+typedef to_t_cuda_t<half> to_fp16_cuda_t;
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
+typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
+typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
+typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
+typedef void (*ggml_cuda_func_t)(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
+typedef void (*ggml_cuda_op_mul_mat_t)(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream);
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
+typedef void (*ggml_cuda_op_flatten_t)(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream);
- }
- tmp += dall * sum1 - dmin * sum2;
+typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
+typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
+typedef void (*load_tiles_cuda_t)(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
+typedef float (*vec_dot_q_mul_mat_cuda_t)(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
- }
+#define WARP_SIZE 32
+
+#define CUDA_GELU_BLOCK_SIZE 256
+#define CUDA_SILU_BLOCK_SIZE 256
+#define CUDA_TANH_BLOCK_SIZE 256
+#define CUDA_RELU_BLOCK_SIZE 256
+#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
+#define CUDA_HARDSWISH_BLOCK_SIZE 256
+#define CUDA_SQR_BLOCK_SIZE 256
+#define CUDA_CPY_BLOCK_SIZE 32
+#define CUDA_SCALE_BLOCK_SIZE 256
+#define CUDA_CLAMP_BLOCK_SIZE 256
+#define CUDA_ROPE_BLOCK_SIZE 256
+#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
+#define CUDA_ALIBI_BLOCK_SIZE 32
+#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
+#define CUDA_QUANTIZE_BLOCK_SIZE 256
+#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
+#define CUDA_GET_ROWS_BLOCK_SIZE 256
+#define CUDA_UPSCALE_BLOCK_SIZE 256
+#define CUDA_CONCAT_BLOCK_SIZE 256
+#define CUDA_PAD_BLOCK_SIZE 256
+#define CUDA_ARANGE_BLOCK_SIZE 256
+#define CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE 256
+#define CUDA_ACC_BLOCK_SIZE 256
+#define CUDA_IM2COL_BLOCK_SIZE 256
+#define CUDA_POOL2D_BLOCK_SIZE 256
+
+#define CUDA_Q8_0_NE_ALIGN 2048
+
+// dmmv = dequantize_mul_mat_vec
+#ifndef GGML_CUDA_DMMV_X
+#define GGML_CUDA_DMMV_X 32
+#endif
+#ifndef GGML_CUDA_MMV_Y
+#define GGML_CUDA_MMV_Y 1
+#endif
+
+#ifndef K_QUANTS_PER_ITERATION
+#define K_QUANTS_PER_ITERATION 2
#else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION;
+static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
+#endif
- uint32_t uaux[2];
- const uint8_t * d = (const uint8_t *)uaux;
+#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
+#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
+#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+#define MUL_MAT_SRC1_COL_STRIDE 128
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint32_t * s = (const uint32_t *)x[i].scales;
+[[noreturn]]
+static __device__ void no_device_code(
+ const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
- uaux[0] = s[0] & 0x0f0f0f0f;
- uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
+ file_name, line, function_name, arch);
+ GGML_UNUSED(arch_list);
+#else
+ printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
+ file_name, line, function_name, arch, arch_list);
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ __trap();
- const float2 dall = __half22float2(x[i].dm);
+ GGML_UNUSED(no_device_code); // suppress unused function warning
+}
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t ql = q[l];
- sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
- + y[l+16] * d[1] * ((ql >> 2) & 3)
- + y[l+32] * d[2] * ((ql >> 4) & 3)
- + y[l+48] * d[3] * ((ql >> 6) & 3);
- sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
- }
- tmp += dall.x * sum1 - dall.y * sum2;
+#ifdef __CUDA_ARCH__
+#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
+#else
+//#define NO_DEVICE_CODE GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
+#define NO_DEVICE_CODE
+#endif // __CUDA_ARCH__
+
+static __device__ __forceinline__ float warp_reduce_sum(float x) {
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
-#endif
+ return x;
+}
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
+static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
+ a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
+ }
+ return a;
+}
- if (threadIdx.x == 0) {
- dst[row] = tmp;
+#ifdef GGML_CUDA_F16
+static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
+ }
+ return a;
+#else
+ GGML_UNUSED(a);
+ NO_DEVICE_CODE;
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
+}
+#endif // GGML_CUDA_F16
+
+static __device__ __forceinline__ float warp_reduce_max(float x) {
+#pragma unroll
+ for (int mask = 16; mask > 0; mask >>= 1) {
+ x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
}
+ return x;
}
-static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
+//static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
+//#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
+//#pragma unroll
+// for (int mask = 16; mask > 0; mask >>= 1) {
+// x = __hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
+// }
+// return x;
+//#else
+// GGML_UNUSED(x);
+// NO_DEVICE_CODE;
+//#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL && CUDART_VERSION >= CUDART_HMAX
+//}
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
+static __device__ __forceinline__ float op_repeat(const float a, const float b) {
+ return b;
+ GGML_UNUSED(a);
+}
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
+static __device__ __forceinline__ float op_add(const float a, const float b) {
+ return a + b;
+}
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
+static __device__ __forceinline__ float op_mul(const float a, const float b) {
+ return a * b;
+}
- float tmp = 0; // partial sum for thread in warp
+static __device__ __forceinline__ float op_div(const float a, const float b) {
+ return a / b;
+}
-#if QK_K == 256
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s10,*/ int s11, int s12, int s13) {
+ const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
+ const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
+ const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
+ const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
+ if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
+ }
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
+ const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i_src0;
- const uint8_t m = 1 << (4*im);
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
+ for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+ }
+}
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
+template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
+static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
+ int ne0, int ne1, int ne2, int ne3,
+ int ne10, int ne11, int ne12, int ne13,
+ /*int s0, */ int s1, int s2, int s3,
+ /*int s10,*/ int s11, int s12, int s13) {
- const uint16_t s_shift = 4*im;
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+ const int i3 = i/(ne2*ne1*ne0);
+ const int i2 = (i/(ne1*ne0)) % ne2;
+ const int i1 = (i/ne0) % ne1;
+ const int i0 = i % ne0;
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
+ if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
+ return;
+ }
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
+ const int i11 = i1 % ne11;
+ const int i12 = i2 % ne12;
+ const int i13 = i3 % ne13;
- const float d = x[i].d;
+ const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
+ const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
+ const size_t i_dst = i_src0;
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
-
- }
-#else
-
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
- const int in = offset/8; // 0 or 1
- const int im = offset%8; // 0...7
-
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint8_t * s = x[i].scales;
+ const src0_t * src0_row = src0 + i_src0;
+ const src1_t * src1_row = src1 + i_src1;
+ dst_t * dst_row = dst + i_dst;
- const float dall = (float)x[i].d;
+ const int i10 = i0 % ne10;
+ dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
+}
- float sum = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t hl = x[i].hmask[im+l] >> in;
- const uint8_t ql = q[l];
- sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
- + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
- + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
- + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
- }
- tmp += sum;
+static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
+ const int ne10, const int ne11, const int ne12,
+ const int nb1, const int nb2, int offset) {
+ const int i = blockDim.x * blockIdx.x + threadIdx.x;
+ if (i >= ne) {
+ return;
}
-#endif
-
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
-
- if (threadIdx.x == 0) {
- dst[row] = tmp;
+ int src1_idx = i - offset;
+ int oz = src1_idx / nb2;
+ int oy = (src1_idx - (oz * nb2)) / nb1;
+ int ox = src1_idx % nb1;
+ if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
+ dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
+ } else {
+ dst[i] = x[i];
}
}
-static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
+static __global__ void gelu_f32(const float * x, float * dst, const int k) {
+ const float GELU_COEF_A = 0.044715f;
+ const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
+ if (i >= k) {
+ return;
+ }
-#if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
+ float xi = x[i];
+ dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
+}
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
+static __global__ void silu_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] / (1.0f + expf(-x[i]));
+}
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
+static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
+ const float GELU_QUICK_COEF = -1.702f;
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
+}
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
+static __global__ void tanh_f32(const float * x, float * dst, int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = tanhf(x[i]);
+}
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
+static __global__ void relu_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fmaxf(x[i], 0);
+}
-#if K_QUANTS_PER_ITERATION == 2
- uint32_t q32[4];
- const uint8_t * q4 = (const uint8_t *)q32;
-#else
- uint16_t q16[4];
- const uint8_t * q4 = (const uint8_t *)q16;
-#endif
+static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- float tmp = 0; // partial sum for thread in warp
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
+}
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
+static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
+}
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+static __global__ void sqr_f32(const float * x, float * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
-#if K_QUANTS_PER_ITERATION == 2
- const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
- const uint32_t * q2 = q1 + 16;
+ if (i >= k) {
+ return;
+ }
+ dst[i] = x[i] * x[i];
+}
- q32[0] = q1[0] & 0x0f0f0f0f;
- q32[1] = q1[0] & 0xf0f0f0f0;
- q32[2] = q2[0] & 0x0f0f0f0f;
- q32[3] = q2[0] & 0xf0f0f0f0;
+template <int block_size>
+static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ const int tid = threadIdx.x;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 4; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
- s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
-#else
- const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
- const uint16_t * q2 = q1 + 32;
+ float2 mean_var = make_float2(0.f, 0.f);
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[0] & 0xf0f0;
- q16[2] = q2[0] & 0x0f0f;
- q16[3] = q2[0] & 0xf0f0;
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row*ncols + col];
+ mean_var.x += xi;
+ mean_var.y += xi * xi;
+ }
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 2; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
- s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+ // sum up partial sums
+ mean_var = warp_reduce_sum(mean_var);
+ if (block_size > WARP_SIZE) {
+ __shared__ float2 s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = mean_var;
}
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
-#endif
-
+ __syncthreads();
+ mean_var = s_sum[lane_id];
+ mean_var = warp_reduce_sum(mean_var);
}
-#else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
-
- const int step = tid * K_QUANTS_PER_ITERATION;
-
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- float tmp = 0;
+ const float mean = mean_var.x / ncols;
+ const float var = mean_var.y / ncols - mean * mean;
+ const float inv_std = rsqrtf(var + eps);
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const float * y = yy + i*QK_K + step;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
- + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
- + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
- + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
- }
- tmp += sum;
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
}
+}
-#endif
-
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
-
- if (tid == 0) {
- dst[row] = tmp;
+static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) {
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+ // operation
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ if (blockIdx.z < ne02) { // src0
+ int offset_src =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ dst[offset_dst] = x[offset_src];
+ } else {
+ int offset_src =
+ nidx +
+ blockIdx.y * ne0 +
+ (blockIdx.z - ne02) * ne0 * gridDim.y;
+ dst[offset_dst] = y[offset_src];
}
}
-static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
-
- const int row = blockIdx.x;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
-
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
-
- float tmp = 0; // partial sum for thread in warp
+static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
+ // blockIdx.z: idx of ne02*ne03
+ // blockIdx.y: idx of ne01*scale_factor, aka ne1
+ // blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
+ // ne00xne01: ne00 * ne01
+ int ne0 = ne00 * scale_factor;
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+ // operation
+ int i00 = nidx / scale_factor;
+ int i01 = blockIdx.y / scale_factor;
+ int offset_src =
+ i00 +
+ i01 * ne00 +
+ blockIdx.z * ne00xne01;
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ dst[offset_dst] = x[offset_src];
+}
-#if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
+static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
+ // blockIdx.z: idx of ne2*ne3, aka ne02*ne03
+ // blockIdx.y: idx of ne1
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
- const int tid = threadIdx.x/2; // 0...15
- const int ix = threadIdx.x%2;
+ // operation
+ int offset_dst =
+ nidx +
+ blockIdx.y * ne0 +
+ blockIdx.z * ne0 * gridDim.y;
+ if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
+ int offset_src =
+ nidx +
+ blockIdx.y * ne00 +
+ blockIdx.z * ne00 * ne01;
+ dst[offset_dst] = x[offset_src];
+ } else {
+ dst[offset_dst] = 0.0f;
+ }
+}
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
+static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
+ // blockIDx.x: idx of ne0 / BLOCK_SIZE
+ int nidx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (nidx >= ne0) {
+ return;
+ }
+ dst[nidx] = start + step * nidx;
+}
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
+static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
+ // blockIDx.y: idx of timesteps->ne[0]
+ // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
+ int i = blockIdx.y;
+ int j = threadIdx.x + blockIdx.x * blockDim.x;
+ float * embed_data = (float *)((char *)dst + i*nb1);
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
+ if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
+ embed_data[dim] = 0.f;
+ }
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
+ int half = dim / 2;
+ if (j >= half) {
+ return;
+ }
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
+ float timestep = timesteps[i];
+ float freq = (float)expf(-logf(max_period) * j / half);
+ float arg = timestep * freq;
+ embed_data[j] = cosf(arg);
+ embed_data[j + half] = sinf(arg);
+}
- uint16_t q16[8];
- const uint8_t * q4 = (const uint8_t *)q16;
+template <int block_size>
+static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
+ // blockIdx.x: num_groups idx
+ // threadIdx.x: block_size idx
+ int start = blockIdx.x * group_size;
+ int end = start + group_size;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
+ start += threadIdx.x;
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
+ if (end >= ne_elements) {
+ end = ne_elements;
+ }
- const float dall = __low2half(x[i].dm);
- const float dmin = __high2half(x[i].dm);
+ float tmp = 0.0f; // partial sum for thread in warp
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+ for (int j = start; j < end; j += block_size) {
+ tmp += x[j];
+ }
- float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- const uint16_t * q1 = (const uint16_t *)ql1;
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[8] & 0x0f0f;
- q16[2] = (q1[0] >> 4) & 0x0f0f;
- q16[3] = (q1[8] >> 4) & 0x0f0f;
- q16[4] = q2[0] & 0x0f0f;
- q16[5] = q2[8] & 0x0f0f;
- q16[6] = (q2[0] >> 4) & 0x0f0f;
- q16[7] = (q2[8] >> 4) & 0x0f0f;
- for (int l = 0; l < n; ++l) {
- sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
- + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
- sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
- + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
- sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
- + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
- sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
- + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __shared__ float s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
}
- tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
+ __syncthreads();
+ tmp = s_sum[lane_id];
+ tmp = warp_reduce_sum(tmp);
}
-#else
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- const int im = step/8;
- const int in = step%8;
+ float mean = tmp / group_size;
+ tmp = 0.0f;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const int8_t * s = x[i].scales;
- const float * y = yy + i*QK_K + step;
- const float d = x[i].d;
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- const uint8_t h = x[i].qh[in+j] >> im;
- sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
- + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
- + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
- + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
- }
- tmp += sum;
+ for (int j = start; j < end; j += block_size) {
+ float xi = x[j] - mean;
+ dst[j] = xi;
+ tmp += xi * xi;
}
-#endif
- // sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __shared__ float s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ __syncthreads();
+ tmp = s_sum[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
- if (threadIdx.x == 0) {
- dst[row] = tmp;
+ float variance = tmp / group_size;
+ float scale = rsqrtf(variance + eps);
+ for (int j = start; j < end; j += block_size) {
+ dst[j] *= scale;
}
}
-static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
-
+template <int block_size>
+static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
- if (row > nrows) return;
-
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
-
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
-
-#if QK_K == 256
+ const int tid = threadIdx.x;
- const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
+ float tmp = 0.0f; // partial sum for thread in warp
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
+ for (int col = tid; col < ncols; col += block_size) {
+ const float xi = x[row*ncols + col];
+ tmp += xi * xi;
+ }
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
-
-#if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
-#else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
-#endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
+ // sum up partial sums
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __shared__ float s_sum[32];
+ int warp_id = threadIdx.x / WARP_SIZE;
+ int lane_id = threadIdx.x % WARP_SIZE;
+ if (lane_id == 0) {
+ s_sum[warp_id] = tmp;
+ }
+ __syncthreads();
+ tmp = s_sum[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
- float tmp = 0; // partial sum for thread in warp
+ const float mean = tmp / ncols;
+ const float scale = rsqrtf(mean + eps);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
+ for (int col = tid; col < ncols; col += block_size) {
+ dst[row*ncols + col] = scale * x[row*ncols + col];
+ }
+}
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
+static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q4_0 * x = (const block_q4_0 *) vx;
- const float d = x[i].d;
+ const dfloat d = x[ib].d;
-#if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
-#else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp += sum;
-#endif
+ const int vui = x[ib].qs[iqs];
- }
+ v.x = vui & 0xF;
+ v.y = vui >> 4;
+#ifdef GGML_CUDA_F16
+ v = __hsub2(v, {8.0f, 8.0f});
+ v = __hmul2(v, {d, d});
#else
+ v.x = (v.x - 8.0f) * d;
+ v.y = (v.y - 8.0f) * d;
+#endif // GGML_CUDA_F16
+}
- const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
- const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
+static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q4_1 * x = (const block_q4_1 *) vx;
- const int step = tid * K_QUANTS_PER_ITERATION;
+ const dfloat d = __low2half(x[ib].dm);
+ const dfloat m = __high2half(x[ib].dm);
- float tmp = 0; // partial sum for thread in warp
+ const int vui = x[ib].qs[iqs];
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+ v.x = vui & 0xF;
+ v.y = vui >> 4;
- const float * y = yy + i * QK_K + step;
- const uint8_t * ql = x[i].ql + step;
- const uint8_t * qh = x[i].qh + step;
- const int8_t * s = x[i].scales;
+#ifdef GGML_CUDA_F16
+ v = __hmul2(v, {d, d});
+ v = __hadd2(v, {m, m});
+#else
+ v.x = (v.x * d) + m;
+ v.y = (v.y * d) + m;
+#endif // GGML_CUDA_F16
+}
- const float d = x[i+0].d;
+static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q5_0 * x = (const block_q5_0 *) vx;
- float sum = 0;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
- + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
- + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
- + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
- }
- tmp += sum;
+ const dfloat d = x[ib].d;
- }
+ uint32_t qh;
+ memcpy(&qh, x[ib].qh, sizeof(qh));
-#endif
+ const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
+ const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
+ v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
+ v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- if (tid == 0) {
- dst[row] = tmp;
- }
+#ifdef GGML_CUDA_F16
+ v = __hsub2(v, {16.0f, 16.0f});
+ v = __hmul2(v, {d, d});
+#else
+ v.x = (v.x - 16.0f) * d;
+ v.y = (v.y - 16.0f) * d;
+#endif // GGML_CUDA_F16
}
-static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const half * x = (const half *) vx;
+static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q5_1 * x = (const block_q5_1 *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x = x[ib + iqs + 0];
- v.y = x[ib + iqs + 1];
-}
+ const dfloat d = __low2half(x[ib].dm);
+ const dfloat m = __high2half(x[ib].dm);
-static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
- const int ix = blockDim.x*blockIdx.x + threadIdx.x;
+ uint32_t qh;
+ memcpy(&qh, x[ib].qh, sizeof(qh));
- if (ix >= kx_padded) {
- return;
- }
+ const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
+ const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- const int iy = blockDim.y*blockIdx.y + threadIdx.y;
+ v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
+ v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
- const int i_padded = iy*kx_padded + ix;
+#ifdef GGML_CUDA_F16
+ v = __hmul2(v, {d, d});
+ v = __hadd2(v, {m, m});
+#else
+ v.x = (v.x * d) + m;
+ v.y = (v.y * d) + m;
+#endif // GGML_CUDA_F16
+}
- block_q8_1 * y = (block_q8_1 *) vy;
+static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const block_q8_0 * x = (const block_q8_0 *) vx;
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
+ const dfloat d = x[ib].d;
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = fabsf(xi);
- float sum = xi;
+ v.x = x[ib].qs[iqs + 0];
+ v.y = x[ib].qs[iqs + 1];
- amax = warp_reduce_max(amax);
- sum = warp_reduce_sum(sum);
+#ifdef GGML_CUDA_F16
+ v = __hmul2(v, {d, d});
+#else
+ v.x *= d;
+ v.y *= d;
+#endif // GGML_CUDA_F16
+}
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
+template<typename dst_t>
+static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
- y[ib].qs[iqs] = q;
+ const int i = blockIdx.x;
- if (iqs > 0) {
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int il = tid/8;
+ const int ir = tid%8;
+ const int ib = 8*i + ir;
+ if (ib >= nb32) {
return;
}
- reinterpret_cast<half&>(y[ib].ds.x) = d;
- reinterpret_cast<half&>(y[ib].ds.y) = sum;
+ dst_t * y = yy + 256*i + 32*ir + 4*il;
+
+ const block_q4_0 * x = (const block_q4_0 *)vx + ib;
+ const float d = __half2float(x->d);
+ const float dm = -8*d;
+
+ const uint8_t * q = x->qs + 4*il;
+
+ for (int l = 0; l < 4; ++l) {
+ y[l+ 0] = d * (q[l] & 0xF) + dm;
+ y[l+16] = d * (q[l] >> 4) + dm;
+ }
}
-template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static __global__ void k_get_rows(
- const void * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
+template<typename dst_t>
+static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
- const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
- const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
- const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
- const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
+ const int i = blockIdx.x;
- if (i00 >= ne00) {
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int il = tid/8;
+ const int ir = tid%8;
+ const int ib = 8*i + ir;
+ if (ib >= nb32) {
return;
}
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
-
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
+ dst_t * y = yy + 256*i + 32*ir + 4*il;
- const int ib = i00/qk; // block index
- const int iqs = (i00%qk)/qr; // quant index
- const int iybs = i00 - i00%qk; // dst block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
+ const block_q4_1 * x = (const block_q4_1 *)vx + ib;
+ const float2 d = __half22float2(x->dm);
- // dequantize
- dfloat2 v;
- dequantize_kernel(src0_row, ib, iqs, v);
+ const uint8_t * q = x->qs + 4*il;
- dst_row[iybs + iqs + 0] = v.x;
- dst_row[iybs + iqs + y_offset] = v.y;
+ for (int l = 0; l < 4; ++l) {
+ y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
+ y[l+16] = d.x * (q[l] >> 4) + d.y;
+ }
}
-template<typename src0_t, typename dst_t>
-static __global__ void k_get_rows_float(
- const src0_t * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
+//================================== k-quants
- const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
- const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
- const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
- const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
+template<typename dst_t>
+static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- if (i00 >= ne00) {
- return;
- }
+ const int i = blockIdx.x;
+ const block_q2_K * x = (const block_q2_K *) vx;
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int n = tid/32;
+ const int l = tid - 32*n;
+ const int is = 8*n + l/16;
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
+ const uint8_t q = x[i].qs[32*n + l];
+ dst_t * y = yy + i*QK_K + 128*n;
+
+ float dall = __low2half(x[i].dm);
+ float dmin = __high2half(x[i].dm);
+ y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+ y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
+ y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
+ y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
+#else
+ const int is = tid/16; // 0 or 1
+ const int il = tid%16; // 0...15
+ const uint8_t q = x[i].qs[il] >> (2*is);
+ dst_t * y = yy + i*QK_K + 16*is + il;
+ float dall = __low2half(x[i].dm);
+ float dmin = __high2half(x[i].dm);
+ y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
+ y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
+#endif
- dst_row[i00] = src0_row[i00];
}
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
- const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
+template<typename dst_t>
+static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- if (i >= k) {
- return;
- }
+ const int i = blockIdx.x;
+ const block_q3_K * x = (const block_q3_K *) vx;
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
+#if QK_K == 256
+ const int r = threadIdx.x/4;
+ const int tid = r/2;
+ const int is0 = r%2;
+ const int l0 = 16*is0 + 4*(threadIdx.x%4);
+ const int n = tid / 4;
+ const int j = tid - 4*n;
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
+ uint8_t m = 1 << (4*n + j);
+ int is = 8*n + 2*j + is0;
+ int shift = 2*j;
- y[iybs + iqs + 0] = v.x;
- y[iybs + iqs + y_offset] = v.y;
-}
+ int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
+ is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
+ is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
+ (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
+ float d_all = x[i].d;
+ float dl = d_all * (us - 32);
-template <typename src_t, typename dst_t>
-static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ dst_t * y = yy + i*QK_K + 128*n + 32*j;
+ const uint8_t * q = x[i].qs + 32*n;
+ const uint8_t * hm = x[i].hmask;
- if (i >= k) {
- return;
- }
+ for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
+#else
+ const int tid = threadIdx.x;
+ const int is = tid/16; // 0 or 1
+ const int il = tid%16; // 0...15
+ const int im = il/8; // 0...1
+ const int in = il%8; // 0...7
- const src_t * x = (src_t *) vx;
+ dst_t * y = yy + i*QK_K + 16*is + il;
+
+ const uint8_t q = x[i].qs[il] >> (2*is);
+ const uint8_t h = x[i].hmask[in] >> (2*is + im);
+ const float d = (float)x[i].d;
+
+ if (is == 0) {
+ y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+ y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+ } else {
+ y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
+ y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
+ }
+#endif
- y[i] = x[i];
}
-template <bool need_check>
-static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
-#if __CUDA_ARCH__ >= CC_PASCAL
- constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
+#if QK_K == 256
+static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
+ if (j < 4) {
+ d = q[j] & 63; m = q[j + 4] & 63;
+ } else {
+ d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
+ m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
+ }
+}
+#endif
- const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
- const int * x0 = ((int *) vx) + blockIdx.x * nint;
- half2 * y2 = (half2 *) (y + i0);
+template<typename dst_t>
+static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const block_q4_K * x = (const block_q4_K *) vx;
- __shared__ int vals[nint];
+ const int i = blockIdx.x;
-#pragma unroll
- for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
- if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
- break;
- }
+#if QK_K == 256
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int il = tid/8;
+ const int ir = tid%8;
+ const int is = 2*il;
+ const int n = 4;
- const int ix = ix0 + threadIdx.x;
- vals[ix] = x0[ix];
- }
+ dst_t * y = yy + i*QK_K + 64*il + n*ir;
-#pragma unroll
- for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
- if (need_check && i0 + iy + 2*threadIdx.x >= k) {
- return;
- }
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
- const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
- const half d = *b0;
- const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
+ const uint8_t * q = x[i].qs + 32*il + n*ir;
- y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
+ uint8_t sc, m;
+ get_scale_min_k4(is + 0, x[i].scales, sc, m);
+ const float d1 = dall * sc; const float m1 = dmin * m;
+ get_scale_min_k4(is + 1, x[i].scales, sc, m);
+ const float d2 = dall * sc; const float m2 = dmin * m;
+ for (int l = 0; l < n; ++l) {
+ y[l + 0] = d1 * (q[l] & 0xF) - m1;
+ y[l +32] = d2 * (q[l] >> 4) - m2;
}
#else
- (void) vx; (void) y; (void) k;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_PASCAL
+ const int tid = threadIdx.x;
+ const uint8_t * q = x[i].qs;
+ dst_t * y = yy + i*QK_K;
+ const float d = (float)x[i].dm[0];
+ const float m = (float)x[i].dm[1];
+ y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
+ y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
+#endif
}
-// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
-// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
+template<typename dst_t>
+static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const block_q5_K * x = (const block_q5_K *) vx;
-#define VDR_Q4_0_Q8_1_MMVQ 2
-#define VDR_Q4_0_Q8_1_MMQ 4
+ const int i = blockIdx.x;
-template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
- const int * v, const int * u, const float & d4, const half2 & ds8) {
+#if QK_K == 256
+ // assume 64 threads - this is very slightly better than the one below
+ const int tid = threadIdx.x;
+ const int il = tid/16; // il is in 0...3
+ const int ir = tid%16; // ir is in 0...15
+ const int is = 2*il; // is is in 0...6
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
+ dst_t * y = yy + i*QK_K + 64*il + 2*ir;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
+ const uint8_t * ql = x[i].qs + 32*il + 2*ir;
+ const uint8_t * qh = x[i].qh + 2*ir;
- const float2 ds8f = __half22float2(ds8);
+ uint8_t sc, m;
+ get_scale_min_k4(is + 0, x[i].scales, sc, m);
+ const float d1 = dall * sc; const float m1 = dmin * m;
+ get_scale_min_k4(is + 1, x[i].scales, sc, m);
+ const float d2 = dall * sc; const float m2 = dmin * m;
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
+ uint8_t hm = 1 << (2*il);
+ y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
+ y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
+ hm <<= 1;
+ y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
+ y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int tid = threadIdx.x;
+ const uint8_t q = x[i].qs[tid];
+ const int im = tid/8; // 0...3
+ const int in = tid%8; // 0...7
+ const int is = tid/16; // 0 or 1
+ const uint8_t h = x[i].qh[in] >> im;
+ const float d = x[i].d;
+ dst_t * y = yy + i*QK_K + tid;
+ y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
+ y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
+#endif
}
-#define VDR_Q4_1_Q8_1_MMVQ 2
-#define VDR_Q4_1_Q8_1_MMQ 4
+template<typename dst_t>
+static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const block_q6_K * x = (const block_q6_K *) vx;
-template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
+ const int i = blockIdx.x;
+#if QK_K == 256
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
+ // assume 64 threads - this is very slightly better than the one below
+ const int tid = threadIdx.x;
+ const int ip = tid/32; // ip is 0 or 1
+ const int il = tid - 32*ip; // 0...32
+ const int is = 8*ip + il/16;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+ dst_t * y = yy + i*QK_K + 128*ip + il;
- // SIMD dot product of quantized values
- sumi = __dp4a(vi0, u[2*i+0], sumi);
- sumi = __dp4a(vi1, u[2*i+1], sumi);
- }
+ const float d = x[i].d;
-#ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm4, ds8));
- const float d4d8 = tmp.x;
- const float m4s8 = tmp.y;
-#else
- const float2 dm4f = __half22float2(dm4);
- const float2 ds8f = __half22float2(ds8);
- const float d4d8 = dm4f.x * ds8f.x;
- const float m4s8 = dm4f.y * ds8f.y;
-#endif // GGML_CUDA_F16
+ const uint8_t * ql = x[i].ql + 64*ip + il;
+ const uint8_t qh = x[i].qh[32*ip + il];
+ const int8_t * sc = x[i].scales + is;
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
+ y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+ y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
+ y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+ y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-#define VDR_Q5_0_Q8_1_MMVQ 2
-#define VDR_Q5_0_Q8_1_MMQ 4
+ // assume 32 threads
+ const int tid = threadIdx.x;
+ const int ip = tid/16; // 0 or 1
+ const int il = tid - 16*ip; // 0...15
-template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
- const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
+ dst_t * y = yy + i*QK_K + 16*ip + il;
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
+ const float d = x[i].d;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+ const uint8_t ql = x[i].ql[16*ip + il];
+ const uint8_t qh = x[i].qh[il] >> (2*ip);
+ const int8_t * sc = x[i].scales;
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+ y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
+ y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
+#endif
+}
+
+inline bool ggml_cuda_supports_mmq(enum ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ case GGML_TYPE_Q6_K:
+ return true;
+ default:
+ return false;
}
+}
- const float2 ds8f = __half22float2(ds8);
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
+ const int i = blockIdx.x;
+ const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
+
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint16_t * q2 = x[i].qs + 4*ib;
+ const uint8_t * aux8 = (const uint8_t *)q2;
+ const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
+ const uint32_t aux32 = q2[2] | (q2[3] << 16);
+ const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
+ const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
+ for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ assert(false);
+#endif
-#define VDR_Q5_1_Q8_1_MMVQ 2
-#define VDR_Q5_1_Q8_1_MMQ 4
+}
-template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
- const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
+ const int i = blockIdx.x;
+ const block_iq2_xs * x = (const block_iq2_xs *) vx;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint16_t * q2 = x[i].qs + 4*ib;
+ const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
+ const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
+ const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
+ for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
+#else
+ assert(false);
+#endif
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
- }
+}
-#ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm5, ds8));
- const float d5d8 = tmp.x;
- const float m5s8 = tmp.y;
-#else
- const float2 dm5f = __half22float2(dm5);
- const float2 ds8f = __half22float2(ds8);
- const float d5d8 = dm5f.x * ds8f.x;
- const float m5s8 = dm5f.y * ds8f.y;
-#endif // GGML_CUDA_F16
+template<typename dst_t>
+static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
+ const int i = blockIdx.x;
+ const block_iq2_s * x = (const block_iq2_s *) vx;
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
+ const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
+ const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
+ for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ assert(false);
+#endif
-#define VDR_Q8_0_Q8_1_MMVQ 2
-#define VDR_Q8_0_Q8_1_MMQ 8
+}
-template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
- const int * v, const int * u, const float & d8_0, const float & d8_1) {
+template<typename dst_t>
+static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
+ const int i = blockIdx.x;
+ const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint8_t * q3 = x[i].qs + 8*ib;
+ const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
+ const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
+ const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
+ const uint32_t aux32 = gas[0] | (gas[1] << 16);
+ const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
+ const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
+ for (int j = 0; j < 4; ++j) {
+ y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
+ y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
-
- return d8_0*d8_1 * sumi;
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+ assert(false);
+#endif
+
}
-template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
- const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
+template<typename dst_t>
+static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
+ const int i = blockIdx.x;
+ const block_iq3_s * x = (const block_iq3_s *) vx;
-#pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = __dp4a(v[i], u[i], sumi);
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const uint8_t * qs = x[i].qs + 8*ib;
+ const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
+ const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
+ const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
+ const uint8_t signs = x[i].signs[4*ib + il];
+ for (int j = 0; j < 4; ++j) {
+ y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
+ y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
-
-#ifdef GGML_CUDA_F16
- const float2 tmp = __half22float2(__hmul2(dm8, ds8));
- const float d8d8 = tmp.x;
- const float m8s8 = tmp.y;
#else
- const float2 dm8f = __half22float2(dm8);
- const float2 ds8f = __half22float2(ds8);
- const float d8d8 = dm8f.x * ds8f.x;
- const float m8s8 = dm8f.y * ds8f.y;
-#endif // GGML_CUDA_F16
+ assert(false);
+#endif
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
-#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-#define VDR_Q2_K_Q8_1_MMVQ 1
-#define VDR_Q2_K_Q8_1_MMQ 2
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
-
-#pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
-
- const int vi = (v >> (2*i)) & 0x03030303;
+template<typename dst_t>
+static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
- sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
+ const int i = blockIdx.x;
+ const block_iq1_s * x = (const block_iq1_s *) vx;
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
+ const int tid = threadIdx.x;
+#if QK_K == 256
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 8*il;
+ const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
+ const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
+ uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
+ grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
+ grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
+ grid32[0] &= 0x0f0f0f0f;
+ for (int j = 0; j < 8; ++j) {
+ y[j] = d * (q[j] + delta);
}
-
- const float2 dm2f = __half22float2(dm2);
-
- return dm2f.x*sumf_d - dm2f.y*sumf_m;
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+ assert(false);
+#endif
+
}
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const half2 & dm2, const float & d8) {
+static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi_d = 0;
- int sumi_m = 0;
+template<typename dst_t>
+static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
-#pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
+ const int i = blockIdx.x;
+ const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
- const int sc = scales[i0 / (QI8_1/2)];
+ const int tid = threadIdx.x;
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 4*il;
+ const uint8_t * q4 = x[ib].qs + 4*il;
+ const float d = (float)x[ib].d;
+ for (int j = 0; j < 4; ++j) {
+ y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
+ y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
+ }
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
+}
-#pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
- }
+#if QK_K != 64
+template<typename dst_t>
+static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
+ const int i = blockIdx.x;
+ const block_iq4_xs * x = (const block_iq4_xs *)vx;
- sumi_d += sumi_d_sc * (sc & 0xF);
+ const int tid = threadIdx.x;
+ const int il = tid/8; // 0...3
+ const int ib = tid%8; // 0...7
+ dst_t * y = yy + i*QK_K + 32*ib + 4*il;
+ const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
+ const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
+ for (int j = 0; j < 4; ++j) {
+ y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
+ y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
}
-
- const float2 dm2f = __half22float2(dm2);
-
- return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
-#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
+#endif
-#define VDR_Q3_K_Q8_1_MMVQ 1
-#define VDR_Q3_K_Q8_1_MMQ 2
+static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
- const int & scale_offset, const float & d3, const float * __restrict__ d8) {
+ static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
-#pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
+ const block_q2_K * x = (const block_q2_K *)vx + ib0;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
+ float tmp = 0; // partial sum for thread in warp
- const int sc = (sc_low | sc_high) - 32;
+#if QK_K == 256
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int vil = (vl >> (2*i)) & 0x03030303;
+ const int step = 16/K_QUANTS_PER_ITERATION;
- const int vih = ((vh >> i) << 2) & 0x04040404;
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
+ const int in = tid - step*im; // 0...15 or 0...7
- const int vi = __vsubss4(vil, vih);
+ const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
+ const int q_offset = 32*im + l0;
+ const int s_offset = 8*im;
+ const int y_offset = 128*im + l0;
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
+ uint32_t aux[4];
+ const uint8_t * d = (const uint8_t *)aux;
+ const uint8_t * m = (const uint8_t *)(aux + 2);
- return d3 * sumf;
-#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d3, const float & d8) {
+ const float * y = yy + i * QK_K + y_offset;
+ const uint8_t * q = x[i].qs + q_offset;
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- int sumi = 0;
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
-#pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
+ const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
+ aux[0] = a[0] & 0x0f0f0f0f;
+ aux[1] = a[1] & 0x0f0f0f0f;
+ aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
+ aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
+
+ float sum1 = 0, sum2 = 0;
+ for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+ sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
+ + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
+ + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
+ + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
+ + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
+ + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
+ + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
+ +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
+ sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
+ + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
}
+ tmp += dall * sum1 - dmin * sum2;
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
}
-
- return d3*d8 * sumi;
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
+ const int offset = tid * K_QUANTS_PER_ITERATION;
-#define VDR_Q4_K_Q8_1_MMVQ 2
-#define VDR_Q4_K_Q8_1_MMQ 8
+ uint32_t uaux[2];
+ const uint8_t * d = (const uint8_t *)uaux;
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
+ const float * y = yy + i * QK_K + offset;
+ const uint8_t * q = x[i].qs + offset;
+ const uint32_t * s = (const uint32_t *)x[i].scales;
-#pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
+ uaux[0] = s[0] & 0x0f0f0f0f;
+ uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
- const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
+ const float2 dall = __half22float2(x[i].dm);
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
+ float sum1 = 0, sum2 = 0;
+ for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+ const uint8_t ql = q[l];
+ sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
+ + y[l+16] * d[1] * ((ql >> 2) & 3)
+ + y[l+32] * d[2] * ((ql >> 4) & 3)
+ + y[l+48] * d[3] * ((ql >> 6) & 3);
+ sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
+ }
+ tmp += dall.x * sum1 - dall.y * sum2;
}
+#endif
- const float2 dm4f = __half22float2(dm4);
-
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
-#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+ if (threadIdx.x == 0) {
+ dst[row] = tmp;
+ }
}
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
-#pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
-
-#pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
- }
-
- const float2 ds8f = __half22float2(ds8[i]);
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
- }
+ const block_q3_K * x = (const block_q3_K *)vx + ib0;
- const float2 dm4f = __half22float2(dm4);
+ float tmp = 0; // partial sum for thread in warp
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
+#if QK_K == 256
-#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ const uint16_t kmask1 = 0x0303;
+ const uint16_t kmask2 = 0x0f0f;
-#define VDR_Q5_K_Q8_1_MMVQ 2
-#define VDR_Q5_K_Q8_1_MMQ 8
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
+ const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
+ const int step = 16/K_QUANTS_PER_ITERATION;
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
+ const int in = tid - step*im; // 0....15 or 0...7
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
+ const uint8_t m = 1 << (4*im);
-#pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
+ const int l0 = n*in; // 0...15 or 0...14 in steps of 2
+ const int q_offset = 32*im + l0;
+ const int y_offset = 128*im + l0;
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
+ uint16_t utmp[4];
+ const int8_t * s = (const int8_t *)utmp;
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
+ const uint16_t s_shift = 4*im;
- const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
- const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
+ const float * y = yy + i * QK_K + y_offset;
+ const uint8_t * q = x[i].qs + q_offset;
+ const uint8_t * h = x[i].hmask + l0;
- }
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
+ utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
+ utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
+ utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float2 dm5f = __half22float2(dm5);
+ const float d = x[i].d;
- return dm5f.x*sumf_d - dm5f.y*sumf_m;
+ float sum = 0;
+ for (int l = 0; l < n; ++l) {
+ sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
+ + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
+ + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
+ + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
+ sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
+ + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
+ + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
+ + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
+ }
+ tmp += d * sum;
+ }
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
- const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
+ const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
+ const int in = offset/8; // 0 or 1
+ const int im = offset%8; // 0...7
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-#pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
+ const float * y = yy + i * QK_K + offset;
+ const uint8_t * q = x[i].qs + offset;
+ const uint8_t * s = x[i].scales;
-#pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
+ const float dall = (float)x[i].d;
+
+ float sum = 0;
+ for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
+ const uint8_t hl = x[i].hmask[im+l] >> in;
+ const uint8_t ql = q[l];
+ sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
+ + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
+ + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
+ + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
}
+ tmp += sum;
+ }
+#endif
- const float2 ds8f = __half22float2(ds8[i]);
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
- sumf_d += ds8f.x * (sc[i] * sumi_d);
- sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
+ if (threadIdx.x == 0) {
+ dst[row] = tmp;
}
+}
- const float2 dm4f = __half22float2(dm4);
-
- return dm4f.x*sumf_d - dm4f.y*sumf_m;
+static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
-#define VDR_Q6_K_Q8_1_MMVQ 1
-#define VDR_Q6_K_Q8_1_MMQ 8
+ const block_q4_K * x = (const block_q4_K *)vx + ib0;
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
- const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
- const float & d, const float * __restrict__ d8) {
+#if QK_K == 256
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf = 0.0f;
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
-#pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
+ const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
+ const int il = tid/step; // 0...3
+ const int ir = tid - step*il; // 0...7 or 0...3
+ const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+ const int in = il%2;
- const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
+ const int l0 = n*(2*ir + in);
+ const int q_offset = 32*im + l0;
+ const int y_offset = 64*im + l0;
- sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
+ uint16_t aux[4];
+ const uint8_t * sc = (const uint8_t *)aux;
- return d*sumf;
+#if K_QUANTS_PER_ITERATION == 2
+ uint32_t q32[4];
+ const uint8_t * q4 = (const uint8_t *)q32;
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ uint16_t q16[4];
+ const uint8_t * q4 = (const uint8_t *)q16;
+#endif
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
- const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
- const float & d6, const float * __restrict__ d8) {
+ float tmp = 0; // partial sum for thread in warp
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- float sumf_d = 0.0f;
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-#pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+ const float * y1 = yy + i*QK_K + y_offset;
+ const float * y2 = y1 + 128;
-#pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
- sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
- sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
- sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
- }
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ aux[0] = a[im+0] & kmask1;
+ aux[1] = a[im+2] & kmask1;
+ aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+ aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
- }
+#if K_QUANTS_PER_ITERATION == 2
+ const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
+ const uint32_t * q2 = q1 + 16;
- return d6 * sumf_d;
+ q32[0] = q1[0] & 0x0f0f0f0f;
+ q32[1] = q1[0] & 0xf0f0f0f0;
+ q32[2] = q2[0] & 0x0f0f0f0f;
+ q32[3] = q2[0] & 0xf0f0f0f0;
+ float4 s = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ for (int l = 0; l < 4; ++l) {
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
+ s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
+ smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+ }
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#else
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
+ const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
+ const uint16_t * q2 = q1 + 32;
-static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+ q16[0] = q1[0] & 0x0f0f;
+ q16[1] = q1[0] & 0xf0f0;
+ q16[2] = q2[0] & 0x0f0f;
+ q16[3] = q2[0] & 0xf0f0;
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
+ float4 s = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ for (int l = 0; l < 2; ++l) {
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
+ s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
+ smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+ }
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#endif
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
}
+#else
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
-
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
-
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI4_0;
- const int kqsx = k % QI4_0;
-
- const block_q4_0 * bx0 = (const block_q4_0 *) vx;
+ const int step = tid * K_QUANTS_PER_ITERATION;
- float * x_dmf = (float *) x_dm;
+ uint16_t aux16[2];
+ const uint8_t * s = (const uint8_t *)aux16;
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
+ float tmp = 0;
- if (need_check) {
- i = min(i, i_max);
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+ const uint8_t * q = x[i].qs + step;
+ const float * y = yy + i*QK_K + step;
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ aux16[0] = a[0] & 0x0f0f;
+ aux16[1] = (a[0] >> 4) & 0x0f0f;
+ const float d = (float)x[i].dm[0];
+ const float m = (float)x[i].dm[1];
+ float sum = 0.f;
+ for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+ sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
+ + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
+ + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
+ + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
}
-
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
+ tmp += sum;
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
-
- if (need_check) {
- i = min(i, i_max);
- }
+#endif
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
- x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
+ if (tid == 0) {
+ dst[row] = tmp;
}
}
-static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
-
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const float * x_dmf = (const float *) x_dm;
-
- int u[2*VDR_Q4_0_Q8_1_MMQ];
+static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
-#pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
- }
+ const int row = blockIdx.x;
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
+ const block_q5_K * x = (const block_q5_K *)vx + ib0;
-static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+ float tmp = 0; // partial sum for thread in warp
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
+#if QK_K == 256
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
+ const int tid = threadIdx.x/2; // 0...15
+ const int ix = threadIdx.x%2;
-#pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
+ const int il = tid/4; // 0...3
+ const int ir = tid - 4*il;// 0...3
+ const int n = 2;
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
-}
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+ const int in = il%2;
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
+ const int l0 = n*(2*ir + in);
+ const int q_offset = 32*im + l0;
+ const int y_offset = 64*im + l0;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
+ const uint8_t hm1 = 1 << (2*im);
+ const uint8_t hm2 = hm1 << 4;
- *x_ql = tile_x_qs;
- *x_dm = tile_x_dm;
-}
+ uint16_t aux[4];
+ const uint8_t * sc = (const uint8_t *)aux;
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
+ uint16_t q16[8];
+ const uint8_t * q4 = (const uint8_t *)q16;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
+ for (int i = ix; i < num_blocks_per_row; i += 2) {
- const int kbx = k / QI4_1;
- const int kqsx = k % QI4_1;
+ const uint8_t * ql1 = x[i].qs + q_offset;
+ const uint8_t * qh = x[i].qh + l0;
+ const float * y1 = yy + i*QK_K + y_offset;
+ const float * y2 = y1 + 128;
- const block_q4_1 * bx0 = (const block_q4_1 *) vx;
+ const float dall = __low2half(x[i].dm);
+ const float dmin = __high2half(x[i].dm);
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
+ const uint16_t * a = (const uint16_t *)x[i].scales;
+ aux[0] = a[im+0] & kmask1;
+ aux[1] = a[im+2] & kmask1;
+ aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
+ aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- if (need_check) {
- i = min(i, i_max);
+ float4 sum = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ const uint16_t * q1 = (const uint16_t *)ql1;
+ const uint16_t * q2 = q1 + 32;
+ q16[0] = q1[0] & 0x0f0f;
+ q16[1] = q1[8] & 0x0f0f;
+ q16[2] = (q1[0] >> 4) & 0x0f0f;
+ q16[3] = (q1[8] >> 4) & 0x0f0f;
+ q16[4] = q2[0] & 0x0f0f;
+ q16[5] = q2[8] & 0x0f0f;
+ q16[6] = (q2[0] >> 4) & 0x0f0f;
+ q16[7] = (q2[8] >> 4) & 0x0f0f;
+ for (int l = 0; l < n; ++l) {
+ sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
+ sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
+ sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
+ sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
+ smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
}
-
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
+#else
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
+ const int step = tid * K_QUANTS_PER_ITERATION;
+ const int im = step/8;
+ const int in = step%8;
- if (need_check) {
- i = min(i, i_max);
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
+ const uint8_t * q = x[i].qs + step;
+ const int8_t * s = x[i].scales;
+ const float * y = yy + i*QK_K + step;
+ const float d = x[i].d;
+ float sum = 0.f;
+ for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+ const uint8_t h = x[i].qh[in+j] >> im;
+ sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
+ + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
+ + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
+ + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
}
+ tmp += sum;
+ }
+#endif
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
- x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
+ if (threadIdx.x == 0) {
+ dst[row] = tmp;
}
}
-static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
+static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- int u[2*VDR_Q4_1_Q8_1_MMQ];
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ if (row > nrows) return;
-#pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
- }
+ const int num_blocks_per_row = ncols / QK_K;
+ const int ib0 = row*num_blocks_per_row;
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
+ const block_q6_K * x = (const block_q6_K *)vx + ib0;
-static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
-
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
-
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
+ const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
+ const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
+ const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- *x_ql = tile_x_ql;
- *x_dm = (half2 *) tile_x_d;
-}
+ const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
+ const int in = tid - step*im; // 0...15 or 0...7
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
+#if K_QUANTS_PER_ITERATION == 1
+ const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
+ const int is = 0;
+#else
+ const int l0 = 4 * in; // 0, 4, 8, ..., 28
+ const int is = in / 4;
+#endif
+ const int ql_offset = 64*im + l0;
+ const int qh_offset = 32*im + l0;
+ const int s_offset = 8*im + is;
+ const int y_offset = 128*im + l0;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
+ float tmp = 0; // partial sum for thread in warp
- const int kbx = k / QI5_0;
- const int kqsx = k % QI5_0;
+ for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const block_q5_0 * bx0 = (const block_q5_0 *) vx;
+ const float * y = yy + i * QK_K + y_offset;
+ const uint8_t * ql = x[i].ql + ql_offset;
+ const uint8_t * qh = x[i].qh + qh_offset;
+ const int8_t * s = x[i].scales + s_offset;
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
+ const float d = x[i].d;
- if (need_check) {
- i = min(i, i_max);
+#if K_QUANTS_PER_ITERATION == 1
+ float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
+ + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
+ + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
+ + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
+ + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
+ + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
+ + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
+ +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
+ tmp += sum;
+#else
+ float sum = 0;
+ for (int l = 0; l < 4; ++l) {
+ sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
+ + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
+ + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
+ + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
}
+ tmp += sum;
+#endif
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
+ }
- const int ql = get_int_from_uint8(bxi->qs, kqsx);
- const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
+#else
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
+ const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
+ const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+ const int step = tid * K_QUANTS_PER_ITERATION;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
+ float tmp = 0; // partial sum for thread in warp
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
+ for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
+ const float * y = yy + i * QK_K + step;
+ const uint8_t * ql = x[i].ql + step;
+ const uint8_t * qh = x[i].qh + step;
+ const int8_t * s = x[i].scales;
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
+ const float d = x[i+0].d;
- if (need_check) {
- i = min(i, i_max);
+ float sum = 0;
+ for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
+ sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
+ + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
+ + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
+ + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
}
+ tmp += sum;
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
- x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
}
-}
-
-static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
+#endif
- int u[2*VDR_Q5_0_Q8_1_MMQ];
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
-#pragma unroll
- for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
+ if (tid == 0) {
+ dst[row] = tmp;
}
-
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
-static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
-
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
-
-#pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
+static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
+ const half * x = (const half *) vx;
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
+ // automatic half -> float type cast if dfloat == float
+ v.x = x[ib + iqs + 0];
+ v.y = x[ib + iqs + 1];
}
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
+static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
+ const int ix = blockDim.x*blockIdx.x + threadIdx.x;
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
+ if (ix >= kx_padded) {
+ return;
+ }
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
-}
+ const int iy = blockDim.y*blockIdx.y + threadIdx.y;
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
+ const int i_padded = iy*kx_padded + ix;
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
+ block_q8_1 * y = (block_q8_1 *) vy;
- const int kbx = k / QI5_1;
- const int kqsx = k % QI5_1;
+ const int ib = i_padded / QK8_1; // block index
+ const int iqs = i_padded % QK8_1; // quant index
- const block_q5_1 * bx0 = (const block_q5_1 *) vx;
+ const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
+ float amax = fabsf(xi);
+ float sum = xi;
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
+ amax = warp_reduce_max(amax);
+ sum = warp_reduce_sum(sum);
- if (need_check) {
- i = min(i, i_max);
- }
+ const float d = amax / 127;
+ const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
+ y[ib].qs[iqs] = q;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+ if (iqs > 0) {
+ return;
+ }
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+ reinterpret_cast<half&>(y[ib].ds.x) = d;
+ reinterpret_cast<half&>(y[ib].ds.y) = sum;
+}
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static __global__ void k_get_rows(
+ const void * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+ const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
+ const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
+ const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+ if (i00 >= ne00) {
+ return;
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = k % blocks_per_tile_x_row;
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
- if (need_check) {
- i = min(i, i_max);
- }
+ const int ib = i00/qk; // block index
+ const int iqs = (i00%qk)/qr; // quant index
+ const int iybs = i00 - i00%qk; // dst block start index
+ const int y_offset = qr == 1 ? 1 : qk/2;
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+ // dequantize
+ dfloat2 v;
+ dequantize_kernel(src0_row, ib, iqs, v);
- x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
- }
+ dst_row[iybs + iqs + 0] = v.x;
+ dst_row[iybs + iqs + y_offset] = v.y;
}
-static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
-
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+template<typename src0_t, typename dst_t>
+static __global__ void k_get_rows_float(
+ const src0_t * src0, const int32_t * src1, dst_t * dst,
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
+ size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
- int u[2*VDR_Q5_1_Q8_1_MMQ];
+ const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
+ const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
+ const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
-#pragma unroll
- for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
+ if (i00 >= ne00) {
+ return;
}
- return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
-static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
+ const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
+ dst_row[i00] = src0_row[i00];
+}
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
+ const int i = 2*(blockDim.x*blockIdx.x + threadIdx.x);
-#pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ if (i >= k) {
+ return;
}
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
+ const int ib = i/qk; // block index
+ const int iqs = (i%qk)/qr; // quant index
+ const int iybs = i - i%qk; // y block start index
+ const int y_offset = qr == 1 ? 1 : qk/2;
+
+ // dequantize
+ dfloat2 v;
+ dequantize_kernel(vx, ib, iqs, v);
+
+ y[iybs + iqs + 0] = v.x;
+ y[iybs + iqs + y_offset] = v.y;
}
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh; (void)x_sc;
+template <typename src_t, typename dst_t>
+static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
+ if (i >= k) {
+ return;
+ }
- *x_ql = tile_x_qs;
- *x_dm = (half2 *) tile_x_d;
-}
+ const src_t * x = (src_t *) vx;
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh; (void)x_sc;
+ y[i] = x[i];
+}
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
+template <bool need_check>
+static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) {
+#if __CUDA_ARCH__ >= CC_PASCAL
+ constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
- const int kbx = k / QI8_0;
- const int kqsx = k % QI8_0;
- float * x_dmf = (float *) x_dm;
+ const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
+ const int * x0 = ((int *) vx) + blockIdx.x * nint;
+ half2 * y2 = (half2 *) (y + i0);
- const block_q8_0 * bx0 = (const block_q8_0 *) vx;
+ __shared__ int vals[nint];
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = min(i, i_max);
+ for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
+ if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
+ break;
}
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
+ const int ix = ix0 + threadIdx.x;
+ vals[ix] = x0[ix];
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
- const int kbxd = k % blocks_per_tile_x_row;
-
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
- int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
-
- if (need_check) {
- i = min(i, i_max);
+ for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
+ if (need_check && i0 + iy + 2*threadIdx.x >= k) {
+ return;
}
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+ const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
+ const half d = *b0;
+ const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
- x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+ y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
}
+#else
+ GGML_UNUSED(vx);
+ GGML_UNUSED(y);
+ GGML_UNUSED(k);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_PASCAL
}
-static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh; (void)x_sc;
-
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
-
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
- y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
+// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
+// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+#define VDR_Q4_0_Q8_1_MMVQ 2
+#define VDR_Q4_0_Q8_1_MMQ 4
- const uint8_t * scales = bq2_K->scales + scale_offset;
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
+ const int * v, const int * u, const float & d4, const half2 & ds8) {
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
#pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
- }
-
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
-}
+ for (int i = 0; i < vdr; ++i) {
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
+ // SIMD dot product of quantized values
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
+ }
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
+ const float2 ds8f = __half22float2(ds8);
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
+ // second part effectively subtracts 8 from each quant value
+ return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
-
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
+#define VDR_Q4_1_Q8_1_MMVQ 2
+#define VDR_Q4_1_Q8_1_MMQ 4
- const int kbx = k / QI2_K;
- const int kqsx = k % QI2_K;
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
+ const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
- const block_q2_K * bx0 = (const block_q2_K *) vx;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
-
- if (need_check) {
- i = min(i, i_max);
- }
-
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
+ for (int i = 0; i < vdr; ++i) {
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ // SIMD dot product of quantized values
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
- const int kbxd = k % blocks_per_tile_x_row;
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm4, ds8));
+ const float d4d8 = tmp.x;
+ const float m4s8 = tmp.y;
+#else
+ const float2 dm4f = __half22float2(dm4);
+ const float2 ds8f = __half22float2(ds8);
+ const float d4d8 = dm4f.x * ds8f.x;
+ const float m4s8 = dm4f.y * ds8f.y;
+#endif // GGML_CUDA_F16
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
- int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
+ // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
+ return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
- if (need_check) {
- i = min(i, i_max);
- }
+#define VDR_Q5_0_Q8_1_MMVQ 2
+#define VDR_Q5_0_Q8_1_MMQ 4
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
+ const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
- x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
- }
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+ for (int i = 0; i < vdr; ++i) {
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
- if (need_check) {
- i = min(i, i_max);
- }
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+ }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
+ const float2 ds8f = __half22float2(ds8);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
- }
+ // second part effectively subtracts 16 from each quant value
+ return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
-
- const int kbx = k / QI2_K;
- const int ky = (k % QI2_K) * QR2_K;
- const float * y_df = (const float *) y_ds;
+#define VDR_Q5_1_Q8_1_MMVQ 2
+#define VDR_Q5_1_Q8_1_MMQ 4
- int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
+ const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
- const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
#pragma unroll
- for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
- v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
+ for (int i = 0; i < vdr; ++i) {
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
}
- const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm5, ds8));
+ const float d5d8 = tmp.x;
+ const float m5s8 = tmp.y;
+#else
+ const float2 dm5f = __half22float2(dm5);
+ const float2 ds8f = __half22float2(ds8);
+ const float d5d8 = dm5f.x * ds8f.x;
+ const float m5s8 = dm5f.y * ds8f.y;
+#endif // GGML_CUDA_F16
- const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
- return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
+ // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
+ return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
+
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#define VDR_Q8_0_Q8_1_MMVQ 2
+#define VDR_Q8_0_Q8_1_MMQ 8
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
+ const int * v, const int * u, const float & d8_0, const float & d8_1) {
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
- const float d = bq3_K->d;
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ // SIMD dot product of quantized values
+ sumi = __dp4a(v[i], u[i], sumi);
+ }
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
+ return d8_0*d8_1 * sumi;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
+ const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
- int u[QR3_K];
- float d8[QR3_K];
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
#pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+ for (int i = 0; i < vdr; ++i) {
+ // SIMD dot product of quantized values
+ sumi = __dp4a(v[i], u[i], sumi);
}
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
- __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm8, ds8));
+ const float d8d8 = tmp.x;
+ const float m8s8 = tmp.y;
+#else
+ const float2 dm8f = __half22float2(dm8);
+ const float2 ds8f = __half22float2(ds8);
+ const float d8d8 = dm8f.x * ds8f.x;
+ const float m8s8 = dm8f.y * ds8f.y;
+#endif // GGML_CUDA_F16
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_qh = tile_x_qh;
- *x_sc = tile_x_sc;
+ // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
+ return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
+#define VDR_Q2_K_Q8_1_MMVQ 1
+#define VDR_Q2_K_Q8_1_MMQ 2
- const int kbx = k / QI3_K;
- const int kqsx = k % QI3_K;
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
+ const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const half2 & dm2, const float * __restrict__ d8) {
- const block_q3_K * bx0 = (const block_q3_K *) vx;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
+ for (int i = 0; i < QR2_K; ++i) {
+ const int sc = scales[2*i];
- if (need_check) {
- i = min(i, i_max);
- }
+ const int vi = (v >> (2*i)) & 0x03030303;
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
+ sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ // fill int with 4x m
+ int m = sc >> 4;
+ m |= m << 8;
+ m |= m << 16;
+ sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
- int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
+ const float2 dm2f = __half22float2(dm2);
- if (need_check) {
- i = min(i, i_max);
- }
+ return dm2f.x*sumf_d - dm2f.y*sumf_m;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const half2 & dm2, const float & d8) {
- x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
- }
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi_d = 0;
+ int sumi_m = 0;
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
- int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
-
- if (need_check) {
- i = min(i, i_max);
- }
+ for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
+ int sumi_d_sc = 0;
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
+ const int sc = scales[i0 / (QI8_1/2)];
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
- }
+ // fill int with 4x m
+ int m = sc >> 4;
+ m |= m << 8;
+ m |= m << 16;
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
-
- if (need_check) {
- i = min(i, i_max);
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
+ sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
}
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
+ sumi_d += sumi_d_sc * (sc & 0xF);
+ }
- const int ksc = k % (QI3_K/4);
+ const float2 dm2f = __half22float2(dm2);
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
+ return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
+#define VDR_Q3_K_Q8_1_MMVQ 1
+#define VDR_Q3_K_Q8_1_MMQ 2
- const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
+ const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const int & scale_offset, const float & d3, const float * __restrict__ d8) {
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
- }
-}
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf = 0.0f;
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+#pragma unroll
+ for (int i = 0; i < QR3_K; ++i) {
+ const int isc = scale_offset + 2*i;
- const int kbx = k / QI3_K;
- const int ky = (k % QI3_K) * QR3_K;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
+ const int isc_low = isc % (QK_K/32);
+ const int sc_shift_low = 4 * (isc / (QK_K/32));
+ const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
+ const int isc_high = isc % (QK_K/64);
+ const int sc_shift_high = 2 * (isc / (QK_K/64));
+ const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
+ const int sc = (sc_low | sc_high) - 32;
-#pragma unroll
- for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
- const int shift = 2 * ((ky % 32) / 8);
- const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
+ const int vil = (vl >> (2*i)) & 0x03030303;
- const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
- const int vlh = (vh << 2) & 0x04040404;
+ const int vih = ((vh >> i) << 2) & 0x04040404;
- v[l] = __vsubss4(vll, vlh);
+ const int vi = __vsubss4(vil, vih);
+
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
}
- const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
- return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
+ return d3 * sumf;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-#ifndef GGML_QKK_64
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
+ const float & d3, const float & d8) {
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
+#pragma unroll
+ for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
+ int sumi_sc = 0;
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
+ }
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+ sumi += sumi_sc * scales[i0 / (QI8_1/2)];
}
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
-
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2float(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
+ return d3*d8 * sumi;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
+#define VDR_Q4_K_Q8_1_MMVQ 2
+#define VDR_Q4_K_Q8_1_MMQ 8
-#else
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-
float sumf_d = 0.0f;
float sumf_m = 0.0f;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
-
- const uint16_t * a = (const uint16_t *)bq4_K->scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
-
- const float dall = bq4_K->dm[0];
- const float dmin = bq4_K->dm[1];
-
- const float d8_1 = __low2float(bq8_1[0].ds);
- const float d8_2 = __low2float(bq8_1[1].ds);
-
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+#pragma unroll
+ for (int i = 0; i < QR4_K; ++i) {
+ const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
+ const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
- const int * q4 = (const int *)bq4_K->qs + (iqs/2);
- const int v1 = q4[0];
- const int v2 = q4[4];
+ const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
+ const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
- const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
- const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
- const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
- const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
+ sumf_d += d8[i] * (dot1 * sc[i]);
+ sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
+ }
- sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
- sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
+ const float2 dm4f = __half22float2(dm4);
- return dall * sumf_d - dmin * sumf_m;
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-
-#endif
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
-
- __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
-
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
}
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
- const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
- int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
-
- GGML_CUDA_ASSUME(i_offset >= 0);
- GGML_CUDA_ASSUME(i_offset < nwarps);
- GGML_CUDA_ASSUME(k >= 0);
- GGML_CUDA_ASSUME(k < WARP_SIZE);
-
- const int kbx = k / QI4_K; // == 0 if QK_K == 256
- const int kqsx = k % QI4_K; // == k if QK_K == 256
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- const block_q4_K * bx0 = (const block_q4_K *) vx;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
+ for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
+ int sumi_d = 0;
- if (need_check) {
- i = min(i, i_max);
+#pragma unroll
+ for (int j = 0; j < QI8_1; ++j) {
+ sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
}
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const float2 ds8f = __half22float2(ds8[i]);
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ sumf_d += ds8f.x * (sc[i] * sumi_d);
+ sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+ const float2 dm4f = __half22float2(dm4);
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
- int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
- if (need_check) {
- i = min(i, i_max);
- }
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
+#define VDR_Q5_K_Q8_1_MMVQ 2
+#define VDR_Q5_K_Q8_1_MMQ 8
-#if QK_K == 256
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
-#else
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
-#endif
- }
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
+ const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
- if (need_check) {
- i = min(i, i_max);
- }
+#pragma unroll
+ for (int i = 0; i < QR5_K; ++i) {
+ const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
+ const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
- const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
+ const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
+ const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
- const int * scales = (const int *) bxi->scales;
+ const int v0i = vl0i | vh0i;
+ const int v1i = vl1i | vh1i;
- const int ksc = k % (WARP_SIZE/8);
+ const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
+ const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+ sumf_d += d8[i] * (dot1 * sc[i]);
+ sumf_m += d8[i] * (dot2 * m[i]);
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
}
-}
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
- const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
- const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
+ const float2 dm5f = __half22float2(dm5);
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
+ return dm5f.x*sumf_d - dm5f.y*sumf_m;
- const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
- return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-#ifndef GGML_QKK_64
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
+#pragma unroll
+ for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
+ int sumi_d = 0;
- vl[0] = ql[0];
- vl[1] = ql[4];
+#pragma unroll
+ for (int j = 0; j < QI8_1; ++j) {
+ sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
+ }
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
+ const float2 ds8f = __half22float2(ds8[i]);
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+ sumf_d += ds8f.x * (sc[i] * sumi_d);
+ sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
}
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
-
-#pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = __low2float(bq8i->ds);
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
+ const float2 dm4f = __half22float2(dm4);
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q6_K_Q8_1_MMVQ 1
+#define VDR_Q6_K_Q8_1_MMQ 8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
+ const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
+ const float & d, const float * __restrict__ d8) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+ float sumf = 0.0f;
- const int8_t * s = bq5_K->scales;
+#pragma unroll
+ for (int i = 0; i < QR6_K; ++i) {
+ const int sc = scales[4*i];
- const float d = bq5_K->d;
+ const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const float d8_1 = __low2half(bq8_1[0].ds);
- const float d8_2 = __low2half(bq8_1[1].ds);
+ const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+ const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
- const int * ql = (const int *)bq5_K->qs + (iqs/2);
- const int vl1 = ql[0];
- const int vl2 = ql[4];
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+ }
- const int step = 4 * (iqs/2); // 0, 4, 8, 12
- const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
- const int in = step%8; // 0, 4, 0, 4
- const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
+ return d*sumf;
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
- const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
- const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
- const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
- const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
+ const float & d6, const float * __restrict__ d8) {
- const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
- + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
- return d * sumf_d;
+#pragma unroll
+ for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
+ int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+
+#pragma unroll
+ for (int i = i0; i < i0 + 2; ++i) {
+ sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
+ sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
+
+ sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
+ sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
+ }
+
+ sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
+ }
+
+ return d6 * sumf_d;
#else
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
-#endif
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
+
+ int v[VDR_Q4_0_Q8_1_MMVQ];
+ int u[2*VDR_Q4_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
+ }
+
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
}
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
+ GGML_UNUSED(x_sc);
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
+ *x_ql = tile_x_qs;
+ *x_dm = (half2 *) tile_x_d;
}
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
-
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_K; // == 0 if QK_K == 256
- const int kqsx = k % QI5_K; // == k if QK_K == 256
+ const int kbx = k / QI4_0;
+ const int kqsx = k % QI4_0;
- const block_q5_K * bx0 = (const block_q5_K *) vx;
+ const block_q4_0 * bx0 = (const block_q4_0 *) vx;
+
+ float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
i = min(i, i_max);
}
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR5_K*kqsx;
-
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-
- const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
-
- const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
}
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
-
-#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
- int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
-
- if (need_check) {
- i = min(i, i_max);
- }
-
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-#if QK_K == 256
- x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
-#endif
- }
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
+ const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
+ int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
- const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
-
- const int * scales = (const int *) bxi->scales;
-
- const int ksc = k % (WARP_SIZE/8);
-
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+ x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
}
}
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const float * x_dmf = (const float *) x_dm;
- const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
- const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
- return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
+ int u[2*VDR_Q4_0_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
+ const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
-
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
-
- const int8_t * scales = bq6_K->scales + scale_offset;
-
- int u[QR6_K];
- float d8[QR6_K];
+ int v[VDR_Q4_1_Q8_1_MMVQ];
+ int u[2*VDR_Q4_1_Q8_1_MMVQ];
#pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
+ for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
}
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
}
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
- (void)x_qh;
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
- __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
- __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
- __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
- *x_ql = tile_x_ql;
+ *x_ql = tile_x_qs;
*x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
}
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- (void)x_qh;
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI6_K; // == 0 if QK_K == 256
- const int kqsx = k % QI6_K; // == k if QK_K == 256
+ const int kbx = k / QI4_1;
+ const int kqsx = k % QI4_1;
- const block_q6_K * bx0 = (const block_q6_K *) vx;
+ const block_q4_1 * bx0 = (const block_q4_1 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
i = min(i, i_max);
}
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR6_K*kqsx;
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8(bxi->ql, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
- const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
- const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
- const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
+ const int kbxd = k % blocks_per_tile_x_row;
- const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
- const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
+ int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
}
+}
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- float * x_dmf = (float *) x_dm;
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+
+ int u[2*VDR_Q4_1_Q8_1_MMQ];
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
+ for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
+
+ int vl[VDR_Q5_0_Q8_1_MMVQ];
+ int vh[VDR_Q5_0_Q8_1_MMVQ];
+ int u[2*VDR_Q5_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
+ vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
+ vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
+ }
+
+ return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
+
+ *x_ql = tile_x_ql;
+ *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
+
+ const int kbx = k / QI5_0;
+ const int kqsx = k % QI5_0;
+
+ const block_q5_0 * bx0 = (const block_q5_0 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
+ const int ql = get_int_from_uint8(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+ qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+ qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
}
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
+
#pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
+ int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
- const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
+ x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
}
}
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- (void)x_qh;
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
+ int u[2*VDR_Q5_0_Q8_1_MMQ];
- const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
- const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
- return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
-static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if QK_K == 256
- const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
-#if QR2_XXS == 8
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = q2[2] | (q2[3] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
- const uint8_t signs = ksigns_iq2xs[aux32 & 127];
- for (int j = 0; j < 8; ++j) {
- sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
- }
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * sumi;
-#else
- // iqs is 0...15
- const int ib32 = iqs/2;
- const int il = iqs%2;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
- const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
- const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
- const int8_t * q8 = bq8_1[ib32].qs + 16*il;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
- sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
+ const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
+
+ int vl[VDR_Q5_1_Q8_1_MMVQ];
+ int vh[VDR_Q5_1_Q8_1_MMVQ];
+ int u[2*VDR_Q5_1_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
+ vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
+ vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
}
- return d * (sumi1 + sumi2);
-#endif
-#else
- assert(false);
- return 0.f;
-#endif
+
+ return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
}
-static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
- const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
- sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
- sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
-#else
- (void) ksigns64;
- assert(false);
- return 0.f;
-#endif
-#else
- (void) ksigns64;
- assert(false);
- return 0.f;
-#endif
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
}
-// TODO
-static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
- const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
- const int ib32 = iqs;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
- sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
- sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
-#else
- (void) ksigns64;
- assert(false);
- return 0.f;
-#endif
-#else
- (void) ksigns64;
- assert(false);
- return 0.f;
-#endif
-}
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
-static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
- const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
+ const int kbx = k / QI5_1;
+ const int kqsx = k % QI5_1;
- const int ib32 = iqs;
- const uint8_t * q3 = bq2->qs + 8*ib32;
- const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = gas[0] | (gas[1] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
- const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
- const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
- sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
- sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
- return d * sumi;
-#else
- assert(false);
- return 0.f;
-#endif
-#else
- assert(false);
- return 0.f;
-#endif
-}
+ const block_q5_1 * bx0 = (const block_q5_1 *) vx;
-// TODO: don't use lookup table for signs
-static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-#if QK_K == 256
- const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
- const int ib32 = iqs;
- const uint8_t * qs = bq2->qs + 8*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
- const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
- uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
- uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
- const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
- sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
- sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
- q8 += 8;
- }
- const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
- return d * sumi;
-#else
- assert(false);
- return 0.f;
-#endif
-#else
- assert(false);
- return 0.f;
-#endif
-}
+ if (need_check) {
+ i = min(i, i_max);
+ }
-static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-#if QK_K == 256
- const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ib32 = iqs;
- int sumi = 0;
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi));
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
}
-#else
- const int8_t * q8 = bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- for (int j = 0; j < 4; ++j) {
- sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
+ int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
}
- q8 += 8;
+
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
}
-#endif
- const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
- const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
- const float d = d1q * __low2float (bq8_1[ib32].ds);
- const float m = d1q * __high2float(bq8_1[ib32].ds);
- return d * sumi + m * delta;
-#else
- assert(false);
- return 0.f;
-#endif
}
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
- int & val1, int & val2) {
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
- uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
- aux32 = q4 & 0x0f0f0f0f;
- uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
- uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
- val1 = v1 | (v2 << 16);
- aux32 = (q4 >> 4) & 0x0f0f0f0f;
- v1 = values[q8[0]] | (values[q8[1]] << 8);
- v2 = values[q8[2]] | (values[q8[3]] << 8);
- val2 = v1 | (v2 << 16);
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+
+ int u[2*VDR_Q5_1_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
-#endif
-static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
+ const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
- const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
- const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
-
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+ int v[VDR_Q8_0_Q8_1_MMVQ];
+ int u[VDR_Q8_0_Q8_1_MMVQ];
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
- const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
- get_int_from_table_16(aux, values, v1, v2);
- sumi1 = __dp4a(v1, q8[l+0], sumi1);
- sumi2 = __dp4a(v2, q8[l+4], sumi2);
+#pragma unroll
+ for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
+ u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
}
-#else
- const uint8_t * q4 = bq->qs + 4*iqs;
- const int8_t * q8 = bq8_1->qs + 4*iqs;
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
+}
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
- sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
- sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
- }
-#endif
- const float d = (float)bq->d * __low2float(bq8_1->ds);
- return d * (sumi1 + sumi2);
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
+
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
+
+ *x_ql = tile_x_qs;
+ *x_dm = (half2 *) tile_x_d;
}
-static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
- const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
-#if QK_K == 256
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
- const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+ const int kbx = k / QI8_0;
+ const int kqsx = k % QI8_0;
+ float * x_dmf = (float *) x_dm;
- //// iqs is 0...7
- //const int ib64 = iqs/2;
- //const int il = iqs%2;
- //const int32_t * q8_1 = (const int *)bq8_1[2*ib64+0].qs + 2*il;
- //const int32_t * q8_2 = (const int *)bq8_1[2*ib64+1].qs + 2*il;
- //const uint32_t * q4_1 = (const uint32_t *)bq4->qs + 8*ib64 + 2*il;
- //const uint32_t * q4_2 = q4_1 + 4;
- //const int8_t ls1 = (bq4->scales_l[ib64] & 0xf) | (((bq4->scales_h >> (4*ib64+0)) & 3) << 4);
- //const int8_t ls2 = (bq4->scales_l[ib64] >> 4) | (((bq4->scales_h >> (4*ib64+2)) & 3) << 4);
- //const float d1 = (float)bq4->d * (ls1 - 32) * __low2float(bq8_1[2*ib64+0].ds);
- //const float d2 = (float)bq4->d * (ls2 - 32) * __low2float(bq8_1[2*ib64+1].ds);
- //int v1, v2;
- //int sumi1 = 0, sumi2 = 0;
- //for (int j = 0; j < 2; ++j) {
- // get_int_from_table_16(q4_1[j], values, v1, v2);
- // sumi1 = __dp4a(v2, q8_1[j+4], __dp4a(v1, q8_1[j+0], sumi1));
- // get_int_from_table_16(q4_2[j], values, v1, v2);
- // sumi2 = __dp4a(v2, q8_2[j+4], __dp4a(v1, q8_2[j+0], sumi2));
- //}
- //return d1 * sumi1 + d2 * sumi2;
+ const block_q8_0 * bx0 = (const block_q8_0 *) vx;
- // iqs is 0...7
- const int ib32 = iqs;
- const int32_t * q8 = (const int *)bq8_1[ib32].qs;
- const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
- const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 4; ++j) {
- get_int_from_table_16(q4[j], values, v1, v2);
- sumi1 = __dp4a(v1, q8[j+0], sumi1);
- sumi2 = __dp4a(v2, q8[j+4], sumi2);
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
}
- return d * (sumi1 + sumi2);
- //// iqs is 0...15
- //const int ib32 = iqs/2;
- //const int il = iqs%2;
- //const int32_t * q8 = (const int *)bq8_1[ib32].qs + 2*il;
- //const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32 + 2*il;
- //const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- //const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
- //int v1, v2;
- //int sumi1 = 0, sumi2 = 0;
- //for (int j = 0; j < 2; ++j) {
- // get_int_from_table_16(q4[j], values, v1, v2);
- // sumi1 = __dp4a(v1, q8[j+0], sumi1);
- // sumi2 = __dp4a(v2, q8[j+4], sumi2);
- //}
- //return d * (sumi1 + sumi2);
-#else
- assert(false);
- return 0.f;
-#endif
-#else
- return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
-#endif
-}
+ const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
+ const int kbxd = k % blocks_per_tile_x_row;
-template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
- allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
-static __device__ __forceinline__ void mul_mat_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
+ int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
+ if (need_check) {
+ i = min(i, i_max);
+ }
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- const int blocks_per_warp = WARP_SIZE / qi;
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- const int & ncols_dst = ncols_y;
+ x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+ }
+}
- const int row_dst_0 = blockIdx.x*mmq_y;
- const int & row_x_0 = row_dst_0;
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
- const int col_dst_0 = blockIdx.y*mmq_x;
- const int & col_y_0 = col_dst_0;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
- int * tile_x_ql = nullptr;
- half2 * tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
+ y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
+}
- allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
- __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
+ const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
+ const int bq8_offset = QR2_K * (iqs / QI8_1);
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
+ const uint8_t * scales = bq2_K->scales + scale_offset;
- load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
- threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
+ const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
+ int u[QR2_K];
+ float d8[QR2_K];
#pragma unroll
- for (int ir = 0; ir < qr; ++ir) {
- const int kqs = ir*WARP_SIZE + threadIdx.x;
- const int kbxd = kqs / QI8_1;
+ for (int i = 0; i < QR2_K; ++ i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+ d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+ }
-#pragma unroll
- for (int i = 0; i < mmq_x; i += nwarps) {
- const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
+ return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
+}
- const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
- const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
- tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
- }
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
-#pragma unroll
- for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
- const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
- const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
- const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
- // if the sum is not needed it's faster to transform the scale to f32 ahead of time
- const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
- half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
- if (need_sum) {
- *dsi_dst = *dsi_src;
- } else {
- float * dfi_dst = (float *) dsi_dst;
- *dfi_dst = __low2float(*dsi_src);
- }
- }
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
- __syncthreads();
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
-// #pragma unroll // unrolling this loop causes too much register pressure
- for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
-#pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
-#pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- sum[i/WARP_SIZE][j/nwarps] += vec_dot(
- tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
- threadIdx.x + i, threadIdx.y + j, k);
- }
- }
- }
+ const int kbx = k / QI2_K;
+ const int kqsx = k % QI2_K;
- __syncthreads();
- }
- }
+ const block_q2_K * bx0 = (const block_q2_K *) vx;
#pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- const int col_dst = col_dst_0 + j + threadIdx.y;
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
- if (col_dst >= ncols_dst) {
- return;
+ if (need_check) {
+ i = min(i, i_max);
}
-#pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- const int row_dst = row_dst_0 + threadIdx.x + i;
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
- if (row_dst >= nrows_dst) {
- continue;
- }
-
- dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
- }
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
-}
-#define MMQ_X_Q4_0_RDNA2 64
-#define MMQ_Y_Q4_0_RDNA2 128
-#define NWARPS_Q4_0_RDNA2 8
-#define MMQ_X_Q4_0_RDNA1 64
-#define MMQ_Y_Q4_0_RDNA1 64
-#define NWARPS_Q4_0_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q4_0_AMPERE 4
-#define MMQ_Y_Q4_0_AMPERE 32
-#define NWARPS_Q4_0_AMPERE 4
-#else
-#define MMQ_X_Q4_0_AMPERE 64
-#define MMQ_Y_Q4_0_AMPERE 128
-#define NWARPS_Q4_0_AMPERE 4
-#endif
-#define MMQ_X_Q4_0_PASCAL 64
-#define MMQ_Y_Q4_0_PASCAL 64
-#define NWARPS_Q4_0_PASCAL 8
+ const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
+ const int kbxd = k % blocks_per_tile_x_row;
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q4_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
+ int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_0_RDNA2;
- const int mmq_y = MMQ_Y_Q4_0_RDNA2;
- const int nwarps = NWARPS_Q4_0_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q4_0_RDNA1;
- const int mmq_y = MMQ_Y_Q4_0_RDNA1;
- const int nwarps = NWARPS_Q4_0_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ if (need_check) {
+ i = min(i, i_max);
+ }
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_0_AMPERE;
- const int mmq_y = MMQ_Y_Q4_0_AMPERE;
- const int nwarps = NWARPS_Q4_0_AMPERE;
+ x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
+ }
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_0_PASCAL;
- const int mmq_y = MMQ_Y_Q4_0_PASCAL;
- const int nwarps = NWARPS_Q4_0_PASCAL;
+ if (need_check) {
+ i = min(i, i_max);
+ }
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q4_0_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
-#define MMQ_X_Q4_1_RDNA2 64
-#define MMQ_Y_Q4_1_RDNA2 128
-#define NWARPS_Q4_1_RDNA2 8
-#define MMQ_X_Q4_1_RDNA1 64
-#define MMQ_Y_Q4_1_RDNA1 64
-#define NWARPS_Q4_1_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q4_1_AMPERE 4
-#define MMQ_Y_Q4_1_AMPERE 32
-#define NWARPS_Q4_1_AMPERE 4
-#else
-#define MMQ_X_Q4_1_AMPERE 64
-#define MMQ_Y_Q4_1_AMPERE 128
-#define NWARPS_Q4_1_AMPERE 4
-#endif
-#define MMQ_X_Q4_1_PASCAL 64
-#define MMQ_Y_Q4_1_PASCAL 64
-#define NWARPS_Q4_1_PASCAL 8
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
+ }
+}
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q4_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_1_RDNA2;
- const int mmq_y = MMQ_Y_Q4_1_RDNA2;
- const int nwarps = NWARPS_Q4_1_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q4_1_RDNA1;
- const int mmq_y = MMQ_Y_Q4_1_RDNA1;
- const int nwarps = NWARPS_Q4_1_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ const int kbx = k / QI2_K;
+ const int ky = (k % QI2_K) * QR2_K;
+ const float * y_df = (const float *) y_ds;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_1_AMPERE;
- const int mmq_y = MMQ_Y_Q4_1_AMPERE;
- const int nwarps = NWARPS_Q4_1_AMPERE;
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
+ const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#pragma unroll
+ for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
+ v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
+ }
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_1_PASCAL;
- const int mmq_y = MMQ_Y_Q4_1_PASCAL;
- const int nwarps = NWARPS_Q4_1_PASCAL;
+ const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q4_1_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
+ const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
+ return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
}
-#define MMQ_X_Q5_0_RDNA2 64
-#define MMQ_Y_Q5_0_RDNA2 128
-#define NWARPS_Q5_0_RDNA2 8
-#define MMQ_X_Q5_0_RDNA1 64
-#define MMQ_Y_Q5_0_RDNA1 64
-#define NWARPS_Q5_0_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q5_0_AMPERE 4
-#define MMQ_Y_Q5_0_AMPERE 32
-#define NWARPS_Q5_0_AMPERE 4
-#else
-#define MMQ_X_Q5_0_AMPERE 128
-#define MMQ_Y_Q5_0_AMPERE 64
-#define NWARPS_Q5_0_AMPERE 4
-#endif
-#define MMQ_X_Q5_0_PASCAL 64
-#define MMQ_Y_Q5_0_PASCAL 64
-#define NWARPS_Q5_0_PASCAL 8
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q5_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+ const block_q3_K * bq3_K = (const block_q3_K *) vbq;
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_0_RDNA2;
- const int mmq_y = MMQ_Y_Q5_0_RDNA2;
- const int nwarps = NWARPS_Q5_0_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q5_0_RDNA1;
- const int mmq_y = MMQ_Y_Q5_0_RDNA1;
- const int nwarps = NWARPS_Q5_0_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ const float d = bq3_K->d;
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_0_AMPERE;
- const int mmq_y = MMQ_Y_Q5_0_AMPERE;
- const int nwarps = NWARPS_Q5_0_AMPERE;
+ const int vl = get_int_from_uint8(bq3_K->qs, iqs);
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+ const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_0_PASCAL;
- const int mmq_y = MMQ_Y_Q5_0_PASCAL;
- const int nwarps = NWARPS_Q5_0_PASCAL;
+ int u[QR3_K];
+ float d8[QR3_K];
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q5_0_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
+#pragma unroll
+ for (int i = 0; i < QR3_K; ++i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+ d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
+ }
+
+ return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
}
-#define MMQ_X_Q5_1_RDNA2 64
-#define MMQ_Y_Q5_1_RDNA2 128
-#define NWARPS_Q5_1_RDNA2 8
-#define MMQ_X_Q5_1_RDNA1 64
-#define MMQ_Y_Q5_1_RDNA1 64
-#define NWARPS_Q5_1_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q5_1_AMPERE 4
-#define MMQ_Y_Q5_1_AMPERE 32
-#define NWARPS_Q5_1_AMPERE 4
-#else
-#define MMQ_X_Q5_1_AMPERE 128
-#define MMQ_Y_Q5_1_AMPERE 64
-#define NWARPS_Q5_1_AMPERE 4
-#endif
-#define MMQ_X_Q5_1_PASCAL 64
-#define MMQ_Y_Q5_1_PASCAL 64
-#define NWARPS_Q5_1_PASCAL 8
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-mul_mat_q5_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
+ __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_1_RDNA2;
- const int mmq_y = MMQ_Y_Q5_1_RDNA2;
- const int nwarps = NWARPS_Q5_1_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q5_1_RDNA1;
- const int mmq_y = MMQ_Y_Q5_1_RDNA1;
- const int nwarps = NWARPS_Q5_1_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_qh = tile_x_qh;
+ *x_sc = tile_x_sc;
+}
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_1_AMPERE;
- const int mmq_y = MMQ_Y_Q5_1_AMPERE;
- const int nwarps = NWARPS_Q5_1_AMPERE;
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ const int kbx = k / QI3_K;
+ const int kqsx = k % QI3_K;
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_1_PASCAL;
- const int mmq_y = MMQ_Y_Q5_1_PASCAL;
- const int nwarps = NWARPS_Q5_1_PASCAL;
+ const block_q3_K * bx0 = (const block_q3_K *) vx;
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q5_1_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
-#define MMQ_X_Q8_0_RDNA2 64
-#define MMQ_Y_Q8_0_RDNA2 128
-#define NWARPS_Q8_0_RDNA2 8
-#define MMQ_X_Q8_0_RDNA1 64
-#define MMQ_Y_Q8_0_RDNA1 64
-#define NWARPS_Q8_0_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q8_0_AMPERE 4
-#define MMQ_Y_Q8_0_AMPERE 32
-#define NWARPS_Q8_0_AMPERE 4
-#else
-#define MMQ_X_Q8_0_AMPERE 128
-#define MMQ_Y_Q8_0_AMPERE 64
-#define NWARPS_Q8_0_AMPERE 4
-#endif
-#define MMQ_X_Q8_0_PASCAL 64
-#define MMQ_Y_Q8_0_PASCAL 64
-#define NWARPS_Q8_0_PASCAL 8
+ if (need_check) {
+ i = min(i, i_max);
+ }
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- mul_mat_q8_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q8_0_RDNA2;
- const int mmq_y = MMQ_Y_Q8_0_RDNA2;
- const int nwarps = NWARPS_Q8_0_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q8_0_RDNA1;
- const int mmq_y = MMQ_Y_Q8_0_RDNA1;
- const int nwarps = NWARPS_Q8_0_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ }
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q8_0_AMPERE;
- const int mmq_y = MMQ_Y_Q8_0_AMPERE;
- const int nwarps = NWARPS_Q8_0_AMPERE;
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
+ int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ if (need_check) {
+ i = min(i, i_max);
+ }
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q8_0_PASCAL;
- const int mmq_y = MMQ_Y_Q8_0_PASCAL;
- const int nwarps = NWARPS_Q8_0_PASCAL;
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q8_0_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
+ x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
+ }
-#define MMQ_X_Q2_K_RDNA2 64
-#define MMQ_Y_Q2_K_RDNA2 128
-#define NWARPS_Q2_K_RDNA2 8
-#define MMQ_X_Q2_K_RDNA1 128
-#define MMQ_Y_Q2_K_RDNA1 32
-#define NWARPS_Q2_K_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q2_K_AMPERE 4
-#define MMQ_Y_Q2_K_AMPERE 32
-#define NWARPS_Q2_K_AMPERE 4
-#else
-#define MMQ_X_Q2_K_AMPERE 64
-#define MMQ_Y_Q2_K_AMPERE 128
-#define NWARPS_Q2_K_AMPERE 4
-#endif
-#define MMQ_X_Q2_K_PASCAL 64
-#define MMQ_Y_Q2_K_PASCAL 64
-#define NWARPS_Q2_K_PASCAL 8
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
+ int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-mul_mat_q2_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+ if (need_check) {
+ i = min(i, i_max);
+ }
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q2_K_RDNA2;
- const int mmq_y = MMQ_Y_Q2_K_RDNA2;
- const int nwarps = NWARPS_Q2_K_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q2_K_RDNA1;
- const int mmq_y = MMQ_Y_Q2_K_RDNA1;
- const int nwarps = NWARPS_Q2_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+ x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
+ }
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q2_K_AMPERE;
- const int mmq_y = MMQ_Y_Q2_K_AMPERE;
- const int nwarps = NWARPS_Q2_K_AMPERE;
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ if (need_check) {
+ i = min(i, i_max);
+ }
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q2_K_PASCAL;
- const int mmq_y = MMQ_Y_Q2_K_PASCAL;
- const int nwarps = NWARPS_Q2_K_PASCAL;
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q2_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
+ const int ksc = k % (QI3_K/4);
-#define MMQ_X_Q3_K_RDNA2 128
-#define MMQ_Y_Q3_K_RDNA2 64
-#define NWARPS_Q3_K_RDNA2 8
-#define MMQ_X_Q3_K_RDNA1 32
-#define MMQ_Y_Q3_K_RDNA1 128
-#define NWARPS_Q3_K_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q3_K_AMPERE 4
-#define MMQ_Y_Q3_K_AMPERE 32
-#define NWARPS_Q3_K_AMPERE 4
-#else
-#define MMQ_X_Q3_K_AMPERE 128
-#define MMQ_Y_Q3_K_AMPERE 128
-#define NWARPS_Q3_K_AMPERE 4
-#endif
-#define MMQ_X_Q3_K_PASCAL 64
-#define MMQ_Y_Q3_K_PASCAL 64
-#define NWARPS_Q3_K_PASCAL 8
+ const int ksc_low = ksc % (QI3_K/8);
+ const int shift_low = 4 * (ksc / (QI3_K/8));
+ const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q3_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+ const int ksc_high = QI3_K/8;
+ const int shift_high = 2 * ksc;
+ const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q3_K_RDNA2;
- const int mmq_y = MMQ_Y_Q3_K_RDNA2;
- const int nwarps = NWARPS_Q3_K_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q3_K_RDNA1;
- const int mmq_y = MMQ_Y_Q3_K_RDNA1;
- const int nwarps = NWARPS_Q3_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
+ }
+}
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q3_K_AMPERE;
- const int mmq_y = MMQ_Y_Q3_K_AMPERE;
- const int nwarps = NWARPS_Q3_K_AMPERE;
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ const int kbx = k / QI3_K;
+ const int ky = (k % QI3_K) * QR3_K;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q3_K_PASCAL;
- const int mmq_y = MMQ_Y_Q3_K_PASCAL;
- const int nwarps = NWARPS_Q3_K_PASCAL;
+ const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q3_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
+ int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
+ const int shift = 2 * ((ky % 32) / 8);
+ const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
+
+ const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
+ const int vlh = (vh << 2) & 0x04040404;
+
+ v[l] = __vsubss4(vll, vlh);
+ }
+
+ const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
+ return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
}
-#define MMQ_X_Q4_K_RDNA2 64
-#define MMQ_Y_Q4_K_RDNA2 128
-#define NWARPS_Q4_K_RDNA2 8
-#define MMQ_X_Q4_K_RDNA1 32
-#define MMQ_Y_Q4_K_RDNA1 64
-#define NWARPS_Q4_K_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q4_K_AMPERE 4
-#define MMQ_Y_Q4_K_AMPERE 32
-#define NWARPS_Q4_K_AMPERE 4
-#else
-#define MMQ_X_Q4_K_AMPERE 64
-#define MMQ_Y_Q4_K_AMPERE 128
-#define NWARPS_Q4_K_AMPERE 4
-#endif
-#define MMQ_X_Q4_K_PASCAL 64
-#define MMQ_Y_Q4_K_PASCAL 64
-#define NWARPS_Q4_K_PASCAL 8
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q4_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+#ifndef GGML_QKK_64
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q4_K_RDNA2;
- const int mmq_y = MMQ_Y_Q4_K_RDNA2;
- const int nwarps = NWARPS_Q4_K_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q4_K_RDNA1;
- const int mmq_y = MMQ_Y_Q4_K_RDNA1;
- const int nwarps = NWARPS_Q4_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
+ int v[2];
+ int u[2*QR4_K];
+ float d8[QR4_K];
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
+ const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q4_K_AMPERE;
- const int mmq_y = MMQ_Y_Q4_K_AMPERE;
- const int nwarps = NWARPS_Q4_K_AMPERE;
+ // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
+ // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
+ // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
+ // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+ v[0] = q4[0];
+ v[1] = q4[4];
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q4_K_PASCAL;
- const int mmq_y = MMQ_Y_Q4_K_PASCAL;
- const int nwarps = NWARPS_Q4_K_PASCAL;
+ const uint16_t * scales = (const uint16_t *)bq4_K->scales;
+ uint16_t aux[2];
+ const int j = bq8_offset/2;
+ if (j < 2) {
+ aux[0] = scales[j+0] & 0x3f3f;
+ aux[1] = scales[j+2] & 0x3f3f;
+ } else {
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+ }
+ const uint8_t * sc = (const uint8_t *)aux;
+ const uint8_t * m = sc + 2;
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q4_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
+ for (int i = 0; i < QR4_K; ++i) {
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+ d8[i] = __low2float(bq8i->ds);
-#define MMQ_X_Q5_K_RDNA2 64
-#define MMQ_Y_Q5_K_RDNA2 128
-#define NWARPS_Q5_K_RDNA2 8
-#define MMQ_X_Q5_K_RDNA1 32
-#define MMQ_Y_Q5_K_RDNA1 64
-#define NWARPS_Q5_K_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q5_K_AMPERE 4
-#define MMQ_Y_Q5_K_AMPERE 32
-#define NWARPS_Q5_K_AMPERE 4
-#else
-#define MMQ_X_Q5_K_AMPERE 64
-#define MMQ_Y_Q5_K_AMPERE 128
-#define NWARPS_Q5_K_AMPERE 4
-#endif
-#define MMQ_X_Q5_K_PASCAL 64
-#define MMQ_Y_Q5_K_PASCAL 64
-#define NWARPS_Q5_K_PASCAL 8
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+ u[2*i+0] = q8[0];
+ u[2*i+1] = q8[4];
+ }
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-mul_mat_q5_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+ return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q5_K_RDNA2;
- const int mmq_y = MMQ_Y_Q5_K_RDNA2;
- const int nwarps = NWARPS_Q5_K_RDNA2;
#else
- const int mmq_x = MMQ_X_Q5_K_RDNA1;
- const int mmq_y = MMQ_Y_Q5_K_RDNA1;
- const int nwarps = NWARPS_Q5_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q5_K_AMPERE;
- const int mmq_y = MMQ_Y_Q5_K_AMPERE;
- const int nwarps = NWARPS_Q5_K_AMPERE;
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ uint16_t aux16[2];
+ const uint8_t * s = (const uint8_t *)aux16;
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q5_K_PASCAL;
- const int mmq_y = MMQ_Y_Q5_K_PASCAL;
- const int nwarps = NWARPS_Q5_K_PASCAL;
+ const uint16_t * a = (const uint16_t *)bq4_K->scales;
+ aux16[0] = a[0] & 0x0f0f;
+ aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+ const float dall = bq4_K->dm[0];
+ const float dmin = bq4_K->dm[1];
+
+ const float d8_1 = __low2float(bq8_1[0].ds);
+ const float d8_2 = __low2float(bq8_1[1].ds);
+
+ const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+ const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+ const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+ const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+ const int * q4 = (const int *)bq4_K->qs + (iqs/2);
+ const int v1 = q4[0];
+ const int v2 = q4[4];
+
+ const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
+ const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
+ const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
+ const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
+
+ sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
+ sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
+
+ return dall * sumf_d - dmin * sumf_m;
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
- (void) vec_dot_q5_K_q8_1_mul_mat;
NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
-}
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-#define MMQ_X_Q6_K_RDNA2 64
-#define MMQ_Y_Q6_K_RDNA2 128
-#define NWARPS_Q6_K_RDNA2 8
-#define MMQ_X_Q6_K_RDNA1 32
-#define MMQ_Y_Q6_K_RDNA1 64
-#define NWARPS_Q6_K_RDNA1 8
-#if defined(CUDA_USE_TENSOR_CORES)
-#define MMQ_X_Q6_K_AMPERE 4
-#define MMQ_Y_Q6_K_AMPERE 32
-#define NWARPS_Q6_K_AMPERE 4
-#else
-#define MMQ_X_Q6_K_AMPERE 64
-#define MMQ_Y_Q6_K_AMPERE 64
-#define NWARPS_Q6_K_AMPERE 4
#endif
-#define MMQ_X_Q6_K_PASCAL 64
-#define MMQ_Y_Q6_K_PASCAL 64
-#define NWARPS_Q6_K_PASCAL 8
+}
-template <bool need_check> static __global__ void
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
-#endif // defined(RDNA3) || defined(RDNA2)
-#elif __CUDA_ARCH__ < CC_VOLTA
- __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_VOLTA
- mul_mat_q6_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-#if defined(RDNA3) || defined(RDNA2)
- const int mmq_x = MMQ_X_Q6_K_RDNA2;
- const int mmq_y = MMQ_Y_Q6_K_RDNA2;
- const int nwarps = NWARPS_Q6_K_RDNA2;
-#else
- const int mmq_x = MMQ_X_Q6_K_RDNA1;
- const int mmq_y = MMQ_Y_Q6_K_RDNA1;
- const int nwarps = NWARPS_Q6_K_RDNA1;
-#endif // defined(RDNA3) || defined(RDNA2)
-
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= CC_VOLTA
- const int mmq_x = MMQ_X_Q6_K_AMPERE;
- const int mmq_y = MMQ_Y_Q6_K_AMPERE;
- const int nwarps = NWARPS_Q6_K_AMPERE;
-
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
- const int mmq_x = MMQ_X_Q6_K_PASCAL;
- const int mmq_y = MMQ_Y_Q6_K_PASCAL;
- const int nwarps = NWARPS_Q6_K_PASCAL;
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
- (void) vec_dot_q6_K_q8_1_mul_mat;
- NO_DEVICE_CODE;
-#endif // __CUDA_ARCH__ >= CC_VOLTA
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
}
-template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-// tell the compiler to use as many registers as it wants, see nwarps definition below
-__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void mul_mat_vec_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
- constexpr int nwarps = 1;
- constexpr int rows_per_cuda_block = 1;
-#else
- constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
- constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- const int row0 = rows_per_cuda_block*blockIdx.x;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
+ const int kbx = k / QI4_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI4_K; // == k if QK_K == 256
-// partial sum for each thread
- float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
+ const block_q4_K * bx0 = (const block_q4_K *) vx;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
- for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
- const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
+ if (need_check) {
+ i = min(i, i_max);
+ }
- // x block quant index when casting the quants to int
- const int kqs = vdr * (tid % (qi/vdr));
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
-#pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp[j][i] += vec_dot_q_cuda(
- &x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
- }
- }
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
- __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
- if (threadIdx.y > 0) {
-#pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
- }
- }
- }
- __syncthreads();
- if (threadIdx.y > 0) {
- return;
- }
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- // sum up partial sums and write back result
#pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
-#pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
-#pragma unroll
- for (int l = 0; l < nwarps-1; ++l) {
- tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
- }
- tmp[j][i] = warp_reduce_sum(tmp[j][i]);
- }
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
+ int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
- if (threadIdx.x < rows_per_cuda_block) {
- dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
+ if (need_check) {
+ i = min(i, i_max);
}
- }
-}
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
-static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = blockIdx.x*blockDim.y + threadIdx.y;
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
- if (row >= nrows) {
- return;
+#if QK_K == 256
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
+#else
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
+#endif
}
- const int tid = threadIdx.x;
-
- const int iter_stride = 2*GGML_CUDA_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
-
-// partial sum for each thread
-#ifdef GGML_CUDA_F16
- half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
-#else
- float tmp = 0.0f;
-#endif // GGML_CUDA_F16
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
+ if (need_check) {
+ i = min(i, i_max);
+ }
-// processing >2 values per i iter is faster for fast GPUs
-#pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
+ const int * scales = (const int *) bxi->scales;
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
-#ifdef GGML_CUDA_F16
- tmp += __hmul2(v, {
- y[iybs + iqs + j/qr + 0],
- y[iybs + iqs + j/qr + y_offset]
- });
-#else
- tmp += v.x * y[iybs + iqs + j/qr + 0];
- tmp += v.y * y[iybs + iqs + j/qr + y_offset];
-#endif // GGML_CUDA_F16
- }
- }
+ const int ksc = k % (WARP_SIZE/8);
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- if (tid == 0) {
-#ifdef GGML_CUDA_F16
- dst[row] = tmp.x + tmp.y;
-#else
- dst[row] = tmp;
-#endif // GGML_CUDA_F16
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
}
}
-static __global__ void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
-
- const half * x = (const half *) vx;
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / (nchannels_y / nchannels_x);
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
+ const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
+ return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
+ x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
+}
- float tmp = 0.0f;
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
+#ifndef GGML_QKK_64
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- if (col_x >= ncols_x) {
- break;
- }
+ int vl[2];
+ int vh[2];
+ int u[2*QR5_K];
+ float d8[QR5_K];
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
+ const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
+ const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+ const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
- const int row_y = col_x;
+ vl[0] = ql[0];
+ vl[1] = ql[4];
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
+ vh[0] = qh[0] >> bq8_offset;
+ vh[1] = qh[4] >> bq8_offset;
- tmp += xi * y[iy];
+ const uint16_t * scales = (const uint16_t *)bq5_K->scales;
+ uint16_t aux[2];
+ const int j = bq8_offset/2;
+ if (j < 2) {
+ aux[0] = scales[j+0] & 0x3f3f;
+ aux[1] = scales[j+2] & 0x3f3f;
+ } else {
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
}
+ const uint8_t * sc = (const uint8_t *)aux;
+ const uint8_t * m = sc + 2;
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
-
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
+#pragma unroll
+ for (int i = 0; i < QR5_K; ++i) {
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+ d8[i] = __low2float(bq8i->ds);
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+ u[2*i+0] = q8[0];
+ u[2*i+1] = q8[4];
}
-}
-static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
+ return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
- const half * x = (const half *) vx;
+#else
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / channel_x_divisor;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
+ const int8_t * s = bq5_K->scales;
- const int idst = channel*nrows_dst + row_dst;
+ const float d = bq5_K->d;
- float tmp = 0.0f;
+ const float d8_1 = __low2half(bq8_1[0].ds);
+ const float d8_2 = __low2half(bq8_1[1].ds);
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
+ const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+ const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+ const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+ const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- if (col_x >= ncols_x) {
- break;
- }
+ const int * ql = (const int *)bq5_K->qs + (iqs/2);
+ const int vl1 = ql[0];
+ const int vl2 = ql[4];
- const int row_y = col_x;
+ const int step = 4 * (iqs/2); // 0, 4, 8, 12
+ const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
+ const int in = step%8; // 0, 4, 0, 4
+ const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
+ const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
+ const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
+ const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
+ const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
- const float xi = __half2float(x[ix]);
+ const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+ + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
- tmp += xi * y[iy];
- }
+ return d * sumf_d;
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
+#else
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
+#endif
}
-static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
-
- *dsti = *xi;
-}
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
-static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- half * dsti = (half *) cdsti;
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- *dsti = __float2half(*xi);
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
}
-static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
- const half * xi = (const half *) cxi;
- half * dsti = (half *) cdsti;
-
- *dsti = *xi;
-}
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
-static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
- const half * xi = (const half *) cxi;
- float * dsti = (float *) cdsti;
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
- *dsti = *xi;
-}
+ const int kbx = k / QI5_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI5_K; // == k if QK_K == 256
-template <cpy_kernel_t cpy_1>
-static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13) {
- const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
+ const block_q5_K * bx0 = (const block_q5_K *) vx;
- if (i >= ne) {
- return;
- }
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
- // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int64_t i03 = i/(ne00 * ne01 * ne02);
- const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+ if (need_check) {
+ i = min(i, i_max);
+ }
- const int64_t i13 = i/(ne10 * ne11 * ne12);
- const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR5_K*kqsx;
- cpy_1(cx + x_offset, cdst + dst_offset);
-}
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q8_0 * dsti = (block_q8_0 *) cdsti;
+ const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
+ const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
+ const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
- float amax = 0.0f; // absolute max
+ const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
+ const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
- for (int j = 0; j < QK8_0; j++) {
- const float v = xi[j];
- amax = fmaxf(amax, fabsf(v));
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
}
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- dsti->d = d;
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
+ int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = xi[j]*id;
+ if (need_check) {
+ i = min(i, i_max);
+ }
- dsti->qs[j] = roundf(x0);
- }
-}
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
-static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_0 * dsti = (block_q4_0 *) cdsti;
+#if QK_K == 256
+ x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
+#endif
+ }
- float amax = 0.0f;
- float vmax = 0.0f;
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- for (int j = 0; j < QK4_0; ++j) {
- const float v = xi[j];
- if (amax < fabsf(v)) {
- amax = fabsf(v);
- vmax = v;
+ if (need_check) {
+ i = min(i, i_max);
}
- }
- const float d = vmax / -8;
- const float id = d ? 1.0f/d : 0.0f;
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
- dsti->d = d;
+ const int * scales = (const int *) bxi->scales;
- for (int j = 0; j < QK4_0/2; ++j) {
- const float x0 = xi[0 + j]*id;
- const float x1 = xi[QK4_0/2 + j]*id;
+ const int ksc = k % (WARP_SIZE/8);
- const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
}
}
-static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_1 * dsti = (block_q4_1 *) cdsti;
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
- float vmin = FLT_MAX;
- float vmax = -FLT_MAX;
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
- for (int j = 0; j < QK4_1; ++j) {
- const float v = xi[j];
+ const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
+ const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
+ return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
+ x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
+}
- if (v < vmin) vmin = v;
- if (v > vmax) vmax = v;
- }
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
- const float d = (vmax - vmin) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
+ const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- dsti->dm.x = d;
- dsti->dm.y = vmin;
+ const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
+ const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
+ const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- for (int j = 0; j < QK4_1/2; ++j) {
- const float x0 = (xi[0 + j] - vmin)*id;
- const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
-
- const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
+ const int vl = get_int_from_uint8(bq6_K->ql, iqs);
+ const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
-}
+ const int8_t * scales = bq6_K->scales + scale_offset;
-template <cpy_kernel_t cpy_blck, int qk>
-static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13) {
- const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
+ int u[QR6_K];
+ float d8[QR6_K];
- if (i >= ne) {
- return;
+#pragma unroll
+ for (int i = 0; i < QR6_K; ++i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
+ d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
}
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
-
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
-
- cpy_blck(cx + x_offset, cdst + dst_offset);
-}
-
-static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / max(0.001f, high - low);
- return 1.0f - min(1.0f, max(0.0f, y));
+ return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
}
-struct rope_corr_dims {
- float v[4];
-};
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+ GGML_UNUSED(x_qh);
-// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
-// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
-static __device__ void rope_yarn(
- float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
-) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
- }
- *cos_theta = cosf(theta) * mscale;
- *sin_theta = sinf(theta) * mscale;
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
}
-// rope == RoPE == rotary positional embedding
-template<typename T, bool has_pos>
-static __global__ void rope(
- const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims
-) {
- const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
-
- if (col >= ncols) {
- return;
- }
-
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+ GGML_UNUSED(x_qh);
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p*powf(freq_base, -float(col)/ncols);
+ GGML_CUDA_ASSUME(i_offset >= 0);
+ GGML_CUDA_ASSUME(i_offset < nwarps);
+ GGML_CUDA_ASSUME(k >= 0);
+ GGML_CUDA_ASSUME(k < WARP_SIZE);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
+ const int kbx = k / QI6_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI6_K; // == k if QK_K == 256
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
+ const block_q6_K * bx0 = (const block_q6_K *) vx;
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
-}
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
-template<typename T, bool has_pos>
-static __global__ void rope_neox(
- const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
-) {
- const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
+ if (need_check) {
+ i = min(i, i_max);
+ }
- if (col >= ncols) {
- return;
- }
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR6_K*kqsx;
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
- const int ib = col / n_dims;
- const int ic = col % n_dims;
+ const int ql = get_int_from_uint8(bxi->ql, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- if (ib > 0) {
- const int i = row*ncols + ib*n_dims + ic;
+ const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
+ const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
+ const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
+ const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
+ const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
- return;
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
}
- const int i = row*ncols + ib*n_dims + ic/2;
- const int i2 = row/p_delta_rows;
-
- float cur_rot = inv_ndims * ic - ib;
-
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
-
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
+ const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+ float * x_dmf = (float *) x_dm;
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
+ int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
-}
+ if (need_check) {
+ i = min(i, i_max);
+ }
-static __global__ void rope_glm_f32(
- const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- int n_ctx
-) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
- const int half_n_dims = ncols/4;
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
- if (col >= half_n_dims) {
- return;
+ x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
}
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
-
- const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
- // FIXME: this is likely wrong
- const int p = pos != nullptr ? pos[i2] : 0;
-
- const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- const float x0 = x[i + 0];
- const float x1 = x[i + half_n_dims];
-
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
-
- const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
- const float sin_block_theta = sinf(block_theta);
- const float cos_block_theta = cosf(block_theta);
-
- const float x2 = x[i + half_n_dims * 2];
- const float x3 = x[i + half_n_dims * 3];
-
- dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
- dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
-}
-
-static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
- const int n_heads_log2_floor, const float m0, const float m1) {
- const int col = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (col >= ncols) {
- return;
- }
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- const int row = blockDim.y*blockIdx.y + threadIdx.y;
- const int i = row*ncols + col;
+ if (need_check) {
+ i = min(i, i_max);
+ }
- const int k = row/k_rows;
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
+ x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
}
-
- dst[i] = col * m_k + x[i];
}
-static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
- const int row = blockIdx.x;
- const int col = threadIdx.x;
-
- float sum = 0.0f;
- for (int i = col; i < ncols; i += blockDim.x) {
- sum += x[row * ncols + i];
- }
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+ GGML_UNUSED(x_qh);
- sum = warp_reduce_sum(sum);
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
- if (col == 0) {
- dst[row] = sum;
- }
-}
+ const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
-template<typename T>
-static inline __device__ void swap(T & a, T & b) {
- T tmp = a;
- a = b;
- b = tmp;
+ const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
+ const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
+ return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
}
-template<ggml_sort_order order>
-static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
- // bitonic sort
- int col = threadIdx.x;
- int row = blockIdx.y;
+static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+ const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
+
+#if QR2_XXS == 8
+ const int ib32 = iqs;
+ const uint16_t * q2 = bq2->qs + 4*ib32;
+ const uint8_t * aux8 = (const uint8_t *)q2;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ uint32_t aux32 = q2[2] | (q2[3] << 16);
+ int sumi = 0;
+ for (int l = 0; l < 4; ++l) {
+ const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
+ const uint8_t signs = ksigns_iq2xs[aux32 & 127];
+ for (int j = 0; j < 8; ++j) {
+ sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
+ }
+ q8 += 8;
+ aux32 >>= 7;
+ }
+ const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
+ return d * sumi;
+#else
+ // iqs is 0...15
+ const int ib32 = iqs/2;
+ const int il = iqs%2;
+ const uint16_t * q2 = bq2->qs + 4*ib32;
+ const uint8_t * aux8 = (const uint8_t *)q2;
+ const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
+ const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
+ const uint32_t aux32 = q2[2] | (q2[3] << 16);
+ const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
+ const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
+ const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
+ const int8_t * q8 = bq8_1[ib32].qs + 16*il;
+ int sumi1 = 0, sumi2 = 0;
+ for (int j = 0; j < 8; ++j) {
+ sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
+ sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
+ }
+ return d * (sumi1 + sumi2);
+#endif
+#else
+ assert(false);
+ return 0.f;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
+
+ const int ib32 = iqs;
+ const uint16_t * q2 = bq2->qs + 4*ib32;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ const uint8_t ls1 = bq2->scales[ib32] & 0xf;
+ const uint8_t ls2 = bq2->scales[ib32] >> 4;
+ int sumi1 = 0;
+ for (int l = 0; l < 2; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
+ const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
+ const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
+ const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
+ sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
+ sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
+ q8 += 8;
+ }
+ int sumi2 = 0;
+ for (int l = 2; l < 4; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
+ const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
+ const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
+ const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
+ sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
+ sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
+ q8 += 8;
+ }
+ const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
+ return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
+#else
+ GGML_UNUSED(ksigns64);
+ assert(false);
+ return 0.f;
+#endif
+#else
+ GGML_UNUSED(ksigns64);
+ assert(false);
+ return 0.f;
+#endif
+}
+
+// TODO
+static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
+
+ const int ib32 = iqs;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
+ const uint8_t ls1 = bq2->scales[ib32] & 0xf;
+ const uint8_t ls2 = bq2->scales[ib32] >> 4;
+ int sumi1 = 0;
+ for (int l = 0; l < 2; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
+ const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+ const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
+ const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
+ const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
+ sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
+ sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
+ q8 += 8;
+ }
+ int sumi2 = 0;
+ for (int l = 2; l < 4; ++l) {
+ const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
+ const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+ const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
+ const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
+ const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
+ sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
+ sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
+ q8 += 8;
+ }
+ const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
+ return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
+#else
+ GGML_UNUSED(ksigns64);
+ assert(false);
+ return 0.f;
+#endif
+#else
+ GGML_UNUSED(ksigns64);
+ assert(false);
+ return 0.f;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
+
+ const int ib32 = iqs;
+ const uint8_t * q3 = bq2->qs + 8*ib32;
+ const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ uint32_t aux32 = gas[0] | (gas[1] << 16);
+ int sumi = 0;
+ for (int l = 0; l < 4; ++l) {
+ const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
+ const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
+ const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
+ const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
+ const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
+ sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
+ sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
+ q8 += 8;
+ aux32 >>= 7;
+ }
+ const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
+ return d * sumi;
+#else
+ assert(false);
+ return 0.f;
+#endif
+#else
+ assert(false);
+ return 0.f;
+#endif
+}
+
+// TODO: don't use lookup table for signs
+static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+#if QK_K == 256
+ const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
+
+ const int ib32 = iqs;
+ const uint8_t * qs = bq2->qs + 8*ib32;
+ const int8_t * q8 = bq8_1[ib32].qs;
+ int sumi = 0;
+ for (int l = 0; l < 4; ++l) {
+ const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
+ const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
+ uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
+ uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
+ const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
+ const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
+ sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
+ sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
+ q8 += 8;
+ }
+ const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
+ return d * sumi;
+#else
+ assert(false);
+ return 0.f;
+#endif
+#else
+ assert(false);
+ return 0.f;
+#endif
+}
+
+static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+#if QK_K == 256
+ const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
+
+ const int ib32 = iqs;
+ int sumi = 0;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const int * q8 = (const int *)bq8_1[ib32].qs;
+ for (int l = 0; l < 4; ++l) {
+ const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+ int grid0 = grid[0] & 0x0f0f0f0f;
+ int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
+ sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi));
+ }
+#else
+ const int8_t * q8 = bq8_1[ib32].qs;
+ for (int l = 0; l < 4; ++l) {
+ const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
+ for (int j = 0; j < 4; ++j) {
+ sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
+ }
+ q8 += 8;
+ }
+#endif
+ const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
+ const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
+ const float d = d1q * __low2float (bq8_1[ib32].ds);
+ const float m = d1q * __high2float(bq8_1[ib32].ds);
+ return d * sumi + m * delta;
+#else
+ assert(false);
+ return 0.f;
+#endif
+}
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
+ int & val1, int & val2) {
+
+ uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
+ aux32 = q4 & 0x0f0f0f0f;
+ uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
+ uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
+ val1 = v1 | (v2 << 16);
+ aux32 = (q4 >> 4) & 0x0f0f0f0f;
+ v1 = values[q8[0]] | (values[q8[1]] << 8);
+ v2 = values[q8[2]] | (values[q8[3]] << 8);
+ val2 = v1 | (v2 << 16);
+}
+#endif
+
+static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
+ const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
+
+ const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+
+ int v1, v2;
+ int sumi1 = 0, sumi2 = 0;
+ for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
+ const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
+ get_int_from_table_16(aux, values, v1, v2);
+ sumi1 = __dp4a(v1, q8[l+0], sumi1);
+ sumi2 = __dp4a(v2, q8[l+4], sumi2);
+ }
+
+#else
+ const uint8_t * q4 = bq->qs + 4*iqs;
+ const int8_t * q8 = bq8_1->qs + 4*iqs;
+
+ int sumi1 = 0, sumi2 = 0;
+ for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
+ sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
+ sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
+ }
+#endif
+ const float d = (float)bq->d * __low2float(bq8_1->ds);
+ return d * (sumi1 + sumi2);
+}
+
+static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#if QK_K == 256
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+
+ const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
+ const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
+
+ //// iqs is 0...7
+ //const int ib64 = iqs/2;
+ //const int il = iqs%2;
+ //const int32_t * q8_1 = (const int *)bq8_1[2*ib64+0].qs + 2*il;
+ //const int32_t * q8_2 = (const int *)bq8_1[2*ib64+1].qs + 2*il;
+ //const uint32_t * q4_1 = (const uint32_t *)bq4->qs + 8*ib64 + 2*il;
+ //const uint32_t * q4_2 = q4_1 + 4;
+ //const int8_t ls1 = (bq4->scales_l[ib64] & 0xf) | (((bq4->scales_h >> (4*ib64+0)) & 3) << 4);
+ //const int8_t ls2 = (bq4->scales_l[ib64] >> 4) | (((bq4->scales_h >> (4*ib64+2)) & 3) << 4);
+ //const float d1 = (float)bq4->d * (ls1 - 32) * __low2float(bq8_1[2*ib64+0].ds);
+ //const float d2 = (float)bq4->d * (ls2 - 32) * __low2float(bq8_1[2*ib64+1].ds);
+ //int v1, v2;
+ //int sumi1 = 0, sumi2 = 0;
+ //for (int j = 0; j < 2; ++j) {
+ // get_int_from_table_16(q4_1[j], values, v1, v2);
+ // sumi1 = __dp4a(v2, q8_1[j+4], __dp4a(v1, q8_1[j+0], sumi1));
+ // get_int_from_table_16(q4_2[j], values, v1, v2);
+ // sumi2 = __dp4a(v2, q8_2[j+4], __dp4a(v1, q8_2[j+0], sumi2));
+ //}
+ //return d1 * sumi1 + d2 * sumi2;
- if (col >= ncols) return;
+ // iqs is 0...7
+ const int ib32 = iqs;
+ const int32_t * q8 = (const int *)bq8_1[ib32].qs;
+ const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
+ const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
+ const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
+ int v1, v2;
+ int sumi1 = 0, sumi2 = 0;
+ for (int j = 0; j < 4; ++j) {
+ get_int_from_table_16(q4[j], values, v1, v2);
+ sumi1 = __dp4a(v1, q8[j+0], sumi1);
+ sumi2 = __dp4a(v2, q8[j+4], sumi2);
+ }
+ return d * (sumi1 + sumi2);
- const float * x_row = x + row * ncols;
- int * dst_row = dst + row * ncols;
+ //// iqs is 0...15
+ //const int ib32 = iqs/2;
+ //const int il = iqs%2;
+ //const int32_t * q8 = (const int *)bq8_1[ib32].qs + 2*il;
+ //const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32 + 2*il;
+ //const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
+ //const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
+ //int v1, v2;
+ //int sumi1 = 0, sumi2 = 0;
+ //for (int j = 0; j < 2; ++j) {
+ // get_int_from_table_16(q4[j], values, v1, v2);
+ // sumi1 = __dp4a(v1, q8[j+0], sumi1);
+ // sumi2 = __dp4a(v2, q8[j+4], sumi2);
+ //}
+ //return d * (sumi1 + sumi2);
+#else
+ assert(false);
+ return 0.f;
+#endif
+#else
+ return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
+#endif
+}
- // initialize indices
- if (col < ncols) {
- dst_row[col] = col;
- }
- __syncthreads();
+template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
+ allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
+static __device__ __forceinline__ void mul_mat_q(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- for (int k = 2; k <= ncols; k *= 2) {
- for (int j = k / 2; j > 0; j /= 2) {
- int ixj = col ^ j;
- if (ixj > col) {
- if ((col & k) == 0) {
- if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
- swap(dst_row[col], dst_row[ixj]);
- }
+ const block_q_t * x = (const block_q_t *) vx;
+ const block_q8_1 * y = (const block_q8_1 *) vy;
+
+ const int blocks_per_row_x = ncols_x / qk;
+ const int blocks_per_col_y = nrows_y / QK8_1;
+ const int blocks_per_warp = WARP_SIZE / qi;
+
+ const int & ncols_dst = ncols_y;
+
+ const int row_dst_0 = blockIdx.x*mmq_y;
+ const int & row_x_0 = row_dst_0;
+
+ const int col_dst_0 = blockIdx.y*mmq_x;
+ const int & col_y_0 = col_dst_0;
+
+ int * tile_x_ql = nullptr;
+ half2 * tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+ allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
+
+ __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
+ __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
+
+ float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
+
+ for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
+
+ load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
+ threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
+
+#pragma unroll
+ for (int ir = 0; ir < qr; ++ir) {
+ const int kqs = ir*WARP_SIZE + threadIdx.x;
+ const int kbxd = kqs / QI8_1;
+
+#pragma unroll
+ for (int i = 0; i < mmq_x; i += nwarps) {
+ const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
+
+ const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
+
+ const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
+ tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
+ }
+
+#pragma unroll
+ for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
+ const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
+ const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
+ const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
+
+ // if the sum is not needed it's faster to transform the scale to f32 ahead of time
+ const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
+ half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
+ if (need_sum) {
+ *dsi_dst = *dsi_src;
} else {
- if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
- swap(dst_row[col], dst_row[ixj]);
+ float * dfi_dst = (float *) dsi_dst;
+ *dfi_dst = __low2float(*dsi_src);
+ }
+ }
+
+ __syncthreads();
+
+// #pragma unroll // unrolling this loop causes too much register pressure
+ for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
+#pragma unroll
+ for (int j = 0; j < mmq_x; j += nwarps) {
+#pragma unroll
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ sum[i/WARP_SIZE][j/nwarps] += vec_dot(
+ tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
+ threadIdx.x + i, threadIdx.y + j, k);
}
}
}
+
__syncthreads();
}
}
+
+#pragma unroll
+ for (int j = 0; j < mmq_x; j += nwarps) {
+ const int col_dst = col_dst_0 + j + threadIdx.y;
+
+ if (col_dst >= ncols_dst) {
+ return;
+ }
+
+#pragma unroll
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ const int row_dst = row_dst_0 + threadIdx.x + i;
+
+ if (row_dst >= nrows_dst) {
+ continue;
+ }
+
+ dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
+ }
+ }
}
-static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
- const int col = blockDim.y*blockIdx.y + threadIdx.y;
- const int row = blockDim.x*blockIdx.x + threadIdx.x;
+#define MMQ_X_Q4_0_RDNA2 64
+#define MMQ_Y_Q4_0_RDNA2 128
+#define NWARPS_Q4_0_RDNA2 8
+#define MMQ_X_Q4_0_RDNA1 64
+#define MMQ_Y_Q4_0_RDNA1 64
+#define NWARPS_Q4_0_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q4_0_AMPERE 4
+#define MMQ_Y_Q4_0_AMPERE 32
+#define NWARPS_Q4_0_AMPERE 4
+#else
+#define MMQ_X_Q4_0_AMPERE 64
+#define MMQ_Y_Q4_0_AMPERE 128
+#define NWARPS_Q4_0_AMPERE 4
+#endif
+#define MMQ_X_Q4_0_PASCAL 64
+#define MMQ_Y_Q4_0_PASCAL 64
+#define NWARPS_Q4_0_PASCAL 8
+
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ mul_mat_q4_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q4_0_RDNA2;
+ const int mmq_y = MMQ_Y_Q4_0_RDNA2;
+ const int nwarps = NWARPS_Q4_0_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q4_0_RDNA1;
+ const int mmq_y = MMQ_Y_Q4_0_RDNA1;
+ const int nwarps = NWARPS_Q4_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
+
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q4_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_0_AMPERE;
+ const int nwarps = NWARPS_Q4_0_AMPERE;
+
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q4_0_PASCAL;
+ const int mmq_y = MMQ_Y_Q4_0_PASCAL;
+ const int nwarps = NWARPS_Q4_0_PASCAL;
+
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
+
+#define MMQ_X_Q4_1_RDNA2 64
+#define MMQ_Y_Q4_1_RDNA2 128
+#define NWARPS_Q4_1_RDNA2 8
+#define MMQ_X_Q4_1_RDNA1 64
+#define MMQ_Y_Q4_1_RDNA1 64
+#define NWARPS_Q4_1_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q4_1_AMPERE 4
+#define MMQ_Y_Q4_1_AMPERE 32
+#define NWARPS_Q4_1_AMPERE 4
+#else
+#define MMQ_X_Q4_1_AMPERE 64
+#define MMQ_Y_Q4_1_AMPERE 128
+#define NWARPS_Q4_1_AMPERE 4
+#endif
+#define MMQ_X_Q4_1_PASCAL 64
+#define MMQ_Y_Q4_1_PASCAL 64
+#define NWARPS_Q4_1_PASCAL 8
- if (col >= ncols) {
- return;
- }
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q4_1(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- const int i = row*ncols + col;
- //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
- //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
-}
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q4_1_RDNA2;
+ const int mmq_y = MMQ_Y_Q4_1_RDNA2;
+ const int nwarps = NWARPS_Q4_1_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q4_1_RDNA1;
+ const int mmq_y = MMQ_Y_Q4_1_RDNA1;
+ const int nwarps = NWARPS_Q4_1_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
-template <bool vals_smem, int ncols_template, int block_size_template>
-static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- const int tid = threadIdx.x;
- const int rowx = blockIdx.x;
- const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q4_1_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_1_AMPERE;
+ const int nwarps = NWARPS_Q4_1_AMPERE;
- const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- const int warp_id = threadIdx.x / WARP_SIZE;
- const int lane_id = threadIdx.x % WARP_SIZE;
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q4_1_PASCAL;
+ const int mmq_y = MMQ_Y_Q4_1_PASCAL;
+ const int nwarps = NWARPS_Q4_1_PASCAL;
- float slope = 0.0f;
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
- // ALiBi
- if (max_bias > 0.0f) {
- const int h = rowx/nrows_y; // head index
+#define MMQ_X_Q5_0_RDNA2 64
+#define MMQ_Y_Q5_0_RDNA2 128
+#define NWARPS_Q5_0_RDNA2 8
+#define MMQ_X_Q5_0_RDNA1 64
+#define MMQ_Y_Q5_0_RDNA1 64
+#define NWARPS_Q5_0_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q5_0_AMPERE 4
+#define MMQ_Y_Q5_0_AMPERE 32
+#define NWARPS_Q5_0_AMPERE 4
+#else
+#define MMQ_X_Q5_0_AMPERE 128
+#define MMQ_Y_Q5_0_AMPERE 64
+#define NWARPS_Q5_0_AMPERE 4
+#endif
+#define MMQ_X_Q5_0_PASCAL 64
+#define MMQ_Y_Q5_0_PASCAL 64
+#define NWARPS_Q5_0_PASCAL 8
- const float base = h < n_head_log2 ? m0 : m1;
- const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ mul_mat_q5_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- slope = powf(base, exp);
- }
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q5_0_RDNA2;
+ const int mmq_y = MMQ_Y_Q5_0_RDNA2;
+ const int nwarps = NWARPS_Q5_0_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q5_0_RDNA1;
+ const int mmq_y = MMQ_Y_Q5_0_RDNA1;
+ const int nwarps = NWARPS_Q5_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
- extern __shared__ float data_soft_max_f32[];
- float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
- // shared memory buffer to cache values between iterations:
- float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- float max_val = -INFINITY;
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q5_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_0_AMPERE;
+ const int nwarps = NWARPS_Q5_0_AMPERE;
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q5_0_PASCAL;
+ const int mmq_y = MMQ_Y_Q5_0_PASCAL;
+ const int nwarps = NWARPS_Q5_0_PASCAL;
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
- const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
+#define MMQ_X_Q5_1_RDNA2 64
+#define MMQ_Y_Q5_1_RDNA2 128
+#define NWARPS_Q5_1_RDNA2 8
+#define MMQ_X_Q5_1_RDNA1 64
+#define MMQ_Y_Q5_1_RDNA1 64
+#define NWARPS_Q5_1_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q5_1_AMPERE 4
+#define MMQ_Y_Q5_1_AMPERE 32
+#define NWARPS_Q5_1_AMPERE 4
+#else
+#define MMQ_X_Q5_1_AMPERE 128
+#define MMQ_Y_Q5_1_AMPERE 64
+#define NWARPS_Q5_1_AMPERE 4
+#endif
+#define MMQ_X_Q5_1_PASCAL 64
+#define MMQ_Y_Q5_1_PASCAL 64
+#define NWARPS_Q5_1_PASCAL 8
- vals[col] = val;
- max_val = max(max_val, val);
- }
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q5_1(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- // find the max value in the block
- max_val = warp_reduce_max(max_val);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf_iw[lane_id] = -INFINITY;
- }
- __syncthreads();
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q5_1_RDNA2;
+ const int mmq_y = MMQ_Y_Q5_1_RDNA2;
+ const int nwarps = NWARPS_Q5_1_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q5_1_RDNA1;
+ const int mmq_y = MMQ_Y_Q5_1_RDNA1;
+ const int nwarps = NWARPS_Q5_1_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
- if (lane_id == 0) {
- buf_iw[warp_id] = max_val;
- }
- __syncthreads();
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- max_val = buf_iw[lane_id];
- max_val = warp_reduce_max(max_val);
- }
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q5_1_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_1_AMPERE;
+ const int nwarps = NWARPS_Q5_1_AMPERE;
- float tmp = 0.0f; // partial sum
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q5_1_PASCAL;
+ const int mmq_y = MMQ_Y_Q5_1_PASCAL;
+ const int nwarps = NWARPS_Q5_1_PASCAL;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
- const float val = expf(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
+#define MMQ_X_Q8_0_RDNA2 64
+#define MMQ_Y_Q8_0_RDNA2 128
+#define NWARPS_Q8_0_RDNA2 8
+#define MMQ_X_Q8_0_RDNA1 64
+#define MMQ_Y_Q8_0_RDNA1 64
+#define NWARPS_Q8_0_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q8_0_AMPERE 4
+#define MMQ_Y_Q8_0_AMPERE 32
+#define NWARPS_Q8_0_AMPERE 4
+#else
+#define MMQ_X_Q8_0_AMPERE 128
+#define MMQ_Y_Q8_0_AMPERE 64
+#define NWARPS_Q8_0_AMPERE 4
+#endif
+#define MMQ_X_Q8_0_PASCAL 64
+#define MMQ_Y_Q8_0_PASCAL 64
+#define NWARPS_Q8_0_PASCAL 8
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __syncthreads();
- if (warp_id == 0) {
- buf_iw[lane_id] = 0.0f;
- }
- __syncthreads();
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ mul_mat_q8_0(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- if (lane_id == 0) {
- buf_iw[warp_id] = tmp;
- }
- __syncthreads();
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q8_0_RDNA2;
+ const int mmq_y = MMQ_Y_Q8_0_RDNA2;
+ const int nwarps = NWARPS_Q8_0_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q8_0_RDNA1;
+ const int mmq_y = MMQ_Y_Q8_0_RDNA1;
+ const int nwarps = NWARPS_Q8_0_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
- tmp = buf_iw[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- const float inv_sum = 1.0f / tmp;
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q8_0_AMPERE;
+ const int mmq_y = MMQ_Y_Q8_0_AMPERE;
+ const int nwarps = NWARPS_Q8_0_AMPERE;
-#pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q8_0_PASCAL;
+ const int mmq_y = MMQ_Y_Q8_0_PASCAL;
+ const int nwarps = NWARPS_Q8_0_PASCAL;
- const int idst = rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
}
-static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+#define MMQ_X_Q2_K_RDNA2 64
+#define MMQ_Y_Q2_K_RDNA2 128
+#define NWARPS_Q2_K_RDNA2 8
+#define MMQ_X_Q2_K_RDNA1 128
+#define MMQ_Y_Q2_K_RDNA1 32
+#define NWARPS_Q2_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q2_K_AMPERE 4
+#define MMQ_Y_Q2_K_AMPERE 32
+#define NWARPS_Q2_K_AMPERE 4
+#else
+#define MMQ_X_Q2_K_AMPERE 64
+#define MMQ_Y_Q2_K_AMPERE 128
+#define NWARPS_Q2_K_AMPERE 4
+#endif
+#define MMQ_X_Q2_K_PASCAL 64
+#define MMQ_Y_Q2_K_PASCAL 64
+#define NWARPS_Q2_K_PASCAL 8
- if (i >= k) {
- return;
- }
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q2_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- dst[i] = scale * x[i];
-}
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q2_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q2_K_RDNA2;
+ const int nwarps = NWARPS_Q2_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q2_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q2_K_RDNA1;
+ const int nwarps = NWARPS_Q2_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
-static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- if (i >= k) {
- return;
- }
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q2_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q2_K_AMPERE;
+ const int nwarps = NWARPS_Q2_K_AMPERE;
- dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q2_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q2_K_PASCAL;
+ const int nwarps = NWARPS_Q2_K_PASCAL;
+
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
}
-template <typename T>
-static __global__ void im2col_kernel(
- const float * x, T * dst, int64_t batch_offset,
- int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
- int s0, int s1, int p0, int p1, int d0, int d1) {
- const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
- if (i >= pelements) {
- return;
- }
+#define MMQ_X_Q3_K_RDNA2 128
+#define MMQ_Y_Q3_K_RDNA2 64
+#define NWARPS_Q3_K_RDNA2 8
+#define MMQ_X_Q3_K_RDNA1 32
+#define MMQ_Y_Q3_K_RDNA1 128
+#define NWARPS_Q3_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q3_K_AMPERE 4
+#define MMQ_Y_Q3_K_AMPERE 32
+#define NWARPS_Q3_K_AMPERE 4
+#else
+#define MMQ_X_Q3_K_AMPERE 128
+#define MMQ_Y_Q3_K_AMPERE 128
+#define NWARPS_Q3_K_AMPERE 4
+#endif
+#define MMQ_X_Q3_K_PASCAL 64
+#define MMQ_Y_Q3_K_PASCAL 64
+#define NWARPS_Q3_K_PASCAL 8
- const int64_t ksize = OW * (KH > 1 ? KW : 1);
- const int64_t kx = i / ksize;
- const int64_t kd = kx * ksize;
- const int64_t ky = (i - kd) / OW;
- const int64_t ix = i % OW;
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q3_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- const int64_t oh = blockIdx.y;
- const int64_t batch = blockIdx.z / IC;
- const int64_t ic = blockIdx.z % IC;
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q3_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q3_K_RDNA2;
+ const int nwarps = NWARPS_Q3_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q3_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q3_K_RDNA1;
+ const int nwarps = NWARPS_Q3_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
- const int64_t iiw = ix * s0 + kx * d0 - p0;
- const int64_t iih = oh * s1 + ky * d1 - p1;
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- const int64_t offset_dst =
- ((batch * OH + oh) * OW + ix) * CHW +
- (ic * (KW * KH) + ky * KW + kx);
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q3_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q3_K_AMPERE;
+ const int nwarps = NWARPS_Q3_K_AMPERE;
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst[offset_dst] = 0.0f;
- } else {
- const int64_t offset_src = ic * offset_delta + batch * batch_offset;
- dst[offset_dst] = x[offset_src + iih * IW + iiw];
- }
-}
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-template <typename Ti, typename To>
-static __global__ void pool2d_nchw_kernel(
- const int ih, const int iw, const int oh, const int ow,
- const int kh, const int kw, const int sh, const int sw,
- const int ph, const int pw, const int parallel_elements,
- const Ti* src, To* dst, const enum ggml_op_pool op) {
- int idx = threadIdx.x + blockIdx.x * blockDim.x;
- if (idx >= parallel_elements) {
- return;
- }
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q3_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q3_K_PASCAL;
+ const int nwarps = NWARPS_Q3_K_PASCAL;
- const int I_HW = ih * iw;
- const int O_HW = oh * ow;
- const int nc = idx / O_HW;
- const int cur_oh = idx % O_HW / ow;
- const int cur_ow = idx % O_HW % ow;
- const Ti* i_ptr = src + nc * I_HW;
- To* o_ptr = dst + nc * O_HW;
- const int start_h = cur_oh * sh - ph;
- const int bh = max(0, start_h);
- const int eh = min(ih, start_h + kh);
- const int start_w = cur_ow * sw - pw;
- const int bw = max(0, start_w);
- const int ew = min(iw, start_w + kw);
- const To scale = 1. / (kh * kw);
- To res = 0;
-
- switch (op) {
- case GGML_OP_POOL_AVG: res = 0; break;
- case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
- }
-
- for (int i = bh; i < eh; i += 1) {
- for (int j = bw; j < ew; j += 1) {
- #if __CUDA_ARCH__ >= 350
- Ti cur = __ldg(i_ptr + i * iw + j);
- #else
- Ti cur = i_ptr[i * iw + j];
- #endif
- switch (op) {
- case GGML_OP_POOL_AVG: res += cur * scale; break;
- case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
- }
- }
- }
- o_ptr[cur_oh * ow + cur_ow] = res;
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
}
-template<int qk, int qr, dequantize_kernel_t dq>
-static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
+#define MMQ_X_Q4_K_RDNA2 64
+#define MMQ_Y_Q4_K_RDNA2 128
+#define NWARPS_Q4_K_RDNA2 8
+#define MMQ_X_Q4_K_RDNA1 32
+#define MMQ_Y_Q4_K_RDNA1 64
+#define NWARPS_Q4_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q4_K_AMPERE 4
+#define MMQ_Y_Q4_K_AMPERE 32
+#define NWARPS_Q4_K_AMPERE 4
+#else
+#define MMQ_X_Q4_K_AMPERE 64
+#define MMQ_Y_Q4_K_AMPERE 128
+#define NWARPS_Q4_K_AMPERE 4
+#endif
+#define MMQ_X_Q4_K_PASCAL 64
+#define MMQ_Y_Q4_K_PASCAL 64
+#define NWARPS_Q4_K_PASCAL 8
- GGML_TENSOR_BINARY_OP_LOCALS
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q4_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
- const dim3 block_nums(block_num_x, ne10, ne11*ne12);
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q4_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q4_K_RDNA2;
+ const int nwarps = NWARPS_Q4_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q4_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q4_K_RDNA1;
+ const int nwarps = NWARPS_Q4_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q4_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q4_K_AMPERE;
+ const int nwarps = NWARPS_Q4_K_AMPERE;
- GGML_ASSERT(ne00 % 2 == 0);
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q4_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q4_K_PASCAL;
+ const int nwarps = NWARPS_Q4_K_PASCAL;
- (void) dst;
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
}
-template<typename src0_t>
-static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
+#define MMQ_X_Q5_K_RDNA2 64
+#define MMQ_Y_Q5_K_RDNA2 128
+#define NWARPS_Q5_K_RDNA2 8
+#define MMQ_X_Q5_K_RDNA1 32
+#define MMQ_Y_Q5_K_RDNA1 64
+#define NWARPS_Q5_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q5_K_AMPERE 4
+#define MMQ_Y_Q5_K_AMPERE 32
+#define NWARPS_Q5_K_AMPERE 4
+#else
+#define MMQ_X_Q5_K_AMPERE 64
+#define MMQ_Y_Q5_K_AMPERE 128
+#define NWARPS_Q5_K_AMPERE 4
+#endif
+#define MMQ_X_Q5_K_PASCAL 64
+#define MMQ_Y_Q5_K_PASCAL 64
+#define NWARPS_Q5_K_PASCAL 8
- GGML_TENSOR_BINARY_OP_LOCALS
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+mul_mat_q5_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
- const dim3 block_nums(block_num_x, ne10, ne11*ne12);
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q5_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q5_K_RDNA2;
+ const int nwarps = NWARPS_Q5_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q5_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q5_K_RDNA1;
+ const int nwarps = NWARPS_Q5_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q5_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q5_K_AMPERE;
+ const int nwarps = NWARPS_Q5_K_AMPERE;
- k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- (void) dst;
-}
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q5_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q5_K_PASCAL;
+ const int nwarps = NWARPS_Q5_K_PASCAL;
-template<float (*bin_op)(const float, const float)>
-struct bin_bcast_cuda {
- template<typename src0_t, typename src1_t, typename dst_t>
- void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
- const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
- cudaStream_t stream) {
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
- GGML_TENSOR_BINARY_OP_LOCALS
+#define MMQ_X_Q6_K_RDNA2 64
+#define MMQ_Y_Q6_K_RDNA2 128
+#define NWARPS_Q6_K_RDNA2 8
+#define MMQ_X_Q6_K_RDNA1 32
+#define MMQ_Y_Q6_K_RDNA1 64
+#define NWARPS_Q6_K_RDNA1 8
+#if defined(CUDA_USE_TENSOR_CORES)
+#define MMQ_X_Q6_K_AMPERE 4
+#define MMQ_Y_Q6_K_AMPERE 32
+#define NWARPS_Q6_K_AMPERE 4
+#else
+#define MMQ_X_Q6_K_AMPERE 64
+#define MMQ_Y_Q6_K_AMPERE 64
+#define NWARPS_Q6_K_AMPERE 4
+#endif
+#define MMQ_X_Q6_K_PASCAL 64
+#define MMQ_Y_Q6_K_PASCAL 64
+#define NWARPS_Q6_K_PASCAL 8
- int nr0 = ne10/ne0;
- int nr1 = ne11/ne1;
- int nr2 = ne12/ne2;
- int nr3 = ne13/ne3;
+template <bool need_check> static __global__ void
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2)
+#endif // defined(RDNA3) || defined(RDNA2)
+#elif __CUDA_ARCH__ < CC_VOLTA
+ __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
+#endif // __CUDA_ARCH__ < CC_VOLTA
+ mul_mat_q6_K(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
- int nr[4] = { nr0, nr1, nr2, nr3 };
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+#if defined(RDNA3) || defined(RDNA2)
+ const int mmq_x = MMQ_X_Q6_K_RDNA2;
+ const int mmq_y = MMQ_Y_Q6_K_RDNA2;
+ const int nwarps = NWARPS_Q6_K_RDNA2;
+#else
+ const int mmq_x = MMQ_X_Q6_K_RDNA1;
+ const int mmq_y = MMQ_Y_Q6_K_RDNA1;
+ const int nwarps = NWARPS_Q6_K_RDNA1;
+#endif // defined(RDNA3) || defined(RDNA2)
- // collapse dimensions until first broadcast dimension
- int64_t cne0[] = {ne0, ne1, ne2, ne3};
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
- size_t cnb0[] = {nb0, nb1, nb2, nb3};
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
- auto collapse = [](int64_t cne[]) {
- cne[0] *= cne[1];
- cne[1] = cne[2];
- cne[2] = cne[3];
- cne[3] = 1;
- };
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
- cnb[1] *= cne[1];
- cnb[2] *= cne[2];
- cnb[3] *= cne[3];
- };
+#elif __CUDA_ARCH__ >= CC_VOLTA
+ const int mmq_x = MMQ_X_Q6_K_AMPERE;
+ const int mmq_y = MMQ_Y_Q6_K_AMPERE;
+ const int nwarps = NWARPS_Q6_K_AMPERE;
- for (int i = 0; i < 4; i++) {
- if (nr[i] != 1) {
- break;
- }
- if (i > 0) {
- collapse_nb(cnb0, cne0);
- collapse_nb(cnb1, cne1);
- collapse(cne0);
- collapse(cne1);
- }
- }
- {
- int64_t ne0 = cne0[0];
- int64_t ne1 = cne0[1];
- int64_t ne2 = cne0[2];
- int64_t ne3 = cne0[3];
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- int64_t ne10 = cne1[0];
- int64_t ne11 = cne1[1];
- int64_t ne12 = cne1[2];
- int64_t ne13 = cne1[3];
+#elif __CUDA_ARCH__ >= MIN_CC_DP4A
+ const int mmq_x = MMQ_X_Q6_K_PASCAL;
+ const int mmq_y = MMQ_Y_Q6_K_PASCAL;
+ const int nwarps = NWARPS_Q6_K_PASCAL;
- size_t nb0 = cnb0[0];
- size_t nb1 = cnb0[1];
- size_t nb2 = cnb0[2];
- size_t nb3 = cnb0[3];
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+#else
+ GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ >= CC_VOLTA
+}
- size_t nb10 = cnb1[0];
- size_t nb11 = cnb1[1];
- size_t nb12 = cnb1[2];
- size_t nb13 = cnb1[3];
+template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+// tell the compiler to use as many registers as it wants, see nwarps definition below
+__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void mul_mat_vec_q(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
- size_t s0 = nb0 / sizeof(dst_t);
- size_t s1 = nb1 / sizeof(dst_t);
- size_t s2 = nb2 / sizeof(dst_t);
- size_t s3 = nb3 / sizeof(dst_t);
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
+ constexpr int nwarps = 1;
+ constexpr int rows_per_cuda_block = 1;
+#else
+ constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
+ constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
- size_t s10 = nb10 / sizeof(src1_t);
- size_t s11 = nb11 / sizeof(src1_t);
- size_t s12 = nb12 / sizeof(src1_t);
- size_t s13 = nb13 / sizeof(src1_t);
+ const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
+ const int row0 = rows_per_cuda_block*blockIdx.x;
+ const int blocks_per_row_x = ncols_x / qk;
+ const int blocks_per_col_y = nrows_y / QK8_1;
+ constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
- GGML_ASSERT(s0 == 1);
- GGML_ASSERT(s10 == 1);
+// partial sum for each thread
+ float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
- const int block_size = 128;
+ const block_q_t * x = (const block_q_t *) vx;
+ const block_q8_1 * y = (const block_q8_1 *) vy;
- int64_t hne0 = std::max(ne0/2LL, 1LL);
+ for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
+ const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
- dim3 block_dims;
- block_dims.x = std::min<unsigned int>(hne0, block_size);
- block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
- block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
+ // x block quant index when casting the quants to int
+ const int kqs = vdr * (tid % (qi/vdr));
- dim3 block_nums(
- (hne0 + block_dims.x - 1) / block_dims.x,
- (ne1 + block_dims.y - 1) / block_dims.y,
- (ne2*ne3 + block_dims.z - 1) / block_dims.z
- );
+#pragma unroll
+ for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+ for (int i = 0; i < rows_per_cuda_block; ++i) {
+ tmp[j][i] += vec_dot_q_cuda(
+ &x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
+ }
+ }
+ }
- if (block_nums.z > 65535) {
- // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
- k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13,
- /* s0, */ s1, s2, s3,
- /* s10, */ s11, s12, s13);
- } else {
- k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
- src0_dd, src1_dd, dst_dd,
- ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13,
- /* s0, */ s1, s2, s3,
- /* s10, */ s11, s12, s13);
+ __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
+ if (threadIdx.y > 0) {
+#pragma unroll
+ for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+ for (int i = 0; i < rows_per_cuda_block; ++i) {
+ tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
}
}
}
-};
+ __syncthreads();
+ if (threadIdx.y > 0) {
+ return;
+ }
-static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, const int offset, cudaStream_t stream) {
- int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
- acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
-}
+ // sum up partial sums and write back result
+#pragma unroll
+ for (int j = 0; j < ncols_y; ++j) {
+#pragma unroll
+ for (int i = 0; i < rows_per_cuda_block; ++i) {
+#pragma unroll
+ for (int l = 0; l < nwarps-1; ++l) {
+ tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
+ }
+ tmp[j][i] = warp_reduce_sum(tmp[j][i]);
+ }
-static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+ if (threadIdx.x < rows_per_cuda_block) {
+ dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
+ }
+ }
}
-static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
+static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
+ // qk = quantized weights per x block
+ // qr = number of quantized weights per data value in x block
+ const int row = blockIdx.x*blockDim.y + threadIdx.y;
-static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+ if (row >= nrows) {
+ return;
+ }
-static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
- tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+ const int tid = threadIdx.x;
-static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+ const int iter_stride = 2*GGML_CUDA_DMMV_X;
+ const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
+ const int y_offset = qr == 1 ? 1 : qk/2;
-static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
- hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+// partial sum for each thread
+#ifdef GGML_CUDA_F16
+ half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
+#else
+ float tmp = 0.0f;
+#endif // GGML_CUDA_F16
-static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
- hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+ for (int i = 0; i < ncols; i += iter_stride) {
+ const int col = i + vals_per_iter*tid;
+ const int ib = (row*ncols + col)/qk; // x block index
+ const int iqs = (col%qk)/qr; // x quant index
+ const int iybs = col - col%qk; // y block start index
-static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
-}
+// processing >2 values per i iter is faster for fast GPUs
+#pragma unroll
+ for (int j = 0; j < vals_per_iter; j += 2) {
+ // process 2 vals per j iter
-static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
- sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+ // dequantize
+ // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
+ dfloat2 v;
+ dequantize_kernel(vx, ib, iqs + j/qr, v);
-static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+ // matrix multiplication
+ // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
+#ifdef GGML_CUDA_F16
+ tmp += __hmul2(v, {
+ y[iybs + iqs + j/qr + 0],
+ y[iybs + iqs + j/qr + y_offset]
+ });
+#else
+ tmp += v.x * y[iybs + iqs + j/qr + 0];
+ tmp += v.y * y[iybs + iqs + j/qr + y_offset];
+#endif // GGML_CUDA_F16
+ }
}
-}
-static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
- static const float eps = 1e-6f;
- if (group_size < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
- }
-}
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
-static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2);
- concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
+ if (tid == 0) {
+#ifdef GGML_CUDA_F16
+ dst[row] = tmp.x + tmp.y;
+#else
+ dst[row] = tmp;
+#endif // GGML_CUDA_F16
+ }
}
-static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
- const int scale_factor, cudaStream_t stream) {
- int ne0 = (ne00 * scale_factor);
- int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
- dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
- upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
-}
+static __global__ void mul_mat_p021_f16_f32(
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
-static void pad_f32_cuda(const float * x, float * dst,
- const int ne00, const int ne01, const int ne02, const int ne03,
- const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2*ne3);
- pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
-}
+ const half * x = (const half *) vx;
-static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
- arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
-}
+ const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
+ const int channel = blockDim.z*blockIdx.z + threadIdx.z;
+ const int channel_x = channel / (nchannels_y / nchannels_x);
-static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
- const int dim, const int max_period, cudaStream_t stream) {
- int half_ceil = (dim + 1) / 2;
- int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne00, 1);
- timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
-}
+ const int nrows_y = ncols_x;
+ const int nrows_dst = nrows_x;
+ const int row_dst = row_x;
-static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- } else {
- const dim3 block_dims(1024, 1, 1);
- rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
- }
-}
+ float tmp = 0.0f;
-static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
- const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
- const dim3 num_blocks(block_num_x, ky, 1);
- const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
- quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
-}
+ for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
+ const int col_x = col_x0 + threadIdx.x;
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
-static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
- dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
+ if (col_x >= ncols_x) {
+ break;
+ }
-static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
- if (k % CUDA_Q8_0_NE_ALIGN == 0) {
- const bool need_check = false;
- dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
- } else {
- const bool need_check = true;
- dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
- }
-}
+ // x is transposed and permuted
+ const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
+ const float xi = __half2float(x[ix]);
-template<typename dst_t>
-static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
-#if QK_K == 256
- dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
- dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
+ const int row_y = col_x;
-template<typename dst_t>
-static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
-#if QK_K == 256
- dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
- dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
+ // y is not transposed but permuted
+ const int iy = channel*nrows_y + row_y;
-template<typename dst_t>
-static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
-}
+ tmp += xi * y[iy];
+ }
-template<typename dst_t>
-static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
-}
+ // dst is not transposed and not permuted
+ const int idst = channel*nrows_dst + row_dst;
-template<typename dst_t>
-static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
-}
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
-template<typename dst_t>
-static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
-#if QK_K == 256
- dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
- dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
+ if (threadIdx.x == 0) {
+ dst[idst] = tmp;
+ }
}
-template<typename dst_t>
-static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
-#if QK_K == 256
- dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
- dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
+static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
+ const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
-template<typename dst_t>
-static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
-}
+ const half * x = (const half *) vx;
-template<typename dst_t>
-static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
-}
+ const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
+ const int channel = blockDim.z*blockIdx.z + threadIdx.z;
+ const int channel_x = channel / channel_x_divisor;
-template<typename dst_t>
-static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
-}
+ const int nrows_y = ncols_x;
+ const int nrows_dst = nrows_x;
+ const int row_dst = row_x;
-template<typename dst_t>
-static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
-}
+ const int idst = channel*nrows_dst + row_dst;
-template<typename dst_t>
-static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
-}
+ float tmp = 0.0f;
-template<typename dst_t>
-static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = k / QK_K;
- dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
-}
+ for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
+ const int col_x = col_x0 + threadIdx.x;
-template<typename dst_t>
-static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
-}
+ if (col_x >= ncols_x) {
+ break;
+ }
-template<typename dst_t>
-static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
- const int nb = (k + QK_K - 1) / QK_K;
-#if QK_K == 64
- dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
-#else
- dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
+ const int row_y = col_x;
-template <typename src_t, typename dst_t>
-static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
- convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
+ const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
+ const int iy = channel*nrows_y + row_y;
-static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
- int id;
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- CUDA_CHECK(cudaGetDevice(&id));
- if (g_device_caps[id].cc >= CC_PASCAL) {
- return dequantize_block_q8_0_f16_cuda;
- }
- return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_cuda;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_cuda;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_cuda;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_cuda;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_cuda;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_cuda;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_cuda;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_cuda;
- case GGML_TYPE_F32:
- return convert_unary_cuda<float>;
- default:
- return nullptr;
- }
-}
+ const float xi = __half2float(x[ix]);
-static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_cuda;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_cuda;
- case GGML_TYPE_Q5_0:
- return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_cuda;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_cuda;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_cuda;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_cuda;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_cuda;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_cuda;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_cuda;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_cuda;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_cuda;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_cuda;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_cuda;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_cuda;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_cuda;
- case GGML_TYPE_F16:
- return convert_unary_cuda<half>;
- default:
- return nullptr;
+ tmp += xi * y[iy];
+ }
+
+ // sum up partial sums and write back result
+ tmp = warp_reduce_sum(tmp);
+
+ if (threadIdx.x == 0) {
+ dst[idst] = tmp;
}
}
-static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
+static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ float * dsti = (float *) cdsti;
-static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+ *dsti = *xi;
}
-static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
+static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ half * dsti = (half *) cdsti;
-static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+ *dsti = __float2half(*xi);
}
-static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
+static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
+ const half * xi = (const half *) cxi;
+ half * dsti = (half *) cdsti;
-static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+ *dsti = *xi;
}
-static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
+static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
+ const half * xi = (const half *) cxi;
+ float * dsti = (float *) cdsti;
-static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+ *dsti = *xi;
}
-static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const dim3 block_dims(32, 1, 1);
- dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
-}
+template <cpy_kernel_t cpy_1>
+static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13) {
+ const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
-static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(32, ny, 1);
- dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
+ if (i >= ne) {
+ return;
+ }
-static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
- const dim3 block_nums(block_num_y, 1, 1);
- const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- dequantize_mul_mat_vec<1, 1, convert_f16>
- <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
+ // determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
+ // then combine those indices with the corresponding byte offsets to get the total offsets
+ const int64_t i03 = i/(ne00 * ne01 * ne02);
+ const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
+
+ const int64_t i13 = i/(ne10 * ne11 * ne12);
+ const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
+
+ cpy_1(cx + x_offset, cdst + dst_offset);
}
-template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
-static void mul_mat_vec_q_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
+static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q8_0 * dsti = (block_q8_0 *) cdsti;
- GGML_ASSERT(ncols_x % qk == 0);
- GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
+ float amax = 0.0f; // absolute max
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
+ for (int j = 0; j < QK8_0; j++) {
+ const float v = xi[j];
+ amax = fmaxf(amax, fabsf(v));
+ }
- int64_t nwarps = 1;
- int64_t rows_per_cuda_block = 1;
+ const float d = amax / ((1 << 7) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
- if (g_device_caps[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
- switch(ncols_y) {
- case 1:
- nwarps = 4;
- rows_per_cuda_block = 1;
- break;
- case 2:
- case 3:
- case 4:
- nwarps = 4;
- rows_per_cuda_block = 2;
- break;
- case 5:
- case 6:
- case 7:
- case 8:
- nwarps = 2;
- rows_per_cuda_block = 2;
- break;
- default:
- GGML_ASSERT(false);
- break;
+ dsti->d = d;
+
+ for (int j = 0; j < QK8_0; ++j) {
+ const float x0 = xi[j]*id;
+
+ dsti->qs[j] = roundf(x0);
+ }
+}
+
+static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_0 * dsti = (block_q4_0 *) cdsti;
+
+ float amax = 0.0f;
+ float vmax = 0.0f;
+
+ for (int j = 0; j < QK4_0; ++j) {
+ const float v = xi[j];
+ if (amax < fabsf(v)) {
+ amax = fabsf(v);
+ vmax = v;
}
}
- const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
- const dim3 block_nums(nblocks, 1, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- switch (ncols_y) {
- case 1:
- mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 2:
- mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 3:
- mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 4:
- mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 5:
- mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 6:
- mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 7:
- mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 8:
- mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
- <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- default:
- GGML_ASSERT(false);
- break;
+ const float d = vmax / -8;
+ const float id = d ? 1.0f/d : 0.0f;
+
+ dsti->d = d;
+
+ for (int j = 0; j < QK4_0/2; ++j) {
+ const float x0 = xi[0 + j]*id;
+ const float x1 = xi[QK4_0/2 + j]*id;
+
+ const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
+ const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
+
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
+ }
+}
+
+static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
+ const float * xi = (const float *) cxi;
+ block_q4_1 * dsti = (block_q4_1 *) cdsti;
+
+ float vmin = FLT_MAX;
+ float vmax = -FLT_MAX;
+
+ for (int j = 0; j < QK4_1; ++j) {
+ const float v = xi[j];
+
+ if (v < vmin) vmin = v;
+ if (v > vmax) vmax = v;
}
-}
-static void ggml_mul_mat_q4_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+ const float d = (vmax - vmin) / ((1 << 4) - 1);
+ const float id = d ? 1.0f/d : 0.0f;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+ dsti->dm.x = d;
+ dsti->dm.y = vmin;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_0_RDNA2;
- mmq_y = MMQ_Y_Q4_0_RDNA2;
- nwarps = NWARPS_Q4_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_0_RDNA1;
- mmq_y = MMQ_Y_Q4_0_RDNA1;
- nwarps = NWARPS_Q4_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_0_AMPERE;
- mmq_y = MMQ_Y_Q4_0_AMPERE;
- nwarps = NWARPS_Q4_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_0_PASCAL;
- mmq_y = MMQ_Y_Q4_0_PASCAL;
- nwarps = NWARPS_Q4_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+ for (int j = 0; j < QK4_1/2; ++j) {
+ const float x0 = (xi[0 + j] - vmin)*id;
+ const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
+ const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ dsti->qs[j] = xi0;
+ dsti->qs[j] |= xi1 << 4;
}
}
-static void ggml_mul_mat_q4_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+template <cpy_kernel_t cpy_blck, int qk>
+static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
+ const int nb12, const int nb13) {
+ const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_1_RDNA2;
- mmq_y = MMQ_Y_Q4_1_RDNA2;
- nwarps = NWARPS_Q4_1_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_1_RDNA1;
- mmq_y = MMQ_Y_Q4_1_RDNA1;
- nwarps = NWARPS_Q4_1_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_1_AMPERE;
- mmq_y = MMQ_Y_Q4_1_AMPERE;
- nwarps = NWARPS_Q4_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_1_PASCAL;
- mmq_y = MMQ_Y_Q4_1_PASCAL;
- nwarps = NWARPS_Q4_1_PASCAL;
- } else {
- GGML_ASSERT(false);
+ if (i >= ne) {
+ return;
}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ const int i03 = i/(ne00 * ne01 * ne02);
+ const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
+ const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
+ const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
+ const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
+ const int i13 = i/(ne10 * ne11 * ne12);
+ const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
+ const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
+ const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
+ const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
+
+ cpy_blck(cx + x_offset, cdst + dst_offset);
}
-static void ggml_mul_mat_q5_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
+ const float y = (i0 / 2 - low) / max(0.001f, high - low);
+ return 1.0f - min(1.0f, max(0.0f, y));
+}
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+struct rope_corr_dims {
+ float v[4];
+};
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_0_RDNA2;
- mmq_y = MMQ_Y_Q5_0_RDNA2;
- nwarps = NWARPS_Q5_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_0_RDNA1;
- mmq_y = MMQ_Y_Q5_0_RDNA1;
- nwarps = NWARPS_Q5_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_0_AMPERE;
- mmq_y = MMQ_Y_Q5_0_AMPERE;
- nwarps = NWARPS_Q5_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_0_PASCAL;
- mmq_y = MMQ_Y_Q5_0_PASCAL;
- nwarps = NWARPS_Q5_0_PASCAL;
- } else {
- GGML_ASSERT(false);
+// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
+// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
+static __device__ void rope_yarn(
+ float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
+ float * cos_theta, float * sin_theta
+) {
+ // Get n-d rotational scaling corrected for extrapolation
+ float theta_interp = freq_scale * theta_extrap;
+ float theta = theta_interp;
+ if (ext_factor != 0.0f) {
+ float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
+ theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
+
+ // Get n-d magnitude scaling corrected for interpolation
+ mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
+ *cos_theta = cosf(theta) * mscale;
+ *sin_theta = sinf(theta) * mscale;
+}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+// rope == RoPE == rotary positional embedding
+template<typename T, bool has_pos>
+static __global__ void rope(
+ const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims
+) {
+ const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ if (col >= ncols) {
+ return;
}
+
+ const int row = blockDim.x*blockIdx.x + threadIdx.x;
+ const int i = row*ncols + col;
+ const int i2 = row/p_delta_rows;
+
+ const int p = has_pos ? pos[i2] : 0;
+ const float theta_base = p*powf(freq_base, -float(col)/ncols);
+
+ float cos_theta, sin_theta;
+ rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + 1];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + 1] = x0*sin_theta + x1*cos_theta;
}
-static void ggml_mul_mat_q5_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+template<typename T, bool has_pos>
+static __global__ void rope_neox(
+ const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
+) {
+ const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+ if (col >= ncols) {
+ return;
+ }
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_1_RDNA2;
- mmq_y = MMQ_Y_Q5_1_RDNA2;
- nwarps = NWARPS_Q5_1_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_1_RDNA1;
- mmq_y = MMQ_Y_Q5_1_RDNA1;
- nwarps = NWARPS_Q5_1_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_1_AMPERE;
- mmq_y = MMQ_Y_Q5_1_AMPERE;
- nwarps = NWARPS_Q5_1_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_1_PASCAL;
- mmq_y = MMQ_Y_Q5_1_PASCAL;
- nwarps = NWARPS_Q5_1_PASCAL;
- } else {
- GGML_ASSERT(false);
+ const int row = blockDim.x*blockIdx.x + threadIdx.x;
+ const int ib = col / n_dims;
+ const int ic = col % n_dims;
+
+ if (ib > 0) {
+ const int i = row*ncols + ib*n_dims + ic;
+
+ dst[i + 0] = x[i + 0];
+ dst[i + 1] = x[i + 1];
+
+ return;
}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ const int i = row*ncols + ib*n_dims + ic/2;
+ const int i2 = row/p_delta_rows;
+
+ float cur_rot = inv_ndims * ic - ib;
+
+ const int p = has_pos ? pos[i2] : 0;
+ const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
+
+ float cos_theta, sin_theta;
+ rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + n_dims/2];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
+}
+
+static __global__ void rope_glm_f32(
+ const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
+ int n_ctx
+) {
+ const int col = blockDim.x*blockIdx.x + threadIdx.x;
+ const int half_n_dims = ncols/4;
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ if (col >= half_n_dims) {
+ return;
}
-}
-static void ggml_mul_mat_q8_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+ const int row = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i = row*ncols + col;
+ const int i2 = row/p_delta_rows;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+ const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
+ // FIXME: this is likely wrong
+ const int p = pos != nullptr ? pos[i2] : 0;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q8_0_RDNA2;
- mmq_y = MMQ_Y_Q8_0_RDNA2;
- nwarps = NWARPS_Q8_0_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q8_0_RDNA1;
- mmq_y = MMQ_Y_Q8_0_RDNA1;
- nwarps = NWARPS_Q8_0_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q8_0_AMPERE;
- mmq_y = MMQ_Y_Q8_0_AMPERE;
- nwarps = NWARPS_Q8_0_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q8_0_PASCAL;
- mmq_y = MMQ_Y_Q8_0_PASCAL;
- nwarps = NWARPS_Q8_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+ const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
+ const float sin_theta = sinf(theta);
+ const float cos_theta = cosf(theta);
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ const float x0 = x[i + 0];
+ const float x1 = x[i + half_n_dims];
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
-}
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
-static void ggml_mul_mat_q2_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+ const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
+ const float sin_block_theta = sinf(block_theta);
+ const float cos_block_theta = cosf(block_theta);
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+ const float x2 = x[i + half_n_dims * 2];
+ const float x3 = x[i + half_n_dims * 3];
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q2_K_RDNA2;
- mmq_y = MMQ_Y_Q2_K_RDNA2;
- nwarps = NWARPS_Q2_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q2_K_RDNA1;
- mmq_y = MMQ_Y_Q2_K_RDNA1;
- nwarps = NWARPS_Q2_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q2_K_AMPERE;
- mmq_y = MMQ_Y_Q2_K_AMPERE;
- nwarps = NWARPS_Q2_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q2_K_PASCAL;
- mmq_y = MMQ_Y_Q2_K_PASCAL;
- nwarps = NWARPS_Q2_K_PASCAL;
- } else {
- GGML_ASSERT(false);
+ dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
+ dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
+}
+
+static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
+ const int n_heads_log2_floor, const float m0, const float m1) {
+ const int col = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (col >= ncols) {
+ return;
}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ const int row = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i = row*ncols + col;
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ const int k = row/k_rows;
+
+ float m_k;
+ if (k < n_heads_log2_floor) {
+ m_k = powf(m0, k + 1);
} else {
- const bool need_check = true;
- mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
}
-}
-
-static void ggml_mul_mat_q3_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-#if QK_K == 256
+ dst[i] = col * m_k + x[i];
+}
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
+ const int row = blockIdx.x;
+ const int col = threadIdx.x;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q3_K_RDNA2;
- mmq_y = MMQ_Y_Q3_K_RDNA2;
- nwarps = NWARPS_Q3_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q3_K_RDNA1;
- mmq_y = MMQ_Y_Q3_K_RDNA1;
- nwarps = NWARPS_Q3_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q3_K_AMPERE;
- mmq_y = MMQ_Y_Q3_K_AMPERE;
- nwarps = NWARPS_Q3_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q3_K_PASCAL;
- mmq_y = MMQ_Y_Q3_K_PASCAL;
- nwarps = NWARPS_Q3_K_PASCAL;
- } else {
- GGML_ASSERT(false);
+ float sum = 0.0f;
+ for (int i = col; i < ncols; i += blockDim.x) {
+ sum += x[row * ncols + i];
}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ sum = warp_reduce_sum(sum);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ if (col == 0) {
+ dst[row] = sum;
}
-#endif
}
-static void ggml_mul_mat_q4_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+template<typename T>
+static inline __device__ void swap(T & a, T & b) {
+ T tmp = a;
+ a = b;
+ b = tmp;
+}
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+template<ggml_sort_order order>
+static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols) {
+ // bitonic sort
+ int col = threadIdx.x;
+ int row = blockIdx.y;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q4_K_RDNA2;
- mmq_y = MMQ_Y_Q4_K_RDNA2;
- nwarps = NWARPS_Q4_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q4_K_RDNA1;
- mmq_y = MMQ_Y_Q4_K_RDNA1;
- nwarps = NWARPS_Q4_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q4_K_AMPERE;
- mmq_y = MMQ_Y_Q4_K_AMPERE;
- nwarps = NWARPS_Q4_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q4_K_PASCAL;
- mmq_y = MMQ_Y_Q4_K_PASCAL;
- nwarps = NWARPS_Q4_K_PASCAL;
- } else {
- GGML_ASSERT(false);
+ if (col >= ncols) return;
+
+ const float * x_row = x + row * ncols;
+ int * dst_row = dst + row * ncols;
+
+ // initialize indices
+ if (col < ncols) {
+ dst_row[col] = col;
}
+ __syncthreads();
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ for (int k = 2; k <= ncols; k *= 2) {
+ for (int j = k / 2; j > 0; j /= 2) {
+ int ixj = col ^ j;
+ if (ixj > col) {
+ if ((col & k) == 0) {
+ if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
+ swap(dst_row[col], dst_row[ixj]);
+ }
+ } else {
+ if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
+ swap(dst_row[col], dst_row[ixj]);
+ }
+ }
+ }
+ __syncthreads();
+ }
+ }
+}
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
+ const int col = blockDim.y*blockIdx.y + threadIdx.y;
+ const int row = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (col >= ncols) {
+ return;
}
+
+ const int i = row*ncols + col;
+ //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
+ //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
+ dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
-static void ggml_mul_mat_q5_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+template <bool vals_smem, int ncols_template, int block_size_template>
+static __global__ void soft_max_f32(const float * x, const float * mask, const float * pos, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
+ const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+ const int tid = threadIdx.x;
+ const int rowx = blockIdx.x;
+ const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q5_K_RDNA2;
- mmq_y = MMQ_Y_Q5_K_RDNA2;
- nwarps = NWARPS_Q5_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q5_K_RDNA1;
- mmq_y = MMQ_Y_Q5_K_RDNA1;
- nwarps = NWARPS_Q5_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q5_K_AMPERE;
- mmq_y = MMQ_Y_Q5_K_AMPERE;
- nwarps = NWARPS_Q5_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q5_K_PASCAL;
- mmq_y = MMQ_Y_Q5_K_PASCAL;
- nwarps = NWARPS_Q5_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
+ const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ const int warp_id = threadIdx.x / WARP_SIZE;
+ const int lane_id = threadIdx.x % WARP_SIZE;
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
-}
+ float slope = 0.0f;
-static void ggml_mul_mat_q6_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+ // ALiBi
+ if (max_bias > 0.0f) {
+ const int h = rowx/nrows_y; // head index
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- const int compute_capability = g_device_caps[id].cc;
+ const float base = h < n_head_log2 ? m0 : m1;
+ const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= CC_RDNA2) {
- mmq_x = MMQ_X_Q6_K_RDNA2;
- mmq_y = MMQ_Y_Q6_K_RDNA2;
- nwarps = NWARPS_Q6_K_RDNA2;
- } else if (compute_capability >= CC_OFFSET_AMD) {
- mmq_x = MMQ_X_Q6_K_RDNA1;
- mmq_y = MMQ_Y_Q6_K_RDNA1;
- nwarps = NWARPS_Q6_K_RDNA1;
- } else if (compute_capability >= CC_VOLTA) {
- mmq_x = MMQ_X_Q6_K_AMPERE;
- mmq_y = MMQ_Y_Q6_K_AMPERE;
- nwarps = NWARPS_Q6_K_AMPERE;
- } else if (compute_capability >= MIN_CC_DP4A) {
- mmq_x = MMQ_X_Q6_K_PASCAL;
- mmq_y = MMQ_Y_Q6_K_PASCAL;
- nwarps = NWARPS_Q6_K_PASCAL;
- } else {
- GGML_ASSERT(false);
+ slope = powf(base, exp);
}
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const dim3 block_nums(block_num_x, block_num_y, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
+ extern __shared__ float data_soft_max_f32[];
+ float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
+ // shared memory buffer to cache values between iterations:
+ float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + rowx*ncols;
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- } else {
- const bool need_check = true;
- mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
- (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
- }
-}
+ float max_val = -INFINITY;
-static void ggml_mul_mat_p021_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
- const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
-}
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
-static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
+ const int ix = rowx*ncols + col;
+ const int iy = rowy*ncols + col;
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
-}
+ const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
+ vals[col] = val;
+ max_val = max(max_val, val);
+ }
-static void ggml_cpy_f16_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+ // find the max value in the block
+ max_val = warp_reduce_max(max_val);
+ if (block_size > WARP_SIZE) {
+ if (warp_id == 0) {
+ buf_iw[lane_id] = -INFINITY;
+ }
+ __syncthreads();
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
+ if (lane_id == 0) {
+ buf_iw[warp_id] = max_val;
+ }
+ __syncthreads();
-static void ggml_cpy_f32_f32_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+ max_val = buf_iw[lane_id];
+ max_val = warp_reduce_max(max_val);
+ }
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
+ float tmp = 0.0f; // partial sum
-static void ggml_cpy_f32_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
+ if (ncols_template == 0 && col >= ncols) {
+ break;
+ }
-static void ggml_cpy_f32_q8_0_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+ const float val = expf(vals[col] - max_val);
+ tmp += val;
+ vals[col] = val;
+ }
- GGML_ASSERT(ne % QK8_0 == 0);
- const int num_blocks = ne / QK8_0;
- cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
-}
+ // find the sum of exps in the block
+ tmp = warp_reduce_sum(tmp);
+ if (block_size > WARP_SIZE) {
+ __syncthreads();
+ if (warp_id == 0) {
+ buf_iw[lane_id] = 0.0f;
+ }
+ __syncthreads();
-static void ggml_cpy_f32_q4_0_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+ if (lane_id == 0) {
+ buf_iw[warp_id] = tmp;
+ }
+ __syncthreads();
- GGML_ASSERT(ne % QK4_0 == 0);
- const int num_blocks = ne / QK4_0;
- cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+ tmp = buf_iw[lane_id];
+ tmp = warp_reduce_sum(tmp);
+ }
+
+ const float inv_sum = 1.0f / tmp;
+
+#pragma unroll
+ for (int col0 = 0; col0 < ncols; col0 += block_size) {
+ const int col = col0 + tid;
+
+ if (ncols_template == 0 && col >= ncols) {
+ return;
+ }
+
+ const int idst = rowx*ncols + col;
+ dst[idst] = vals[col] * inv_sum;
+ }
}
-static void ggml_cpy_f32_q4_1_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- GGML_ASSERT(ne % QK4_1 == 0);
- const int num_blocks = ne / QK4_1;
- cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+ if (i >= k) {
+ return;
+ }
+
+ dst[i] = scale * x[i];
}
-static void ggml_cpy_f16_f16_cuda(
- const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
- const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
- cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
- (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+ dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
}
+template <typename T>
+static __global__ void im2col_kernel(
+ const float * x, T * dst, int64_t batch_offset,
+ int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
+ int s0, int s1, int p0, int p1, int d0, int d1) {
+ const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
+ if (i >= pelements) {
+ return;
+ }
+ const int64_t ksize = OW * (KH > 1 ? KW : 1);
+ const int64_t kx = i / ksize;
+ const int64_t kd = kx * ksize;
+ const int64_t ky = (i - kd) / OW;
+ const int64_t ix = i % OW;
-static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
- scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
-}
+ const int64_t oh = blockIdx.y;
+ const int64_t batch = blockIdx.z / IC;
+ const int64_t ic = blockIdx.z % IC;
-static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
- clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
-}
+ const int64_t iiw = ix * s0 + kx * d0 - p0;
+ const int64_t iih = oh * s1 + ky * d1 - p1;
-template<typename T>
-static void rope_cuda(
- const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
-) {
- GGML_ASSERT(ncols % 2 == 0);
- const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(nrows, num_blocks_x, 1);
- if (pos == nullptr) {
- rope<T, false><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
- );
+ const int64_t offset_dst =
+ ((batch * OH + oh) * OW + ix) * CHW +
+ (ic * (KW * KH) + ky * KW + kx);
+
+ if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
+ dst[offset_dst] = 0.0f;
} else {
- rope<T, true><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
- );
+ const int64_t offset_src = ic * offset_delta + batch * batch_offset;
+ dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
-template<typename T>
-static void rope_neox_cuda(
- const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
-) {
- GGML_ASSERT(ncols % 2 == 0);
- const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
- const dim3 block_nums(nrows, num_blocks_x, 1);
-
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.0f / n_dims;
+template <typename Ti, typename To>
+static __global__ void pool2d_nchw_kernel(
+ const int ih, const int iw, const int oh, const int ow,
+ const int kh, const int kw, const int sh, const int sw,
+ const int ph, const int pw, const int parallel_elements,
+ const Ti* src, To* dst, const enum ggml_op_pool op) {
+ int idx = threadIdx.x + blockIdx.x * blockDim.x;
+ if (idx >= parallel_elements) {
+ return;
+ }
- if (pos == nullptr) {
- rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
- theta_scale, inv_ndims
- );
- } else {
- rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
- x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
- theta_scale, inv_ndims
- );
+ const int I_HW = ih * iw;
+ const int O_HW = oh * ow;
+ const int nc = idx / O_HW;
+ const int cur_oh = idx % O_HW / ow;
+ const int cur_ow = idx % O_HW % ow;
+ const Ti* i_ptr = src + nc * I_HW;
+ To* o_ptr = dst + nc * O_HW;
+ const int start_h = cur_oh * sh - ph;
+ const int bh = max(0, start_h);
+ const int eh = min(ih, start_h + kh);
+ const int start_w = cur_ow * sw - pw;
+ const int bw = max(0, start_w);
+ const int ew = min(iw, start_w + kw);
+ const To scale = 1. / (kh * kw);
+ To res = 0;
+
+ switch (op) {
+ case GGML_OP_POOL_AVG: res = 0; break;
+ case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
+ default: assert(false);
+ }
+
+ for (int i = bh; i < eh; i += 1) {
+ for (int j = bw; j < ew; j += 1) {
+#if __CUDA_ARCH__ >= 350
+ Ti cur = __ldg(i_ptr + i * iw + j);
+#else
+ Ti cur = i_ptr[i * iw + j];
+#endif
+ switch (op) {
+ case GGML_OP_POOL_AVG: res += cur * scale; break;
+ case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
+ default: assert(false);
+ }
+ }
}
+ o_ptr[cur_oh * ow + cur_ow] = res;
}
-static void rope_glm_f32_cuda(
- const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
- float freq_base, int n_ctx, cudaStream_t stream
-) {
- GGML_ASSERT(ncols % 4 == 0);
- const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
- const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
- const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
-}
+template<int qk, int qr, dequantize_kernel_t dq>
+static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
-static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
- const int k_rows, const int n_heads_log2_floor, const float m0,
- const float m1, cudaStream_t stream) {
- const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
- const dim3 block_nums(num_blocks_x, nrows, 1);
- alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
-}
+ GGML_TENSOR_BINARY_OP_LOCALS
-static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- const dim3 block_dims(WARP_SIZE, 1, 1);
- const dim3 block_nums(nrows, 1, 1);
- k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
-}
+ const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
+ const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
+ const dim3 block_nums(block_num_x, ne10, ne11*ne12);
-static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
- // bitonic sort requires ncols to be power of 2
- GGML_ASSERT((ncols & (ncols - 1)) == 0);
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
- const dim3 block_dims(ncols, 1, 1);
- const dim3 block_nums(1, nrows, 1);
- if (order == GGML_SORT_ORDER_ASC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- } else if (order == GGML_SORT_ORDER_DESC) {
- k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
- } else {
- GGML_ASSERT(false);
- }
-}
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
-static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
- const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
- const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
- const dim3 block_nums(nrows_x, block_num_x, 1);
- diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
+ GGML_ASSERT(ne00 % 2 == 0);
+
+ k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne00, /*ne01, ne02, ne03,*/
+ /*ne10, ne11,*/ ne12, /*ne13,*/
+ /* s0,*/ s1, s2, s3,
+ /* nb00,*/ nb01, nb02, nb03,
+ s10, s11, s12/*, s13*/);
+
+ GGML_UNUSED(dst);
}
-static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
- int nth = WARP_SIZE;
- while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
- const dim3 block_dims(nth, 1, 1);
- const dim3 block_nums(nrows_x, 1, 1);
- const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
- static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
+template<typename src0_t>
+static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
- const uint32_t n_head_kv = nrows_x/nrows_y;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
+ GGML_TENSOR_BINARY_OP_LOCALS
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
+ const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
+ const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
+ const dim3 block_nums(block_num_x, ne10, ne11*ne12);
- if (shmem < g_device_caps[g_main_device].smpb) {
- switch (ncols_x) {
- case 32:
- soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 64:
- soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 128:
- soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 256:
- soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 512:
- soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 1024:
- soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 2048:
- soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 4096:
- soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- default:
- soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- }
- } else {
- const size_t shmem_low = WARP_SIZE*sizeof(float);
- soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- }
-}
+ // strides in elements
+ //const size_t s0 = nb0 / ggml_element_size(dst);
+ const size_t s1 = nb1 / ggml_element_size(dst);
+ const size_t s2 = nb2 / ggml_element_size(dst);
+ const size_t s3 = nb3 / ggml_element_size(dst);
-template <typename T>
-static void im2col_cuda(const float* x, T* dst,
- int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
- int64_t batch, int64_t batch_offset, int64_t offset_delta,
- int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
- const int parallel_elements = OW * KW * KH;
- const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
- dim3 block_nums(num_blocks, OH, batch * IC);
- im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
+ const size_t s10 = nb10 / ggml_element_size(src1);
+ const size_t s11 = nb11 / ggml_element_size(src1);
+ const size_t s12 = nb12 / ggml_element_size(src1);
+ //const size_t s13 = nb13 / ggml_element_size(src1);
+
+ k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne00, /*ne01, ne02, ne03,*/
+ /*ne10, ne11,*/ ne12, /*ne13,*/
+ /* s0,*/ s1, s2, s3,
+ /* nb00,*/ nb01, nb02, nb03,
+ s10, s11, s12/*, s13*/);
+
+ GGML_UNUSED(dst);
}
-// buffer pool for cuda
-#define MAX_CUDA_BUFFERS 256
+template<float (*bin_op)(const float, const float)>
+struct bin_bcast_cuda {
+ template<typename src0_t, typename src1_t, typename dst_t>
+ void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
+ const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
+ cudaStream_t stream) {
+
+ GGML_TENSOR_BINARY_OP_LOCALS
-struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
-};
+ int nr0 = ne10/ne0;
+ int nr1 = ne11/ne1;
+ int nr2 = ne12/ne2;
+ int nr3 = ne13/ne3;
-static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
+ int nr[4] = { nr0, nr1, nr2, nr3 };
-// #define DEBUG_CUDA_MALLOC
-struct ggml_cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
-};
+ // collapse dimensions until first broadcast dimension
+ int64_t cne0[] = {ne0, ne1, ne2, ne3};
+ int64_t cne1[] = {ne10, ne11, ne12, ne13};
+ size_t cnb0[] = {nb0, nb1, nb2, nb3};
+ size_t cnb1[] = {nb10, nb11, nb12, nb13};
+ auto collapse = [](int64_t cne[]) {
+ cne[0] *= cne[1];
+ cne[1] = cne[2];
+ cne[2] = cne[3];
+ cne[3] = 1;
+ };
-static ggml_cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
-static size_t g_cuda_pool_size[GGML_CUDA_MAX_DEVICES] = {0};
+ auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
+ cnb[1] *= cne[1];
+ cnb[2] *= cne[2];
+ cnb[3] *= cne[3];
+ };
-static void * ggml_cuda_pool_malloc_leg(int device, size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
-#ifdef DEBUG_CUDA_MALLOC
- int nnz = 0;
- size_t max_size = 0;
-#endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i];
- if (b.ptr != nullptr) {
-#ifdef DEBUG_CUDA_MALLOC
- ++nnz;
- if (b.size > max_size) max_size = b.size;
-#endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
+ for (int i = 0; i < 4; i++) {
+ if (nr[i] != 1) {
+ break;
+ }
+ if (i > 0) {
+ collapse_nb(cnb0, cne0);
+ collapse_nb(cnb1, cne1);
+ collapse(cne0);
+ collapse(cne1);
}
}
- }
- if (ibest >= 0) {
- ggml_cuda_buffer& b = g_cuda_buffer_pool[device][ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
- *actual_size = look_ahead_size;
- g_cuda_pool_size[device] += look_ahead_size;
-#ifdef DEBUG_CUDA_MALLOC
- fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
- (uint32_t)(max_size/1024/1024), (uint32_t)(g_cuda_pool_size[device]/1024/1024), (uint32_t)(size/1024/1024));
-#endif
- return ptr;
-}
-
-static void ggml_cuda_pool_free_leg(int device, void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
-
- for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
- ggml_cuda_buffer& b = g_cuda_buffer_pool[device][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaFree(ptr));
- g_cuda_pool_size[device] -= size;
-}
+ {
+ int64_t ne0 = cne0[0];
+ int64_t ne1 = cne0[1];
+ int64_t ne2 = cne0[2];
+ int64_t ne3 = cne0[3];
-#if !defined(GGML_USE_HIPBLAS)
-// pool with virtual memory
-static CUdeviceptr g_cuda_pool_addr[GGML_CUDA_MAX_DEVICES] = {0};
-static size_t g_cuda_pool_used[GGML_CUDA_MAX_DEVICES] = {0};
-static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
+ int64_t ne10 = cne1[0];
+ int64_t ne11 = cne1[1];
+ int64_t ne12 = cne1[2];
+ int64_t ne13 = cne1[3];
-static void * ggml_cuda_pool_malloc_vmm(int device, size_t size, size_t * actual_size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
+ size_t nb0 = cnb0[0];
+ size_t nb1 = cnb0[1];
+ size_t nb2 = cnb0[2];
+ size_t nb3 = cnb0[3];
- // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
- const size_t alignment = 128;
- size = alignment * ((size + alignment - 1) / alignment);
+ size_t nb10 = cnb1[0];
+ size_t nb11 = cnb1[1];
+ size_t nb12 = cnb1[2];
+ size_t nb13 = cnb1[3];
- size_t avail = g_cuda_pool_size[device] - g_cuda_pool_used[device];
+ size_t s0 = nb0 / sizeof(dst_t);
+ size_t s1 = nb1 / sizeof(dst_t);
+ size_t s2 = nb2 / sizeof(dst_t);
+ size_t s3 = nb3 / sizeof(dst_t);
- if (size > avail) {
- // round up to the next multiple of the granularity
- size_t reserve_size = size - avail;
- const size_t granularity = g_device_caps[device].vmm_granularity;
- reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
+ size_t s10 = nb10 / sizeof(src1_t);
+ size_t s11 = nb11 / sizeof(src1_t);
+ size_t s12 = nb12 / sizeof(src1_t);
+ size_t s13 = nb13 / sizeof(src1_t);
- GGML_ASSERT(g_cuda_pool_size[device] + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
+ GGML_ASSERT(s0 == 1);
+ GGML_ASSERT(s10 == 1);
- // allocate more physical memory
- CUmemAllocationProp prop = {};
- prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- prop.location.id = device;
- CUmemGenericAllocationHandle handle;
- CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
+ const int block_size = 128;
- // reserve virtual address space (if not already reserved)
- if (g_cuda_pool_addr[device] == 0) {
- CU_CHECK(cuMemAddressReserve(&g_cuda_pool_addr[device], CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
- }
+ int64_t hne0 = std::max(ne0/2LL, 1LL);
- // map at the end of the pool
- CU_CHECK(cuMemMap(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, 0, handle, 0));
+ dim3 block_dims;
+ block_dims.x = std::min<unsigned int>(hne0, block_size);
+ block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
+ block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
- // the memory allocation handle is no longer needed after mapping
- CU_CHECK(cuMemRelease(handle));
+ dim3 block_nums(
+ (hne0 + block_dims.x - 1) / block_dims.x,
+ (ne1 + block_dims.y - 1) / block_dims.y,
+ (ne2*ne3 + block_dims.z - 1) / block_dims.z
+ );
- // set access
- CUmemAccessDesc access = {};
- access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- access.location.id = device;
- access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
- CU_CHECK(cuMemSetAccess(g_cuda_pool_addr[device] + g_cuda_pool_size[device], reserve_size, &access, 1));
+ if (block_nums.z > 65535) {
+ // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
+ int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
+ k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne0, ne1, ne2, ne3,
+ ne10, ne11, ne12, ne13,
+ /* s0, */ s1, s2, s3,
+ /* s10, */ s11, s12, s13);
+ } else {
+ k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
+ src0_dd, src1_dd, dst_dd,
+ ne0, ne1, ne2, ne3,
+ ne10, ne11, ne12, ne13,
+ /* s0, */ s1, s2, s3,
+ /* s10, */ s11, s12, s13);
+ }
+ }
+ }
+};
- // add to the pool
- g_cuda_pool_size[device] += reserve_size;
+static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
+ const int ne10, const int ne11, const int ne12,
+ const int nb1, const int nb2, const int offset, cudaStream_t stream) {
+ int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
+ acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
+}
- //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
- // id, (unsigned long long) (g_cuda_pool_size[id]/1024/1024),
- // (unsigned long long) (reserve_size/1024/1024));
- }
+static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+ gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
- GGML_ASSERT(g_cuda_pool_addr[device] != 0);
+static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
+ silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
- void * ptr = (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device]);
- *actual_size = size;
- g_cuda_pool_used[device] += size;
+static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+ gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
-#ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
-#endif
+static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
+ tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
- return ptr;
+static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+ relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
-static void ggml_cuda_pool_free_vmm(int device, void * ptr, size_t size) {
- scoped_spin_lock lock(g_cuda_pool_lock);
+static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
+ hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
-#ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
-#endif
+static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
+ hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
- g_cuda_pool_used[device] -= size;
+static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+ leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
+}
- // all deallocations must be in reverse order of the allocations
- GGML_ASSERT(ptr == (void *) (g_cuda_pool_addr[device] + g_cuda_pool_used[device]));
+static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
+ sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
-static void * ggml_cuda_pool_malloc(int device, size_t size, size_t * actual_size) {
- if (g_device_caps[device].vmm) {
- return ggml_cuda_pool_malloc_vmm(device, size, actual_size);
+static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ if (ncols < 1024) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} else {
- return ggml_cuda_pool_malloc_leg(device, size, actual_size);
+ const dim3 block_dims(1024, 1, 1);
+ norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
}
}
-static void ggml_cuda_pool_free(int device, void * ptr, size_t size) {
- if (g_device_caps[device].vmm) {
- ggml_cuda_pool_free_vmm(device, ptr, size);
+static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
+ static const float eps = 1e-6f;
+ if (group_size < 1024) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
} else {
- ggml_cuda_pool_free_leg(device, ptr, size);
+ const dim3 block_dims(1024, 1, 1);
+ group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
}
}
-#else
-#define ggml_cuda_pool_malloc ggml_cuda_pool_malloc_leg
-#define ggml_cuda_pool_free ggml_cuda_pool_free_leg
-#endif // !defined(GGML_USE_HIPBLAS)
-
-template<typename T>
-struct cuda_pool_alloc {
- int device = -1;
- T * ptr = nullptr;
- size_t actual_size = 0;
-
- // size is in number of elements
- T * alloc(size_t size) {
- GGML_ASSERT(ptr == nullptr);
- CUDA_CHECK(cudaGetDevice(&device));
- ptr = (T *) ggml_cuda_pool_malloc(device, size * sizeof(T), &this->actual_size);
- return ptr;
- }
- cuda_pool_alloc(size_t size) {
- alloc(size);
- }
+static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) {
+ int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, ne1, ne2);
+ concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
+}
- ~cuda_pool_alloc() {
- if (ptr != nullptr) {
- ggml_cuda_pool_free(device, ptr, actual_size);
- }
- }
+static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
+ const int scale_factor, cudaStream_t stream) {
+ int ne0 = (ne00 * scale_factor);
+ int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
+ upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
+}
- T * get() {
- return ptr;
- }
+static void pad_f32_cuda(const float * x, float * dst,
+ const int ne00, const int ne01, const int ne02, const int ne03,
+ const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
+ int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, ne1, ne2*ne3);
+ pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
+}
- cuda_pool_alloc() = default;
- cuda_pool_alloc(const cuda_pool_alloc &) = delete;
- cuda_pool_alloc(cuda_pool_alloc &&) = delete;
- cuda_pool_alloc& operator=(const cuda_pool_alloc &) = delete;
- cuda_pool_alloc& operator=(cuda_pool_alloc &&) = delete;
-};
+static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
+ int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
+ arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
+}
-static bool g_cublas_loaded = false;
+static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
+ const int dim, const int max_period, cudaStream_t stream) {
+ int half_ceil = (dim + 1) / 2;
+ int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
+ dim3 gridDim(num_blocks, ne00, 1);
+ timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
+}
-static void ggml_init_cublas() {
- static bool initialized = false;
+static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
+ GGML_ASSERT(ncols % WARP_SIZE == 0);
+ if (ncols < 1024) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+ } else {
+ const dim3 block_dims(1024, 1, 1);
+ rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
+ }
+}
- if (!initialized) {
+static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
+ const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
+ const dim3 num_blocks(block_num_x, ky, 1);
+ const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
+ quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
+}
-#ifdef __HIP_PLATFORM_AMD__
- // Workaround for a rocBLAS bug when using multiple graphics cards:
- // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
- rocblas_initialize();
- CUDA_CHECK(cudaDeviceSynchronize());
-#endif
+template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
+static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
+ dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
+}
- if (cudaGetDeviceCount(&g_device_count) != cudaSuccess) {
- initialized = true;
- g_cublas_loaded = false;
- fprintf(stderr, "%s: no " GGML_CUDA_NAME " devices found, " GGML_CUDA_NAME " will be disabled\n", __func__);
- return;
- }
+static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
+ if (k % CUDA_Q8_0_NE_ALIGN == 0) {
+ const bool need_check = false;
+ dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
+ } else {
+ const bool need_check = true;
+ dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
+ }
+}
- GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
-#if defined(GGML_CUDA_FORCE_MMQ)
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
+template<typename dst_t>
+static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
#else
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
+ dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
-#if defined(CUDA_USE_TENSOR_CORES)
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
+}
+
+template<typename dst_t>
+static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
#else
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
+ dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
- fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count);
- for (int id = 0; id < g_device_count; ++id) {
- int device_vmm = 0;
+}
-#if !defined(GGML_USE_HIPBLAS)
- CUdevice device;
- CU_CHECK(cuDeviceGet(&device, id));
- CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
-
- if (device_vmm) {
- CUmemAllocationProp alloc_prop = {};
- alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- alloc_prop.location.id = id;
- CU_CHECK(cuMemGetAllocationGranularity(&g_device_caps[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
- }
-#endif // !defined(GGML_USE_HIPBLAS)
- g_device_caps[id].vmm = !!device_vmm;
+template<typename dst_t>
+static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb32 = k / 32;
+ const int nb = (k + 255) / 256;
+ dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
+}
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
+template<typename dst_t>
+static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb32 = k / 32;
+ const int nb = (k + 255) / 256;
+ dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
+}
- g_default_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
+template<typename dst_t>
+static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
+}
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- g_device_caps[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
+template<typename dst_t>
+static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
#else
- g_device_caps[id].cc = 100*prop.major + 10*prop.minor;
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- g_device_caps[id].smpb = prop.sharedMemPerBlock;
- }
- for (int id = 0; id < g_device_count; ++id) {
- g_default_tensor_split[id] /= total_vram;
- }
-
- for (int id = 0; id < g_device_count; ++id) {
- ggml_cuda_set_device(id);
-
- // create cuda streams
- for (int is = 0; is < MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[id][is], cudaStreamNonBlocking));
- }
+ dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
- // create cublas handle
- CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
- CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
- }
+template<typename dst_t>
+static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+#if QK_K == 256
+ dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
+#else
+ dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
+template<typename dst_t>
+static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
+}
- initialized = true;
- g_cublas_loaded = true;
- }
+template<typename dst_t>
+static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
}
-static void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
+template<typename dst_t>
+static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
+}
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
+template<typename dst_t>
+static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
+}
- return ptr;
+template<typename dst_t>
+static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
}
-static void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
+template<typename dst_t>
+static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = k / QK_K;
+ dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
}
-static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
+template<typename dst_t>
+static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = (k + QK_K - 1) / QK_K;
+ dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
+}
- cudaMemcpyKind kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_TYPE_CPU) {
- kind = cudaMemcpyHostToDevice;
- src_ptr = (char *) src->data;
- } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
- GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
- kind = cudaMemcpyDeviceToDevice;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- src_ptr = (char *) extra->data_device[id];
- } else {
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
+template<typename dst_t>
+static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
+ const int nb = (k + QK_K - 1) / QK_K;
+#if QK_K == 64
+ dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
+#else
+ dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
+#endif
+}
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
+template <typename src_t, typename dst_t>
+static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
+ convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
+}
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
- if (r != cudaSuccess) return r;
- }
- return cudaSuccess;
+static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
+ int id;
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ return dequantize_row_q4_0_cuda;
+ case GGML_TYPE_Q4_1:
+ return dequantize_row_q4_1_cuda;
+ case GGML_TYPE_Q5_0:
+ return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
+ case GGML_TYPE_Q5_1:
+ return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
+ case GGML_TYPE_Q8_0:
+ CUDA_CHECK(cudaGetDevice(&id));
+ if (get_cuda_global_info().devices[id].cc >= CC_PASCAL) {
+ return dequantize_block_q8_0_f16_cuda;
+ }
+ return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
+ case GGML_TYPE_Q2_K:
+ return dequantize_row_q2_K_cuda;
+ case GGML_TYPE_Q3_K:
+ return dequantize_row_q3_K_cuda;
+ case GGML_TYPE_Q4_K:
+ return dequantize_row_q4_K_cuda;
+ case GGML_TYPE_Q5_K:
+ return dequantize_row_q5_K_cuda;
+ case GGML_TYPE_Q6_K:
+ return dequantize_row_q6_K_cuda;
+ case GGML_TYPE_IQ2_XXS:
+ return dequantize_row_iq2_xxs_cuda;
+ case GGML_TYPE_IQ2_XS:
+ return dequantize_row_iq2_xs_cuda;
+ case GGML_TYPE_IQ2_S:
+ return dequantize_row_iq2_s_cuda;
+ case GGML_TYPE_IQ3_XXS:
+ return dequantize_row_iq3_xxs_cuda;
+ case GGML_TYPE_IQ1_S:
+ return dequantize_row_iq1_s_cuda;
+ case GGML_TYPE_IQ4_NL:
+ return dequantize_row_iq4_nl_cuda;
+ case GGML_TYPE_IQ4_XS:
+ return dequantize_row_iq4_xs_cuda;
+ case GGML_TYPE_IQ3_S:
+ return dequantize_row_iq3_s_cuda;
+ case GGML_TYPE_F32:
+ return convert_unary_cuda<float>;
+ default:
+ return nullptr;
}
}
-static void ggml_cuda_op_get_rows(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t stream) {
-
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
-
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
-
- const int32_t * src1_i32 = (const int32_t *) src1_d;
-
- switch (src0->type) {
- case GGML_TYPE_F16:
- get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_F32:
- get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
+static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
+ switch (type) {
case GGML_TYPE_Q4_0:
- get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
+ return dequantize_row_q4_0_cuda;
case GGML_TYPE_Q4_1:
- get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
+ return dequantize_row_q4_1_cuda;
case GGML_TYPE_Q5_0:
- get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
+ return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
case GGML_TYPE_Q5_1:
- get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
+ return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
case GGML_TYPE_Q8_0:
- get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
+ return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
+ case GGML_TYPE_Q2_K:
+ return dequantize_row_q2_K_cuda;
+ case GGML_TYPE_Q3_K:
+ return dequantize_row_q3_K_cuda;
+ case GGML_TYPE_Q4_K:
+ return dequantize_row_q4_K_cuda;
+ case GGML_TYPE_Q5_K:
+ return dequantize_row_q5_K_cuda;
+ case GGML_TYPE_Q6_K:
+ return dequantize_row_q6_K_cuda;
+ case GGML_TYPE_IQ2_XXS:
+ return dequantize_row_iq2_xxs_cuda;
+ case GGML_TYPE_IQ2_XS:
+ return dequantize_row_iq2_xs_cuda;
+ case GGML_TYPE_IQ2_S:
+ return dequantize_row_iq2_s_cuda;
+ case GGML_TYPE_IQ3_XXS:
+ return dequantize_row_iq3_xxs_cuda;
+ case GGML_TYPE_IQ1_S:
+ return dequantize_row_iq1_s_cuda;
+ case GGML_TYPE_IQ4_NL:
+ return dequantize_row_iq4_nl_cuda;
+ case GGML_TYPE_IQ4_XS:
+ return dequantize_row_iq4_xs_cuda;
+ case GGML_TYPE_IQ3_S:
+ return dequantize_row_iq3_s_cuda;
+ case GGML_TYPE_F16:
+ return convert_unary_cuda<half>;
default:
- // TODO: k-quants
- fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
- GGML_ASSERT(false);
- break;
+ return nullptr;
}
}
-template<class op>
-static void ggml_cuda_op_bin_bcast(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- op()(src0, src1, dst, (const half *) src0_dd, src1_dd, (half *) dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, (const half *) src0_dd, src1_dd, dst_dd, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
- ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
+static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_repeat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t main_stream) {
-
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
-
- (void) src1;
- (void) src1_d;
+static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_add(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_acc(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
-
- int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
- int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
- // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
- int offset = dst->op_params[3] / 4; // offset in bytes
-
- acc_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
-
- (void) dst;
+static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_mul(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_div(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_gelu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- gelu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
+static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_silu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- silu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
+static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_gelu_quick(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- gelu_quick_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
+static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const dim3 block_dims(32, 1, 1);
+ dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
-static void ggml_cuda_op_tanh(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- tanh_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
+static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int ny = 2 / K_QUANTS_PER_ITERATION;
+ const int block_num_y = (nrows + ny - 1) / ny;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(32, ny, 1);
+ dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_relu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
+static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(block_num_y, 1, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ dequantize_mul_mat_vec<1, 1, convert_f16>
+ <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
-static void ggml_cuda_op_hardsigmoid(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- hardsigmoid_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
+static void mul_mat_vec_q_cuda(
+ const void * vx, const void * vy, float * dst,
+ const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
+ GGML_ASSERT(ncols_x % qk == 0);
+ GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
-static void ggml_cuda_op_hardswish(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ int64_t nwarps = 1;
+ int64_t rows_per_cuda_block = 1;
- hardswish_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+ if (get_cuda_global_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
+ switch(ncols_y) {
+ case 1:
+ nwarps = 4;
+ rows_per_cuda_block = 1;
+ break;
+ case 2:
+ case 3:
+ case 4:
+ nwarps = 4;
+ rows_per_cuda_block = 2;
+ break;
+ case 5:
+ case 6:
+ case 7:
+ case 8:
+ nwarps = 2;
+ rows_per_cuda_block = 2;
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ }
+ const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
+ const dim3 block_nums(nblocks, 1, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ switch (ncols_y) {
+ case 1:
+ mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 2:
+ mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 3:
+ mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 4:
+ mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 5:
+ mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 6:
+ mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 7:
+ mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ case 8:
+ mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
}
-static void ggml_cuda_op_leaky_relu(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
-
- leaky_relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
+static void ggml_mul_mat_q4_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-static void ggml_cuda_op_sqr(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q4_0_RDNA2;
+ mmq_y = MMQ_Y_Q4_0_RDNA2;
+ nwarps = NWARPS_Q4_0_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q4_0_RDNA1;
+ mmq_y = MMQ_Y_Q4_0_RDNA1;
+ nwarps = NWARPS_Q4_0_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q4_0_AMPERE;
+ mmq_y = MMQ_Y_Q4_0_AMPERE;
+ nwarps = NWARPS_Q4_0_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q4_0_PASCAL;
+ mmq_y = MMQ_Y_Q4_0_PASCAL;
+ nwarps = NWARPS_Q4_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
}
-static void ggml_cuda_op_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
+static void ggml_mul_mat_q4_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q4_1_RDNA2;
+ mmq_y = MMQ_Y_Q4_1_RDNA2;
+ nwarps = NWARPS_Q4_1_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q4_1_RDNA1;
+ mmq_y = MMQ_Y_Q4_1_RDNA1;
+ nwarps = NWARPS_Q4_1_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q4_1_AMPERE;
+ mmq_y = MMQ_Y_Q4_1_AMPERE;
+ nwarps = NWARPS_Q4_1_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q4_1_PASCAL;
+ mmq_y = MMQ_Y_Q4_1_PASCAL;
+ nwarps = NWARPS_Q4_1_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
}
-static void ggml_cuda_op_group_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- int num_groups = dst->op_params[0];
- int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
- group_norm_f32_cuda(src0_dd, dst_dd, num_groups * src0->ne[3], group_size, ggml_nelements(src0), main_stream);
+static void ggml_mul_mat_q5_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
-static void ggml_cuda_op_concat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q5_0_RDNA2;
+ mmq_y = MMQ_Y_Q5_0_RDNA2;
+ nwarps = NWARPS_Q5_0_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q5_0_RDNA1;
+ mmq_y = MMQ_Y_Q5_0_RDNA1;
+ nwarps = NWARPS_Q5_0_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q5_0_AMPERE;
+ mmq_y = MMQ_Y_Q5_0_AMPERE;
+ nwarps = NWARPS_Q5_0_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q5_0_PASCAL;
+ mmq_y = MMQ_Y_Q5_0_PASCAL;
+ nwarps = NWARPS_Q5_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
- concat_f32_cuda(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
-
- (void) src1;
- (void) dst;
}
-static void ggml_cuda_op_upscale(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+static void ggml_mul_mat_q5_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- const int scale_factor = dst->op_params[0];
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q5_1_RDNA2;
+ mmq_y = MMQ_Y_Q5_1_RDNA2;
+ nwarps = NWARPS_Q5_1_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q5_1_RDNA1;
+ mmq_y = MMQ_Y_Q5_1_RDNA1;
+ nwarps = NWARPS_Q5_1_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q5_1_AMPERE;
+ mmq_y = MMQ_Y_Q5_1_AMPERE;
+ nwarps = NWARPS_Q5_1_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q5_1_PASCAL;
+ mmq_y = MMQ_Y_Q5_1_PASCAL;
+ nwarps = NWARPS_Q5_1_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, main_stream);
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
}
-static void ggml_cuda_op_pad(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+static void ggml_mul_mat_q8_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- pad_f32_cuda(src0_dd, dst_dd,
- src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], main_stream);
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q8_0_RDNA2;
+ mmq_y = MMQ_Y_Q8_0_RDNA2;
+ nwarps = NWARPS_Q8_0_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q8_0_RDNA1;
+ mmq_y = MMQ_Y_Q8_0_RDNA1;
+ nwarps = NWARPS_Q8_0_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q8_0_AMPERE;
+ mmq_y = MMQ_Y_Q8_0_AMPERE;
+ nwarps = NWARPS_Q8_0_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q8_0_PASCAL;
+ mmq_y = MMQ_Y_Q8_0_PASCAL;
+ nwarps = NWARPS_Q8_0_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
}
-static void ggml_cuda_op_arange(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
+static void ggml_mul_mat_q2_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- float start;
- float stop;
- float step;
- memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
- memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
- memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- int64_t steps = (int64_t)ceil((stop - start) / step);
- GGML_ASSERT(ggml_nelements(dst) == steps);
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q2_K_RDNA2;
+ mmq_y = MMQ_Y_Q2_K_RDNA2;
+ nwarps = NWARPS_Q2_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q2_K_RDNA1;
+ mmq_y = MMQ_Y_Q2_K_RDNA1;
+ nwarps = NWARPS_Q2_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q2_K_AMPERE;
+ mmq_y = MMQ_Y_Q2_K_AMPERE;
+ nwarps = NWARPS_Q2_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q2_K_PASCAL;
+ mmq_y = MMQ_Y_Q2_K_PASCAL;
+ nwarps = NWARPS_Q2_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- arange_f32_cuda(dst_dd, dst->ne[0], start, step, main_stream);
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- (void) src0;
- (void) src1;
- (void) src0_dd;
- (void) src1_dd;
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
}
-static void ggml_cuda_op_timestep_embedding(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+static void ggml_mul_mat_q3_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
+#if QK_K == 256
- const int dim = dst->op_params[0];
- const int max_period = dst->op_params[1];
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- timestep_embedding_f32_cuda(src0_dd, dst_dd, src0->ne[0], dst->nb[1], dim, max_period, main_stream);
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q3_K_RDNA2;
+ mmq_y = MMQ_Y_Q3_K_RDNA2;
+ nwarps = NWARPS_Q3_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q3_K_RDNA1;
+ mmq_y = MMQ_Y_Q3_K_RDNA1;
+ nwarps = NWARPS_Q3_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q3_K_AMPERE;
+ mmq_y = MMQ_Y_Q3_K_AMPERE;
+ nwarps = NWARPS_Q3_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q3_K_PASCAL;
+ mmq_y = MMQ_Y_Q3_K_PASCAL;
+ nwarps = NWARPS_Q3_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- (void) src1;
- (void) dst;
- (void) src1_dd;
-}
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
-static void ggml_cuda_op_rms_norm(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+#endif
+}
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
+static void ggml_mul_mat_q4_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q4_K_RDNA2;
+ mmq_y = MMQ_Y_Q4_K_RDNA2;
+ nwarps = NWARPS_Q4_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q4_K_RDNA1;
+ mmq_y = MMQ_Y_Q4_K_RDNA1;
+ nwarps = NWARPS_Q4_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q4_K_AMPERE;
+ mmq_y = MMQ_Y_Q4_K_AMPERE;
+ nwarps = NWARPS_Q4_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q4_K_PASCAL;
+ mmq_y = MMQ_Y_Q4_K_PASCAL;
+ nwarps = NWARPS_Q4_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- rms_norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
}
-static void ggml_cuda_op_mul_mat_q(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
+static void ggml_mul_mat_q5_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q5_K_RDNA2;
+ mmq_y = MMQ_Y_Q5_K_RDNA2;
+ nwarps = NWARPS_Q5_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q5_K_RDNA1;
+ mmq_y = MMQ_Y_Q5_K_RDNA1;
+ nwarps = NWARPS_Q5_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q5_K_AMPERE;
+ mmq_y = MMQ_Y_Q5_K_AMPERE;
+ nwarps = NWARPS_Q5_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q5_K_PASCAL;
+ mmq_y = MMQ_Y_Q5_K_PASCAL;
+ nwarps = NWARPS_Q5_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
+ }
- const int64_t ne0 = dst->ne[0];
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
- const int64_t row_diff = row_high - row_low;
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+}
+
+static void ggml_mul_mat_q6_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
int id;
CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
-
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
+ int mmq_x, mmq_y, nwarps;
+ if (compute_capability >= CC_RDNA2) {
+ mmq_x = MMQ_X_Q6_K_RDNA2;
+ mmq_y = MMQ_Y_Q6_K_RDNA2;
+ nwarps = NWARPS_Q6_K_RDNA2;
+ } else if (compute_capability >= CC_OFFSET_AMD) {
+ mmq_x = MMQ_X_Q6_K_RDNA1;
+ mmq_y = MMQ_Y_Q6_K_RDNA1;
+ nwarps = NWARPS_Q6_K_RDNA1;
+ } else if (compute_capability >= CC_VOLTA) {
+ mmq_x = MMQ_X_Q6_K_AMPERE;
+ mmq_y = MMQ_Y_Q6_K_AMPERE;
+ nwarps = NWARPS_Q6_K_AMPERE;
+ } else if (compute_capability >= MIN_CC_DP4A) {
+ mmq_x = MMQ_X_Q6_K_PASCAL;
+ mmq_y = MMQ_Y_Q6_K_PASCAL;
+ nwarps = NWARPS_Q6_K_PASCAL;
+ } else {
+ GGML_ASSERT(false);
}
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
-}
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
-static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
- int64_t min_compute_capability = INT_MAX;
- int64_t max_compute_capability = INT_MIN;
- for (int id = 0; id < g_device_count; ++id) {
- if (tensor_split[id] < (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
- if (min_compute_capability > g_device_caps[id].cc) {
- min_compute_capability = g_device_caps[id].cc;
- }
- if (max_compute_capability < g_device_caps[id].cc) {
- max_compute_capability = g_device_caps[id].cc;
- }
- }
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
+ (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
}
+}
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- return max_compute_capability >= CC_RDNA2 ? 128 : 32;
- case GGML_TYPE_Q3_K:
- return min_compute_capability < CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- default:
- GGML_ASSERT(false);
- }
-#else
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
- }
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+static void ggml_mul_mat_p021_f16_f32_cuda(
+ const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
+ const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
+
+ const dim3 block_nums(1, nrows_x, nchannels_y);
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
}
-static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
- const int64_t nrows = ggml_nrows(tensor);
- const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
+static void ggml_mul_mat_vec_nc_f16_f32_cuda(
+ const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
+ const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
- *row_low = id == 0 ? 0 : nrows*tensor_split[id];
- *row_low -= *row_low % rounding;
+ const dim3 block_nums(1, nrows_x, nchannels_y);
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
+ (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
+}
- if (id == g_device_count - 1) {
- *row_high = nrows;
- } else {
- *row_high = nrows*tensor_split[id + 1];
- *row_high -= *row_high % rounding;
- }
+
+static void ggml_cpy_f16_f32_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
-static void ggml_cuda_op_mul_mat_vec_q(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
+static void ggml_cpy_f32_f32_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
+static void ggml_cpy_f32_f16_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- const int64_t ne0 = dst->ne[0];
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
+static void ggml_cpy_f32_q8_0_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
+ GGML_ASSERT(ne % QK8_0 == 0);
+ const int num_blocks = ne / QK8_0;
+ cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XS:
- mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_S:
- mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ1_S:
- mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_NL:
- mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_XS:
- mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_S:
- mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
- (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
+static void ggml_cpy_f32_q4_0_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
+
+ GGML_ASSERT(ne % QK4_0 == 0);
+ const int num_blocks = ne / QK4_0;
+ cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
+
+static void ggml_cpy_f32_q4_1_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
+ GGML_ASSERT(ne % QK4_1 == 0);
+ const int num_blocks = ne / QK4_1;
+ cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
-static void ggml_cuda_op_dequantize_mul_mat_vec(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
+static void ggml_cpy_f16_f16_cuda(
+ const char * cx, char * cdst, const int ne,
+ const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
+ const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
+ const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
+ cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
+ (cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
+}
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
-#ifdef GGML_CUDA_F16
- cuda_pool_alloc<half> src1_dfloat_a;
- half * src1_dfloat = nullptr; // dfloat == half
- bool src1_convert_f16 =
- src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
+static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
+ scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
+}
- if (src1_convert_f16) {
- src1_dfloat = src1_dfloat_a.alloc(ne00);
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
- }
-#else
- const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
-#endif // GGML_CUDA_F16
+static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
+ clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
+}
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
+template<typename T>
+static void rope_cuda(
+ const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+ GGML_ASSERT(ncols % 2 == 0);
+ const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
+ const dim3 block_nums(nrows, num_blocks_x, 1);
+ if (pos == nullptr) {
+ rope<T, false><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
+ );
+ } else {
+ rope<T, true><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
+ );
}
-
- (void) src1;
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
}
-static void ggml_cuda_op_mul_mat_cublas(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
-
- GGML_ASSERT(src0_dd_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_dd_i != nullptr);
+template<typename T>
+static void rope_neox_cuda(
+ const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
+) {
+ GGML_ASSERT(ncols % 2 == 0);
+ const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
+ const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
+ const dim3 block_nums(nrows, num_blocks_x, 1);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
+ const float inv_ndims = -1.0f / n_dims;
- const int64_t ne0 = dst->ne[0];
+ if (pos == nullptr) {
+ rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
+ theta_scale, inv_ndims
+ );
+ } else {
+ rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
+ x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
+ theta_scale, inv_ndims
+ );
+ }
+}
- const int64_t row_diff = row_high - row_low;
+static void rope_glm_f32_cuda(
+ const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
+ float freq_base, int n_ctx, cudaStream_t stream
+) {
+ GGML_ASSERT(ncols % 4 == 0);
+ const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
+ const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
+ const dim3 block_nums(num_blocks_x, nrows, 1);
+ rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
+}
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
+static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
+ const int k_rows, const int n_heads_log2_floor, const float m0,
+ const float m1, cudaStream_t stream) {
+ const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1);
+ const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE);
+ const dim3 block_nums(num_blocks_x, nrows, 1);
+ alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1);
+}
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
+static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ const dim3 block_dims(WARP_SIZE, 1, 1);
+ const dim3 block_nums(nrows, 1, 1);
+ k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+}
- const int compute_capability = g_device_caps[id].cc;
+static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
+ // bitonic sort requires ncols to be power of 2
+ GGML_ASSERT((ncols & (ncols - 1)) == 0);
- if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
- //printf("this branch\n");
- // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
- cuda_pool_alloc<half> src0_as_f16;
- if (src0->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = row_diff*ne00;
- src0_as_f16.alloc(ne);
- to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
- }
- const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
+ const dim3 block_dims(ncols, 1, 1);
+ const dim3 block_nums(1, nrows, 1);
+ if (order == GGML_SORT_ORDER_ASC) {
+ k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+ } else if (order == GGML_SORT_ORDER_DESC) {
+ k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
+ } else {
+ GGML_ASSERT(false);
+ }
+}
- cuda_pool_alloc<half> src1_as_f16;
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = src1_ncols*ne10;
- src1_as_f16.alloc(ne);
- to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
- }
- const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
- cuda_pool_alloc<half> dst_f16(row_diff*src1_ncols);
+static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
+ const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
+ const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
+ const dim3 block_nums(nrows_x, block_num_x, 1);
+ diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
+}
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
+static void soft_max_f32_cuda(const float * x, const float * mask, const float * pos, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
+ int nth = WARP_SIZE;
+ while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
+ const dim3 block_dims(nth, 1, 1);
+ const dim3 block_nums(nrows_x, 1, 1);
+ const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
+ static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
- src1_ptr, CUDA_R_16F, ne10,
- &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+ const uint32_t n_head_kv = nrows_x/nrows_y;
+ const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
- } else {
- cuda_pool_alloc<float> src0_ddq_as_f32;
- cuda_pool_alloc<float> src1_ddq_as_f32;
+ const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- if (src0->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src0_ddq_as_f32.alloc(row_diff*ne00);
- to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
- }
- if (src1->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src1_ddq_as_f32.alloc(src1_ncols*ne10);
- to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
+ if (shmem < get_cuda_global_info().devices[ggml_cuda_get_device()].smpb) {
+ switch (ncols_x) {
+ case 32:
+ soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 64:
+ soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 128:
+ soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 256:
+ soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 512:
+ soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 1024:
+ soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 2048:
+ soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ case 4096:
+ soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
+ default:
+ soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
+ break;
}
-
- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
- const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
-
- const float alpha = 1.0f;
- const float beta = 0.0f;
-
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
- CUBLAS_CHECK(
- cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf1_i, ne10,
- &beta, dst_dd_i, ldc));
+ } else {
+ const size_t shmem_low = WARP_SIZE*sizeof(float);
+ soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, pos, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
}
-
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_padded_row_size;
}
-static void ggml_cuda_op_rope(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t nrows = ggml_nrows(src0);
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
-
- // RoPE alteration for extended context
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
+template <typename T>
+static void im2col_cuda(const float * x, T* dst,
+ int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
+ int64_t batch, int64_t batch_offset, int64_t offset_delta,
+ int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
+ const int parallel_elements = OW * KW * KH;
+ const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
+ dim3 block_nums(num_blocks, OH, batch * IC);
+ im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
+}
- const int32_t * pos = nullptr;
- if ((mode & 1) == 0) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->ne[0] == ne2);
- pos = (const int32_t *) src1_dd;
- }
+static cudaError_t ggml_cuda_cpy_tensor_2d(
+ void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
+ GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
+ char * src_ptr = (char *) src->data;
+ char * dst_ptr = (char *) dst;
- rope_corr_dims corr_dims;
- ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
+ const int64_t ne0 = src->ne[0];
+ const int64_t nb0 = src->nb[0];
+ const int64_t nb1 = src->nb[1];
+ const int64_t nb2 = src->nb[2];
+ const int64_t nb3 = src->nb[3];
+ const enum ggml_type type = src->type;
+ const int64_t ts = ggml_type_size(type);
+ const int64_t bs = ggml_blck_size(type);
+ int64_t i1_diff = i1_high - i1_low;
- // compute
- if (is_glm) {
- GGML_ASSERT(false);
- rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
- } else if (is_neox) {
- if (src0->type == GGML_TYPE_F32) {
- rope_neox_cuda(
- (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_neox_cuda(
- (const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else {
- GGML_ASSERT(false);
- }
+ const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
+ if (nb0 == ts && nb1 == ts*ne0/bs) {
+ return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
+ } else if (nb0 == ts) {
+ return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
} else {
- if (src0->type == GGML_TYPE_F32) {
- rope_cuda(
- (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_cuda(
- (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else {
- GGML_ASSERT(false);
+ for (int64_t i1 = 0; i1 < i1_diff; i1++) {
+ const void * rx = (const void *) ((const char *) x + i1*nb1);
+ void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
+ // pretend the row is a matrix with cols=1
+ cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
+ if (r != cudaSuccess) {
+ return r;
+ }
}
+ return cudaSuccess;
}
-
- (void) src1;
- (void) dst;
- (void) src1_dd;
}
-static void ggml_cuda_op_alibi(
+static void ggml_cuda_op_get_rows(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
- const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nrows = ggml_nrows(src0);
-
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
+ const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t stream) {
- //GGML_ASSERT(ne01 + n_past == ne00);
- GGML_ASSERT(n_head == ne02);
+ GGML_UNUSED(ctx);
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
+ GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
+ GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
- alibi_f32_cuda(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
+ const int32_t * src1_i32 = (const int32_t *) src1_d;
- (void) src1;
- (void) src1_dd;
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_F32:
+ get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q4_0:
+ get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
+ break;
+ default:
+ // TODO: k-quants
+ fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
+ GGML_ASSERT(false);
+ break;
+ }
}
-static void ggml_cuda_op_pool2d(
+template<class op>
+static void ggml_cuda_op_bin_bcast(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ GGML_UNUSED(ctx);
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t IH = src0->ne[1];
- const int64_t IW = src0->ne[0];
+ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
+ op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
+ op()(src0, src1, dst, (const half *) src0_dd, src1_dd, (half *) dst_dd, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
+ op()(src0, src1, dst, (const half *) src0_dd, src1_dd, dst_dd, main_stream);
+ } else {
+ fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
+ ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
+ GGML_ASSERT(false);
+ }
+}
- const int64_t N = dst->ne[3];
- const int64_t OC = dst->ne[2];
- const int64_t OH = dst->ne[1];
- const int64_t OW = dst->ne[0];
+static void ggml_cuda_op_repeat(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_d, const float * src1_d, float * dst_d, cudaStream_t main_stream) {
- const int parallel_elements = N * OC * OH * OW;
- const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
- dim3 block_nums(num_blocks);
- pool2d_nchw_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, main_stream>>>(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_dd, dst_dd, op);
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
- (void) src1;
- (void) src1_dd;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(src1_d);
}
-static void ggml_cuda_op_im2col(
+static void ggml_cuda_op_add(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
-
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
-
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
- const int64_t IC = src1->ne[is_2D ? 2 : 1];
- const int64_t IH = is_2D ? src1->ne[1] : 1;
- const int64_t IW = src1->ne[0];
+static void ggml_cuda_op_acc(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- const int64_t KH = is_2D ? src0->ne[1] : 1;
- const int64_t KW = src0->ne[0];
+ GGML_UNUSED(ctx);
- const int64_t OH = is_2D ? dst->ne[2] : 1;
- const int64_t OW = dst->ne[1];
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
- const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
- const int64_t batch = src1->ne[3];
- const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
+ int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
+ int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
+ // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
+ int offset = dst->op_params[3] / 4; // offset in bytes
- if(dst->type == GGML_TYPE_F16) {
- im2col_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- } else {
- im2col_cuda(src1_dd, (float*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- }
+ acc_f32_cuda(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
- (void) src0;
- (void) src0_dd;
+ GGML_UNUSED(dst);
}
-static void ggml_cuda_op_sum_rows(
+static void ggml_cuda_op_mul(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
+}
- sum_rows_f32_cuda(src0_dd, dst_dd, ncols, nrows, main_stream);
+static void ggml_cuda_op_div(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
}
-static void ggml_cuda_op_argsort(
+static void ggml_cuda_op_gelu(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
+ GGML_UNUSED(ctx);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
-
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
-
- enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- argsort_f32_i32_cuda(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
+ gelu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_op_diag_mask_inf(
+static void ggml_cuda_op_silu(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
+ GGML_UNUSED(ctx);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int nrows0 = ggml_nrows(src0);
-
- const int n_past = ((int32_t *) dst->op_params)[0];
-
- diag_mask_inf_f32_cuda(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
+ silu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_op_soft_max(
+static void ggml_cuda_op_gelu_quick(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
+ GGML_UNUSED(ctx);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
-
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
-
- float scale = 1.0f;
- float max_bias = 0.0f;
-
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
-
- // positions tensor
- float * src2_dd = nullptr;
-
- ggml_tensor * src2 = dst->src[2];
- const bool use_src2 = src2 != nullptr;
-
- if (use_src2) {
- ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
- src2_dd = (float *) src2_extra->data_device[g_main_device];
- }
+ gelu_quick_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_op_scale(
+static void ggml_cuda_op_tanh(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
+ GGML_UNUSED(ctx);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float scale;
- memcpy(&scale, dst->op_params, sizeof(float));
-
- scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
- CUDA_CHECK(cudaGetLastError());
+ tanh_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_op_clamp(
+static void ggml_cuda_op_relu(
+ ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
-
+ GGML_UNUSED(ctx);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float min;
- float max;
- memcpy(&min, dst->op_params, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
-
- clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
- CUDA_CHECK(cudaGetLastError());
+ relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
- const int64_t nrows0 = ggml_nrows(src0);
-
- const bool use_src1 = src1 != nullptr;
- const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
-
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
-
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-
- // dd = data device
- float * src0_ddf = nullptr;
- float * src1_ddf = nullptr;
- float * dst_ddf = nullptr;
-
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
-
- src0_ddf = (float *) src0_extra->data_device[g_main_device];
+static void ggml_cuda_op_hardsigmoid(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- if (use_src1) {
- src1_ddf = (float *) src1_extra->data_device[g_main_device];
- }
- dst_ddf = (float *) dst_extra->data_device[g_main_device];
+ hardsigmoid_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- // do the computation
- op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- CUDA_CHECK(cudaGetLastError());
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_set_peer_access(const int n_tokens) {
- static bool peer_access_enabled = false;
-
- const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
-
- if (peer_access_enabled == enable_peer_access) {
- return;
- }
-
-#ifdef NDEBUG
- for (int id = 0; id < g_device_count; ++id) {
- ggml_cuda_set_device(id);
- CUDA_CHECK(cudaDeviceSynchronize());
- }
-
- for (int id = 0; id < g_device_count; ++id) {
- ggml_cuda_set_device(id);
-
- for (int id_other = 0; id_other < g_device_count; ++id_other) {
- if (id == id_other) {
- continue;
- }
- if (id != g_main_device && id_other != g_main_device) {
- continue;
- }
+static void ggml_cuda_op_hardswish(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int can_access_peer;
- CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
- if (can_access_peer) {
- if (enable_peer_access) {
- cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
- if (err != cudaErrorPeerAccessAlreadyEnabled) {
- CUDA_CHECK(err);
- }
- } else {
- cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
- if (err != cudaErrorPeerAccessNotEnabled) {
- CUDA_CHECK(err);
- }
- }
- }
- }
- }
-#endif // NDEBUG
+ hardswish_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- peer_access_enabled = enable_peer_access;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-// FIXME: move this somewhere else
-struct ggml_backend_cuda_split_buffer_type_context {
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
-};
-
-static void ggml_cuda_op_mul_mat(
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
- const bool convert_src1_to_q8_1) {
-
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
-
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t nrows1 = ggml_nrows(src1);
-
- GGML_ASSERT(ne03 == ne13);
-
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
-
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
-
- GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
-
- GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
-
- const int64_t i02_divisor = ne12 / ne02;
-
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- const size_t q8_1_ts = sizeof(block_q8_1);
- const size_t q8_1_bs = QK8_1;
-
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src1_is_contiguous = ggml_is_contiguous(src1);
-
- const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
-
- const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- GGML_ASSERT(!(split && ne02 > 1));
- GGML_ASSERT(!(split && ne03 > 1));
- GGML_ASSERT(!(split && ne02 < ne12));
-
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
- if (split) {
- // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
- // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- tensor_split = buft_ctx->tensor_split;
- }
-
- struct dev_data {
- cuda_pool_alloc<char> src0_dd_alloc;
- cuda_pool_alloc<float> src1_ddf_alloc;
- cuda_pool_alloc<char> src1_ddq_alloc;
- cuda_pool_alloc<float> dst_dd_alloc;
-
- char * src0_dd = nullptr;
- float * src1_ddf = nullptr; // float
- char * src1_ddq = nullptr; // q8_1
- float * dst_dd = nullptr;
-
- int64_t row_low;
- int64_t row_high;
- };
-
- dev_data dev[GGML_CUDA_MAX_DEVICES];
-
- int used_devices = 0;
-
- for (int id = 0; id < g_device_count; ++id) {
- // by default, use all rows
- dev[id].row_low = 0;
- dev[id].row_high = ne01;
-
- // for multi GPU, get the row boundaries from tensor split
- // and round to mul_mat_q tile sizes
- if (split) {
- const int64_t rounding = get_row_rounding(src0->type, tensor_split);
-
- if (id != 0) {
- dev[id].row_low = ne01*tensor_split[id];
- if (dev[id].row_low < ne01) {
- dev[id].row_low -= dev[id].row_low % rounding;
- }
- }
-
- if (id != g_device_count - 1) {
- dev[id].row_high = ne01*tensor_split[id + 1];
- if (dev[id].row_high < ne01) {
- dev[id].row_high -= dev[id].row_high % rounding;
- }
- }
- }
- }
-
- for (int id = 0; id < g_device_count; ++id) {
- if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
-
- used_devices++;
-
- const bool src1_on_device = id == g_main_device; // TODO: check from buffer
- const bool dst_on_device = id == g_main_device;
-
- ggml_cuda_set_device(id);
- cudaStream_t stream = g_cudaStreams[id][0];
-
- if (src0_is_contiguous) {
- dev[id].src0_dd = (char *) src0_extra->data_device[id];
- } else {
- dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ggml_nbytes(src0));
- }
-
- if (src1_on_device && src1_is_contiguous) {
- dev[id].src1_ddf = (float *) src1_extra->data_device[id];
- } else {
- dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ggml_nelements(src1));
- }
+static void ggml_cuda_op_leaky_relu(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- if (convert_src1_to_q8_1) {
- dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
+ float negative_slope;
+ memcpy(&negative_slope, dst->op_params, sizeof(float));
- if (src1_on_device && src1_is_contiguous) {
- quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- }
+ leaky_relu_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
- if (dst_on_device) {
- dev[id].dst_dd = (float *) dst_extra->data_device[id];
- } else {
- const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
- dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(size_dst_ddf);
- }
- }
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signals that the main device has finished calculating the input data
- if (split && used_devices > 1) {
- ggml_cuda_set_device(g_main_device);
- CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
- }
+static void ggml_cuda_op_sqr(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
- for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
- const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
- const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
+ sqr_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- for (int id = 0; id < g_device_count; ++id) {
- if ((!split && id != g_main_device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- const bool src1_on_device = id == g_main_device; // TODO: check from buffer
- const bool dst_on_device = id == g_main_device;
- const int64_t row_diff = dev[id].row_high - dev[id].row_low;
+static void ggml_cuda_op_norm(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- ggml_cuda_set_device(id);
- cudaStream_t stream = g_cudaStreams[id][is];
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
- // wait for main GPU data if necessary
- if (split && (id != g_main_device || is != 0)) {
- CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[g_main_device][0], 0));
- }
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
- for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
- const int64_t i03 = i0 / ne12;
- const int64_t i02 = i0 % ne12;
+ norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
- float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
- char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
- float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
+static void ggml_cuda_op_group_norm(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (id == g_main_device) {
- dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
- }
+ int num_groups = dst->op_params[0];
+ int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
+ group_norm_f32_cuda(src0_dd, dst_dd, num_groups * src0->ne[3], group_size, ggml_nelements(src0), main_stream);
- // copy src0, src1 to device if necessary
- if (src1_is_contiguous) {
- if (id != g_main_device) {
- if (convert_src1_to_q8_1) {
- char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
- CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, g_main_device,
- src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
- } else {
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
- CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, g_main_device,
- src1_ncols*ne10*sizeof(float), stream));
- }
- }
- } else if (src1_on_device && !src1_is_contiguous) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
- } else {
- GGML_ASSERT(false);
- }
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- if (convert_src1_to_q8_1 && !src1_is_contiguous) {
- quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
+static void ggml_cuda_op_concat(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
- if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
- }
+ for (int i3 = 0; i3 < dst->ne[3]; i3++) {
+ concat_f32_cuda(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
+ }
- // do the computation
- op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
- dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+}
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device = dst_extra->data_device[g_main_device];
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
-#if !defined(GGML_USE_HIPBLAS)
- // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
- cudaMemcpy3DPeerParms p = {};
- p.dstDevice = g_main_device;
- p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
- p.srcDevice = id;
- p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
- p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
- CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
-#else
- // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
- CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
- dst_dd_i, row_diff*sizeof(float),
- row_diff*sizeof(float), src1_ncols,
- cudaMemcpyDeviceToDevice, stream));
-#endif
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0;
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
- }
- }
+static void ggml_cuda_op_upscale(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- // add event for the main device to wait on until other device is done
- if (split && (id != g_main_device || is != 0)) {
- CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
- }
- }
- }
- }
+ const int scale_factor = dst->op_params[0];
- // main device waits for all other devices to be finished
- if (split && g_device_count > 1) {
- int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
- is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
+ upscale_f32_cuda(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, main_stream);
- ggml_cuda_set_device(g_main_device);
- for (int id = 0; id < g_device_count; ++id) {
- if (dev[id].row_low == dev[id].row_high) {
- continue;
- }
- for (int64_t is = 0; is < is_max; ++is) {
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
- }
- }
- }
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_repeat);
-}
+static void ggml_cuda_op_pad(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
+ GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
-static void ggml_cuda_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_get_rows);
-}
+ pad_f32_cuda(src0_dd, dst_dd,
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], main_stream);
-static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_acc);
-}
+static void ggml_cuda_op_arange(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
-static void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_mul);
-}
+ float start;
+ float stop;
+ float step;
+ memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
+ memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
+ memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
-static void ggml_cuda_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_div);
-}
+ int64_t steps = (int64_t)ceil((stop - start) / step);
+ GGML_ASSERT(ggml_nelements(dst) == steps);
-static void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu);
-}
+ arange_f32_cuda(dst_dd, dst->ne[0], start, step, main_stream);
-static void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_silu);
+ GGML_UNUSED(src0);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(src0_dd);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_gelu_quick);
-}
+static void ggml_cuda_op_timestep_embedding(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
-static void ggml_cuda_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_tanh);
-}
+ const int dim = dst->op_params[0];
+ const int max_period = dst->op_params[1];
-static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
-}
+ timestep_embedding_f32_cuda(src0_dd, dst_dd, src0->ne[0], dst->nb[1], dim, max_period, main_stream);
-static void ggml_cuda_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardsigmoid);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardswish);
-}
-static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
-}
+static void ggml_cuda_op_rms_norm(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
-static void ggml_cuda_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sqr);
-}
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
-static void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_norm);
-}
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
-static void ggml_cuda_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_group_norm);
-}
+ rms_norm_f32_cuda(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
-static void ggml_cuda_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_concat);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
}
-static void ggml_cuda_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_upscale);
-}
+static void ggml_cuda_op_mul_mat_q(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream) {
-static void ggml_cuda_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pad);
-}
+ const int64_t ne00 = src0->ne[0];
-static void ggml_cuda_arange(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+ const int64_t ne10 = src1->ne[0];
+ GGML_ASSERT(ne10 % QK8_1 == 0);
- // dd = data device
- float * src0_ddf = nullptr;
- float * src1_ddf = nullptr;
- float * dst_ddf = nullptr;
+ const int64_t ne0 = dst->ne[0];
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
+ const int64_t row_diff = row_high - row_low;
- dst_ddf = (float *) dst_extra->data_device[g_main_device];
+ int id = ggml_cuda_get_device();
- // do the computation
- ggml_cuda_op_arange(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- CUDA_CHECK(cudaGetLastError());
-}
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // nrows_dst == nrows of the matrix that the kernel writes into
+ const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
-static void ggml_cuda_timestep_embedding(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_timestep_embedding);
-}
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q2_K:
+ ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q3_K:
+ ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_K:
+ ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_K:
+ ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q6_K:
+ ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
-static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_ddf_i);
}
-static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
+static void ggml_cuda_op_mul_mat_vec_q(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream) {
const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
+ const int64_t row_diff = row_high - row_low;
- const int64_t ne12 = src1->ne[2];
+ const int64_t ne10 = src1->ne[0];
+ GGML_ASSERT(ne10 % QK8_1 == 0);
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
+ const int64_t ne0 = dst->ne[0];
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // nrows_dst == nrows of the matrix that the kernel writes into
+ const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q2_K:
+ mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q3_K:
+ mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q4_K:
+ mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q5_K:
+ mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_Q6_K:
+ mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ2_XXS:
+ mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ2_XS:
+ mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ2_S:
+ mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ3_XXS:
+ mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ1_S:
+ mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ4_NL:
+ mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ4_XS:
+ mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ case GGML_TYPE_IQ3_S:
+ mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
+ (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_ddf_i);
+ GGML_UNUSED(src1_ncols);
+ GGML_UNUSED(src1_padded_row_size);
}
-static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
+static void ggml_cuda_op_dequantize_mul_mat_vec(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream) {
+ GGML_UNUSED(ctx);
const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
+ const int64_t row_diff = row_high - row_low;
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne12 = src1->ne[2];
+ // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
+#ifdef GGML_CUDA_F16
+ cuda_pool_alloc<half> src1_dfloat_a;
+ half * src1_dfloat = nullptr; // dfloat == half
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
+ bool src1_convert_f16 =
+ src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
+ src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
+ src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
+ if (src1_convert_f16) {
+ src1_dfloat = src1_dfloat_a.alloc(ne00);
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+ GGML_ASSERT(to_fp16_cuda != nullptr);
+ to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
+ }
+#else
+ const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
+#endif // GGML_CUDA_F16
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q4_1:
+ dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q5_0:
+ dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q5_1:
+ dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q8_0:
+ dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q2_K:
+ dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q3_K:
+ dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q4_K:
+ dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q5_K:
+ dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_Q6_K:
+ dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
+ break;
+ case GGML_TYPE_F16:
+ convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_ddq_i);
+ GGML_UNUSED(src1_ncols);
+ GGML_UNUSED(src1_padded_row_size);
+}
- const int64_t row_stride_x = nb01 / sizeof(half);
- const int64_t channel_stride_x = nb02 / sizeof(half);
+static void ggml_cuda_op_mul_mat_cublas(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
+ const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
+ const int64_t src1_padded_row_size, cudaStream_t stream) {
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
-}
+ GGML_ASSERT(src0_dd_i != nullptr);
+ GGML_ASSERT(src1_ddf_i != nullptr);
+ GGML_ASSERT(dst_dd_i != nullptr);
-static __global__ void k_compute_batched_ptrs(
- const half * src0_as_f16, const half * src1_as_f16, char * dst,
- const void ** ptrs_src, void ** ptrs_dst,
- int64_t ne12, int64_t ne13,
- int64_t ne23,
- size_t nb02, size_t nb03,
- size_t nb12, size_t nb13,
- size_t nbd2, size_t nbd3,
- int64_t r2, int64_t r3) {
- int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne10 = src1->ne[0];
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
+ const int64_t ne0 = dst->ne[0];
- int64_t i03 = i13 / r3;
- int64_t i02 = i12 / r2;
+ const int64_t row_diff = row_high - row_low;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
-}
+ int id = ggml_cuda_get_device();
-static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // ldc == nrows of the matrix that cuBLAS writes into
+ int ldc = id == ctx.device ? ne0 : row_diff;
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ const int compute_capability = get_cuda_global_info().devices[id].cc;
- GGML_TENSOR_BINARY_OP_LOCALS
+ if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
+ // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
+ ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
+ if (src0->type != GGML_TYPE_F16) {
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
+ GGML_ASSERT(to_fp16_cuda != nullptr);
+ size_t ne = row_diff*ne00;
+ src0_as_f16.alloc(ne);
+ to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
+ }
+ const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
+
+ ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
+ if (src1->type != GGML_TYPE_F16) {
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+ GGML_ASSERT(to_fp16_cuda != nullptr);
+ size_t ne = src1_ncols*ne10;
+ src1_as_f16.alloc(ne);
+ to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
+ }
+ const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
+ ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
- const int64_t ne_dst = ggml_nelements(dst);
+ const half alpha_f16 = 1.0f;
+ const half beta_f16 = 0.0f;
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
+ CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
+ CUBLAS_CHECK(
+ cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
+ row_diff, src1_ncols, ne10,
+ &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
+ src1_ptr, CUDA_R_16F, ne10,
+ &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
+ CUBLAS_COMPUTE_16F,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
+ to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
+ } else {
+ ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
+ ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- half * src0_f16 = (half *) src0_ddq;
+ if (src0->type != GGML_TYPE_F32) {
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
+ GGML_ASSERT(to_fp32_cuda != nullptr);
+ src0_ddq_as_f32.alloc(row_diff*ne00);
+ to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
+ }
+ if (src1->type != GGML_TYPE_F32) {
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
+ GGML_ASSERT(to_fp32_cuda != nullptr);
+ src1_ddq_as_f32.alloc(src1_ncols*ne10);
+ to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
+ }
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
+ const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
+ const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
- // convert src1 to fp16
- cuda_pool_alloc<half> src1_f16_alloc;
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- const int64_t ne_src1 = ggml_nelements(src1);
- src1_f16_alloc.alloc(ne_src1);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
+ CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
+ CUBLAS_CHECK(
+ cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
+ row_diff, src1_ncols, ne10,
+ &alpha, src0_ddf_i, ne00,
+ src1_ddf1_i, ne10,
+ &beta, dst_dd_i, ldc));
}
- half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
-
- cuda_pool_alloc<half> dst_f16;
- char * dst_t;
-
- cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
- cudaDataType_t cu_data_type = CUDA_R_16F;
-
- // dst strides
- size_t nbd2 = dst->nb[2];
- size_t nbd3 = dst->nb[3];
-
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- const float alpha_f32 = 1.0f;
- const float beta_f32 = 0.0f;
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_ddq_i);
+ GGML_UNUSED(src1_padded_row_size);
+}
- const void * alpha = &alpha_f16;
- const void * beta = &beta_f16;
+static void ggml_cuda_op_rope(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
+ GGML_ASSERT(src0->type == dst->type);
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- dst_t = (char *) dst_f16.alloc(ne_dst);
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne2 = dst->ne[2];
+ const int64_t nrows = ggml_nrows(src0);
- nbd2 /= sizeof(float) / sizeof(half);
- nbd3 /= sizeof(float) / sizeof(half);
- } else {
- dst_t = (char *) dst_ddf;
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ const int n_ctx = ((int32_t *) dst->op_params)[3];
+ const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
- cu_compute_type = CUBLAS_COMPUTE_32F;
- cu_data_type = CUDA_R_32F;
+ // RoPE alteration for extended context
+ float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
+ memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
+ memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
+ memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
+ memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
+ memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- alpha = &alpha_f32;
- beta = &beta_f32;
+ const int32_t * pos = nullptr;
+ if ((mode & 1) == 0) {
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
+ GGML_ASSERT(src1->ne[0] == ne2);
+ pos = (const int32_t *) src1_dd;
}
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
-
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
+ const bool is_neox = mode & 2;
+ const bool is_glm = mode & 4;
-#if 0
- // use cublasGemmEx
- {
- for (int i13 = 0; i13 < ne13; ++i13) {
- for (int i12 = 0; i12 < ne12; ++i12) {
- int i03 = i13 / r3;
- int i02 = i12 / r2;
+ rope_corr_dims corr_dims;
+ ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
- (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
- beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
+ // compute
+ if (is_glm) {
+ GGML_ASSERT(false);
+ rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
+ } else if (is_neox) {
+ if (src0->type == GGML_TYPE_F32) {
+ rope_neox_cuda(
+ (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_neox_cuda(
+ (const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
}
- }
-#else
- if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
- // there is no broadcast and src0, src1 are contiguous across dims 2, 3
- // use cublasGemmStridedBatchedEx
- CUBLAS_CHECK(
- cublasGemmStridedBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
- (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
- beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
- ne12*ne13,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} else {
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
+ if (src0->type == GGML_TYPE_F32) {
+ rope_cuda(
+ (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, main_stream
+ );
+ } else if (src0->type == GGML_TYPE_F16) {
+ rope_cuda(
+ (const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
+ attn_factor, corr_dims, main_stream
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
+ }
- cuda_pool_alloc<const void *> ptrs_src(2*ne23);
- cuda_pool_alloc< void *> ptrs_dst(1*ne23);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
- src0_f16, src1_f16, dst_t,
- ptrs_src.get(), ptrs_dst.get(),
- ne12, ne13,
- ne23,
- nb02, nb03,
- src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
- src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
- nbd2, nbd3,
- r2, r3);
- CUDA_CHECK(cudaGetLastError());
+static void ggml_cuda_op_alibi(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- CUBLAS_CHECK(
- cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
- (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
- beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
- ne23,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
-#endif
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t nrows = ggml_nrows(src0);
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
- }
-}
+ //const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_head = ((int32_t *) dst->op_params)[1];
+ float max_bias;
+ memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
-static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
+ //GGML_ASSERT(ne01 + n_past == ne00);
+ GGML_ASSERT(n_head == ne02);
- int64_t min_compute_capability = INT_MAX;
+ const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- bool any_pascal_with_slow_fp16 = false;
- if (split) {
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- auto & tensor_split = buft_ctx->tensor_split;
- for (int id = 0; id < g_device_count; ++id) {
- // skip devices that are not going to do any work:
- if (tensor_split[id] >= (id + 1 < g_device_count ? tensor_split[id + 1] : 1.0f)) {
- continue;
- }
+ const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
+ const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- if (min_compute_capability > g_device_caps[id].cc) {
- min_compute_capability = g_device_caps[id].cc;
- }
- if (g_device_caps[id].cc == 610) {
- any_pascal_with_slow_fp16 = true;
- }
- }
- } else {
- min_compute_capability = g_device_caps[g_main_device].cc;
- any_pascal_with_slow_fp16 = g_device_caps[g_main_device].cc == 610;
- }
+ alibi_f32_cuda(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
- // check data types and tensor shapes for custom matrix multiplication kernels:
- bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(src1_dd);
+}
- bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
+static void ggml_cuda_op_pool2d(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
+
+ const int32_t * opts = (const int32_t *)dst->op_params;
+ enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
+ const int k0 = opts[1];
+ const int k1 = opts[2];
+ const int s0 = opts[3];
+ const int s1 = opts[4];
+ const int p0 = opts[5];
+ const int p1 = opts[6];
- bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
+ const int64_t IH = src0->ne[1];
+ const int64_t IW = src0->ne[0];
-#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ const int64_t N = dst->ne[3];
+ const int64_t OC = dst->ne[2];
+ const int64_t OH = dst->ne[1];
+ const int64_t OW = dst->ne[0];
- const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
+ const int parallel_elements = N * OC * OH * OW;
+ const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
+ dim3 block_nums(num_blocks);
+ pool2d_nchw_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, main_stream>>>(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_dd, dst_dd, op);
-#ifdef CUDA_USE_TENSOR_CORES
- use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
-#endif // CUDA_USE_TENSOR_CORES
+ GGML_UNUSED(src1);
+ GGML_UNUSED(src1_dd);
+}
-#else
+static void ggml_cuda_op_im2col(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
- const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
+ const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
+ const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
+ const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
+ const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
+ const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
+ const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
- use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
- use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
+ const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
-#ifdef CUDA_USE_TENSOR_CORES
- // when tensor cores are available, use them for large batch size
- // ref: https://github.com/ggerganov/llama.cpp/pull/3776
- use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
-#endif // CUDA_USE_TENSOR_CORES
+ const int64_t IC = src1->ne[is_2D ? 2 : 1];
+ const int64_t IH = is_2D ? src1->ne[1] : 1;
+ const int64_t IW = src1->ne[0];
-#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
+ const int64_t KH = is_2D ? src0->ne[1] : 1;
+ const int64_t KW = src0->ne[0];
- // if mmvq is available it's a better choice than dmmv:
-#ifndef GGML_CUDA_FORCE_DMMV
- use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
-#endif // GGML_CUDA_FORCE_DMMV
+ const int64_t OH = is_2D ? dst->ne[2] : 1;
+ const int64_t OW = dst->ne[1];
- // debug helpers
- //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
- //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
- //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
- //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
+ const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
+ const int64_t batch = src1->ne[3];
+ const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
- if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- // KQ single-batch
- ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
- } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
- // KQV single-batch
- ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
- } else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
- // KQ + KQV multi-batch
- ggml_cuda_mul_mat_batched_cublas(src0, src1, dst);
- } else if (use_dequantize_mul_mat_vec) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
- } else if (use_mul_mat_vec_q) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
- } else if (use_mul_mat_q) {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
+ if(dst->type == GGML_TYPE_F16) {
+ im2col_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
} else {
- ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
+ im2col_cuda(src1_dd, (float*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
}
-}
-#if 0
-template<typename ... Srcs>
-static __global__ void k_compute_batched_ptrs_id(
- const void ** ptrs_src, void ** ptrs_dst,
- int ne12, int ne13,
- int ne23,
- int nb02, int nb03,
- int nb12, int nb13,
- int nb2, int nb3,
- int r2, int r3,
- ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
- const half * src1_f16, half * dst_f16,
- const int32_t * ids, const int id,
- Srcs... src0s) {
+ GGML_UNUSED(src0);
+ GGML_UNUSED(src0_dd);
+}
- int i = ids[id];
+static void ggml_cuda_op_sum_rows(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- half * src0_f16;
- const void * srcs_ar[] = { (const half *) src0s... };
- if (src0_type == GGML_TYPE_F16) {
- src0_f16 = (half *) srcs_ar[i];
- } else {
- src0_f16 = src0_as_f16;
- if (threadIdx.x == 0 && threadIdx.y == 0) {
- const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
- to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
- }
- }
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
- int i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int i12 = blockIdx.y * blockDim.y + threadIdx.y;
+ sum_rows_f32_cuda(src0_dd, dst_dd, ncols, nrows, main_stream);
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- int i03 = i13 / r3;
- int i02 = i12 / r2;
+static void ggml_cuda_op_argsort(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_I32);
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
-}
+ const int64_t ncols = src0->ne[0];
+ const int64_t nrows = ggml_nrows(src0);
-static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
- const struct ggml_tensor * ids = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src00 = dst->src[2];
+ enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- const int id = dst->op_params[0];
+ argsort_f32_i32_cuda(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
- GGML_ASSERT(!ggml_is_transposed(src00));
- GGML_ASSERT(!ggml_is_transposed(src1));
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
+static void ggml_cuda_op_diag_mask_inf(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
- const int64_t ne01 = src00->ne[1];
- const int64_t ne02 = src00->ne[2];
- const int64_t ne03 = src00->ne[3];
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int nrows0 = ggml_nrows(src0);
- //const int64_t nb01 = src00->nb[1];
- const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
- const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
+ const int n_past = ((int32_t *) dst->op_params)[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
+ diag_mask_inf_f32_cuda(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
- //const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
- const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- const int64_t ne1 = ggml_nelements(src1);
- const int64_t ne = ggml_nelements(dst);
+static void ggml_cuda_op_soft_max(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
+ GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
+ const int64_t ne00 = src0->ne[0];
+ const int64_t nrows_x = ggml_nrows(src0);
+ const int64_t nrows_y = src0->ne[1];
- //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- //void * src0_ddq = src0_extra->data_device[g_main_device];
- //half * src0_as_f16 = (half *) src0_ddq;
+ float scale = 1.0f;
+ float max_bias = 0.0f;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
+ memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
+ memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
+ // positions tensor
+ float * src2_dd = nullptr;
- // convert src1 to fp16
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
+ ggml_tensor * src2 = dst->src[2];
+ const bool use_src2 = src2 != nullptr;
- size_t src1_as = 0;
- half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
- to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
+ if (use_src2) {
+ src2_dd = (float *)src2->data;
+ }
- size_t dst_as = 0;
- half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
+ soft_max_f32_cuda(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00, nrows_x, nrows_y, scale, max_bias, main_stream);
+}
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
+static void ggml_cuda_op_scale(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
+ float scale;
+ memcpy(&scale, dst->op_params, sizeof(float));
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
+ scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
+ CUDA_CHECK(cudaGetLastError());
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- const void ** ptrs_src = nullptr;
- void ** ptrs_dst = nullptr;
+static void ggml_cuda_op_clamp(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
+ const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
+ GGML_UNUSED(ctx);
+ GGML_ASSERT(src0->type == GGML_TYPE_F32);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32);
- size_t ptrs_src_s = 0;
- size_t ptrs_dst_s = 0;
+ float min;
+ float max;
+ memcpy(&min, dst->op_params, sizeof(float));
+ memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
- ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
+ clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
+ CUDA_CHECK(cudaGetLastError());
- int64_t src0_ne = ggml_nelements(src00);
- half * src0_as_f16 = nullptr;
- size_t src0_as = 0;
- if (src00->type != GGML_TYPE_F16) {
- src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
- }
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+ GGML_UNUSED(src1_dd);
+}
- static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
- ptrs_src, ptrs_dst,
- ne12, ne13,
- ne23,
- ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
- nb12, nb13,
- dst->nb[2], dst->nb[3],
- r2, r3,
- src00->type, src0_as_f16, src0_ne,
- src1_as_f16, dst_f16,
- (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
- dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
- dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
- dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
- dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
- );
+// TODO: remove this function
+static void ggml_cuda_op_flatten(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
+ GGML_ASSERT(!src0 || ggml_backend_buffer_is_cuda(src0->buffer));
+ GGML_ASSERT(!src1 || ggml_backend_buffer_is_cuda(src1->buffer));
+ GGML_ASSERT( ggml_backend_buffer_is_cuda(dst->buffer));
+
+ // dd = data device
+ float * src0_ddf = src0 ? (float *) src0->data : nullptr;
+ float * src1_ddf = src1 ? (float *) src1->data : nullptr;
+ float * dst_ddf = (float *) dst->data;
+
+ ggml_cuda_set_device(ctx.device);
+
+ // do the computation
+ op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, ctx.stream());
CUDA_CHECK(cudaGetLastError());
+}
- CUBLAS_CHECK(
- cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
- (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
- &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
- ne23,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
+ static bool peer_access_enabled = false;
- if (src0_as != 0) {
- ggml_cuda_pool_free(src0_as_f16, src0_as);
+ const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
+
+ if (peer_access_enabled == enable_peer_access) {
+ return;
}
- if (ptrs_src_s != 0) {
- ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
+
+#ifdef NDEBUG
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ ggml_cuda_set_device(id);
+ CUDA_CHECK(cudaDeviceSynchronize());
}
- if (ptrs_dst_s != 0) {
- ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
+
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ ggml_cuda_set_device(id);
+
+ for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
+ if (id == id_other) {
+ continue;
+ }
+ if (id != main_device && id_other != main_device) {
+ continue;
+ }
+
+ int can_access_peer;
+ CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
+ if (can_access_peer) {
+ if (enable_peer_access) {
+ cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
+ if (err != cudaErrorPeerAccessAlreadyEnabled) {
+ CUDA_CHECK(err);
+ }
+ } else {
+ cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
+ if (err != cudaErrorPeerAccessNotEnabled) {
+ CUDA_CHECK(err);
+ }
+ }
+ }
+ }
}
+#endif // NDEBUG
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
+ peer_access_enabled = enable_peer_access;
- ggml_cuda_pool_free(src1_as_f16, src1_as);
- ggml_cuda_pool_free(dst_f16, dst_as);
+ GGML_UNUSED(main_device);
}
-#endif
-static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-#if 0
- ggml_cuda_mul_mat_id_cublas(dst);
- // TODO: mmq/mmv support
-#endif
- cudaStream_t stream = g_cudaStreams[g_main_device][0];
+static void ggml_cuda_op_mul_mat(
+ ggml_backend_cuda_context & ctx,
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
+ const bool convert_src1_to_q8_1) {
- const size_t nb11 = src1->nb[1];
- const size_t nb1 = dst->nb[1];
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
- const struct ggml_tensor * ids = src0;
- const int32_t id = ((int32_t *) dst->op_params)[0];
- const int32_t n_as = ((int32_t *) dst->op_params)[1];
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+ const int64_t nrows1 = ggml_nrows(src1);
- std::vector<char> ids_host(ggml_nbytes(ids));
- const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
- CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- CUDA_CHECK(cudaStreamSynchronize(stream));
+ GGML_ASSERT(ne03 == ne13);
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
- const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
- const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
- ggml_tensor_extra_gpu src1_row_extra;
- ggml_tensor_extra_gpu dst_row_extra;
+ GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
+ GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
+ ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
+ ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
- ggml_tensor src1_row = *src1;
- ggml_tensor dst_row = *dst;
+ GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
- src1_row.backend = GGML_BACKEND_TYPE_GPU;
- dst_row.backend = GGML_BACKEND_TYPE_GPU;
+ GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
- src1_row.extra = &src1_row_extra;
- dst_row.extra = &dst_row_extra;
+ const int64_t i02_divisor = ne12 / ne02;
- char * src1_original = (char *) src1_extra->data_device[g_main_device];
- char * dst_original = (char *) dst_extra->data_device[g_main_device];
+ const size_t src0_ts = ggml_type_size(src0->type);
+ const size_t src0_bs = ggml_blck_size(src0->type);
+ const size_t q8_1_ts = sizeof(block_q8_1);
+ const size_t q8_1_bs = QK8_1;
- if (src1->ne[1] == 1) {
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
+ const bool src0_is_contiguous = ggml_is_contiguous(src0);
+ const bool src1_is_contiguous = ggml_is_contiguous(src1);
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
+ const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
+ const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
+ GGML_ASSERT(!(split && ne02 > 1));
+ GGML_ASSERT(!(split && ne03 > 1));
+ GGML_ASSERT(!(split && ne02 < ne12));
- src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
- src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
+ ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
- dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
- dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
- ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
- }
- } else {
- cuda_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
- cuda_pool_alloc<char> dst_contiguous(sizeof(float)*ggml_nelements(dst));
+ std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
+ if (split) {
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
+ tensor_split = buft_ctx->tensor_split;
+ }
- src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
- dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
+ struct dev_data {
+ ggml_cuda_pool_alloc<char> src0_dd_alloc;
+ ggml_cuda_pool_alloc<float> src1_ddf_alloc;
+ ggml_cuda_pool_alloc<char> src1_ddq_alloc;
+ ggml_cuda_pool_alloc<float> dst_dd_alloc;
- for (int32_t row_id = 0; row_id < n_as; ++row_id) {
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
+ char * src0_dd = nullptr;
+ float * src1_ddf = nullptr; // float
+ char * src1_ddq = nullptr; // q8_1
+ float * dst_dd = nullptr;
- int64_t num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
+ int64_t row_low;
+ int64_t row_high;
+ };
- if (row_id_i != row_id) {
- continue;
- }
+ dev_data dev[GGML_CUDA_MAX_DEVICES];
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
+ int used_devices = 0;
- CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
- nb11, cudaMemcpyDeviceToDevice, stream));
- num_src1_rows++;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ // by default, use all rows
+ dev[id].row_low = 0;
+ dev[id].row_high = ne01;
+
+ // for multi GPU, get the row boundaries from tensor split
+ // and round to mul_mat_q tile sizes
+ if (split) {
+ const int64_t rounding = get_row_rounding(src0->type, tensor_split);
+
+ if (id != 0) {
+ dev[id].row_low = ne01*tensor_split[id];
+ if (dev[id].row_low < ne01) {
+ dev[id].row_low -= dev[id].row_low % rounding;
+ }
}
- if (num_src1_rows == 0) {
- continue;
+ if (id != ggml_backend_cuda_get_device_count() - 1) {
+ dev[id].row_high = ne01*tensor_split[id + 1];
+ if (dev[id].row_high < ne01) {
+ dev[id].row_high -= dev[id].row_high % rounding;
+ }
}
+ }
+ }
- src1_row.ne[1] = num_src1_rows;
- dst_row.ne[1] = num_src1_rows;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
+ continue;
+ }
- src1_row.nb[1] = nb11;
- src1_row.nb[2] = num_src1_rows*nb11;
- src1_row.nb[3] = num_src1_rows*nb11;
+ used_devices++;
- dst_row.nb[1] = nb1;
- dst_row.nb[2] = num_src1_rows*nb1;
- dst_row.nb[3] = num_src1_rows*nb1;
+ const bool src1_on_device = id == src1_ctx->device;
+ const bool dst_on_device = id == dst_ctx->device;
- ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
+ ggml_cuda_set_device(id);
+ cudaStream_t stream = ctx.stream(id, 0);
- num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
+ if (src0_is_contiguous) {
+ dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
+ } else {
+ dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
+ }
- if (row_id_i != row_id) {
- continue;
- }
+ if (src1_on_device && src1_is_contiguous) {
+ dev[id].src1_ddf = (float *) src1->data;
+ } else {
+ dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
+ }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
+ if (convert_src1_to_q8_1) {
+ dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
- CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
- nb1, cudaMemcpyDeviceToDevice, stream));
- num_src1_rows++;
+ if (src1_on_device && src1_is_contiguous) {
+ quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
+ CUDA_CHECK(cudaGetLastError());
}
}
+
+ if (dst_on_device) {
+ dev[id].dst_dd = (float *) dst->data;
+ } else {
+ const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
+ dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
+ }
}
-}
-static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
-}
+ // if multiple devices are used they need to wait for the main device
+ // here an event is recorded that signals that the main device has finished calculating the input data
+ if (split && used_devices > 1) {
+ ggml_cuda_set_device(ctx.device);
+ CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
+ }
-static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
-}
+ const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
+ for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
+ const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
+ const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
-static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
+ continue;
+ }
- GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
- GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
+ const bool src1_on_device = id == src1_ctx->device;
+ const bool dst_on_device = id == dst_ctx->device;
+ const int64_t row_diff = dev[id].row_high - dev[id].row_low;
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
+ ggml_cuda_set_device(id);
+ cudaStream_t stream = ctx.stream(id, is);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
+ // wait for main GPU data if necessary
+ if (split && (id != ctx.device || is != 0)) {
+ CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
+ }
- //GGML_ASSERT(src0->ne[3] == 1);
+ for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
+ const int64_t i03 = i0 / ne12;
+ const int64_t i02 = i0 % ne12;
- const int64_t nb00 = src0->nb[0];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t nb03 = src0->nb[3];
+ const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
+
+ // for split tensors the data begins at i0 == i0_offset_low
+ char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
+ float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
+ char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
+ float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
+ // the main device memory buffer can be on VRAM scratch, with space for all partial results
+ // in that case an offset on dst_ddf_i is needed
+ if (id == ctx.device) {
+ dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
+ }
- //GGML_ASSERT(src1->ne[3] == 1);
+ // copy src0, src1 to device if necessary
+ if (src1_is_contiguous) {
+ if (id != ctx.device) {
+ if (convert_src1_to_q8_1) {
+ char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
+ CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
+ src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
+ } else {
+ float * src1_ddf_i_source = (float *) src1->data;
+ src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
+ CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
+ src1_ncols*ne10*sizeof(float), stream));
+ }
+ }
+ } else if (src1_on_device && !src1_is_contiguous) {
+ CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
+ src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
+ } else {
+ GGML_ASSERT(false);
+ }
- const int64_t nb10 = src1->nb[0];
- const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2];
- const int64_t nb13 = src1->nb[3];
+ if (convert_src1_to_q8_1 && !src1_is_contiguous) {
+ quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
+ CUDA_CHECK(cudaGetLastError());
+ }
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
+ if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
+ CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
+ }
- const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+ // do the computation
+ op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
+ dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
+ CUDA_CHECK(cudaGetLastError());
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
+ // copy dst to host or other device if necessary
+ if (!dst_on_device) {
+ void * dst_off_device = dst->data;
+ if (split) {
+ // src0 = weight matrix is saved as a transposed matrix for better memory layout.
+ // dst is NOT transposed.
+ // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
+ // Instead they need to be copied to the correct slice in ne0 = dst row index.
+ // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
+ float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+ GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+ dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
+#if !defined(GGML_USE_HIPBLAS)
+ // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
+ cudaMemcpy3DPeerParms p = {};
+ p.dstDevice = ctx.device;
+ p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
+ p.srcDevice = id;
+ p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
+ p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
+ CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
+#else
+ // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
+ CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
+ dst_dd_i, row_diff*sizeof(float),
+ row_diff*sizeof(float), src1_ncols,
+ cudaMemcpyDeviceToDevice, stream));
+#endif
+ } else {
+ float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
+ GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
+ dhf_dst_i += src1_col_0*ne0;
+ CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
+ }
+ }
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
- ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
- ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
- ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
- ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
+ // add event for the main device to wait on until other device is done
+ if (split && (id != ctx.device || is != 0)) {
+ CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
+ }
+ }
+ }
}
- (void) dst;
-}
+ // main device waits for all other devices to be finished
+ if (split && ggml_backend_cuda_get_device_count() > 1) {
+ int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
+ is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
-static void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // TODO: why do we pass dst as src1 here?
- ggml_cuda_cpy(src0, dst, nullptr);
- (void) src1;
+ ggml_cuda_set_device(ctx.device);
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ if (dev[id].row_low == dev[id].row_high) {
+ continue;
+ }
+ for (int64_t is = 0; is < is_max; ++is) {
+ CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
+ }
+ }
+ }
}
-static void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_diag_mask_inf);
+static void ggml_cuda_repeat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_repeat);
}
-static void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_soft_max);
+static void ggml_cuda_get_rows(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_get_rows);
}
-static void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rope);
+static void ggml_cuda_add(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_add);
}
-static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
+static void ggml_cuda_acc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_acc);
}
-static void ggml_cuda_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pool2d);
+static void ggml_cuda_mul(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_mul);
}
-static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
+static void ggml_cuda_div(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_div);
}
-static void ggml_cuda_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_sum_rows);
+static void ggml_cuda_gelu(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_gelu);
}
-static void ggml_cuda_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_argsort);
+static void ggml_cuda_silu(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_silu);
}
-static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
+static void ggml_cuda_gelu_quick(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_gelu_quick);
}
-static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
- return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
+static void ggml_cuda_tanh(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_tanh);
}
-static void ggml_cuda_set_main_device(const int main_device) {
- if (main_device >= g_device_count) {
- fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
- main_device, g_device_count, g_main_device);
- return;
- }
-
- if (g_main_device != main_device && g_device_count > 1) {
- g_main_device = main_device;
- //cudaDeviceProp prop;
- //CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
- //fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
- }
+static void ggml_cuda_relu(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_relu);
}
-static bool ggml_cuda_compute_forward(struct ggml_tensor * tensor) {
- if (!g_cublas_loaded) return false;
-
- if (tensor->op == GGML_OP_MUL_MAT) {
- if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
-#ifndef NDEBUG
- fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
-#endif
- return false;
- }
- }
-
- ggml_cuda_func_t func;
+static void ggml_cuda_hardsigmoid(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_hardsigmoid);
+}
- switch (tensor->op) {
- case GGML_OP_REPEAT:
- func = ggml_cuda_repeat;
- break;
- case GGML_OP_GET_ROWS:
- func = ggml_cuda_get_rows;
- break;
- case GGML_OP_DUP:
- func = ggml_cuda_dup;
- break;
- case GGML_OP_ADD:
- func = ggml_cuda_add;
- break;
- case GGML_OP_ACC:
- func = ggml_cuda_acc;
- break;
- case GGML_OP_MUL:
- func = ggml_cuda_mul;
- break;
- case GGML_OP_DIV:
- func = ggml_cuda_div;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- func = ggml_cuda_gelu;
- break;
- case GGML_UNARY_OP_SILU:
- func = ggml_cuda_silu;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- func = ggml_cuda_gelu_quick;
- break;
- case GGML_UNARY_OP_TANH:
- func = ggml_cuda_tanh;
- break;
- case GGML_UNARY_OP_RELU:
- func = ggml_cuda_relu;
- break;
- case GGML_UNARY_OP_HARDSIGMOID:
- func = ggml_cuda_hardsigmoid;
- break;
- case GGML_UNARY_OP_HARDSWISH:
- func = ggml_cuda_hardswish;
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_NORM:
- func = ggml_cuda_norm;
- break;
- case GGML_OP_GROUP_NORM:
- func = ggml_cuda_group_norm;
- break;
- case GGML_OP_CONCAT:
- func = ggml_cuda_concat;
- break;
- case GGML_OP_UPSCALE:
- func = ggml_cuda_upscale;
- break;
- case GGML_OP_PAD:
- func = ggml_cuda_pad;
- break;
- case GGML_OP_ARANGE:
- func = ggml_cuda_arange;
- break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- func = ggml_cuda_timestep_embedding;
- break;
- case GGML_OP_LEAKY_RELU:
- func = ggml_cuda_leaky_relu;
- break;
- case GGML_OP_RMS_NORM:
- func = ggml_cuda_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- func = ggml_cuda_mul_mat;
- break;
- case GGML_OP_MUL_MAT_ID:
- func = ggml_cuda_mul_mat_id;
- break;
- case GGML_OP_SCALE:
- func = ggml_cuda_scale;
- break;
- case GGML_OP_SQR:
- func = ggml_cuda_sqr;
- break;
- case GGML_OP_CLAMP:
- func = ggml_cuda_clamp;
- break;
- case GGML_OP_CPY:
- func = ggml_cuda_cpy;
- break;
- case GGML_OP_CONT:
- func = ggml_cuda_dup;
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- func = ggml_cuda_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- func = ggml_cuda_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- func = ggml_cuda_soft_max;
- break;
- case GGML_OP_ROPE:
- func = ggml_cuda_rope;
- break;
- case GGML_OP_ALIBI:
- func = ggml_cuda_alibi;
- break;
- case GGML_OP_IM2COL:
- func = ggml_cuda_im2col;
- break;
- case GGML_OP_POOL_2D:
- func = ggml_cuda_pool2d;
- break;
- case GGML_OP_SUM_ROWS:
- func = ggml_cuda_sum_rows;
- break;
- case GGML_OP_ARGSORT:
- func = ggml_cuda_argsort;
- break;
- default:
- return false;
- }
+static void ggml_cuda_hardswish(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_hardswish);
+}
+static void ggml_cuda_leaky_relu(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_leaky_relu);
+}
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
- ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
- }
+static void ggml_cuda_sqr(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_sqr);
+}
- func(tensor->src[0], tensor->src[1], tensor);
- return true;
+static void ggml_cuda_norm(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_norm);
}
-static int ggml_cuda_get_device_count() {
- int device_count;
- if (cudaGetDeviceCount(&device_count) != cudaSuccess) {
- return 0;
- }
- return device_count;
+static void ggml_cuda_group_norm(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_group_norm);
}
-static void ggml_cuda_get_device_description(int device, char * description, size_t description_size) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
- snprintf(description, description_size, "%s", prop.name);
+static void ggml_cuda_concat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_concat);
}
-////////////////////////////////////////////////////////////////////////////////
+static void ggml_cuda_upscale(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_upscale);
+}
-// backend interface
+static void ggml_cuda_pad(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_pad);
+}
-#define UNUSED GGML_UNUSED
+static void ggml_cuda_arange(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_arange);
+}
-struct ggml_backend_cuda_context {
- explicit ggml_backend_cuda_context(int device) :
- device(device),
- name(GGML_CUDA_NAME + std::to_string(device)) {
- }
+static void ggml_cuda_timestep_embedding(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_timestep_embedding);
+}
- ~ggml_backend_cuda_context() {
- if (copy_event != nullptr) {
- CUDA_CHECK(cudaEventDestroy(copy_event));
- }
- }
+static void ggml_cuda_rms_norm(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_rms_norm);
+}
- int device;
- std::string name;
- cudaEvent_t copy_event = nullptr;
-};
+static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
+ GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
+ GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
+ GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
+ GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
-// cuda buffer
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
-struct ggml_backend_cuda_buffer_context {
- int device;
- void * dev_ptr = nullptr;
- ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
- size_t temp_tensor_extra_index = 0;
- std::string name;
+ const int64_t ne12 = src1->ne[2];
- ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
- device(device), dev_ptr(dev_ptr),
- name(GGML_CUDA_NAME + std::to_string(device)) {
- }
+ ggml_cuda_set_device(ctx.device);
+ cudaStream_t main_stream = ctx.stream();
- ~ggml_backend_cuda_buffer_context() {
- delete[] temp_tensor_extras;
- }
+ void * src0_ddq = src0->data;
+ float * src1_ddf = (float *) src1->data;
+ float * dst_ddf = (float *) dst->data;
- ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
- // TODO: remove GGML_CUDA_MAX_NODES, allocate dynamically and reuse in backend_buffer_reset
- if (temp_tensor_extras == nullptr) {
- temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES];
- }
+ ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
+}
- size_t alloc_index = temp_tensor_extra_index;
- temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
+static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
+ GGML_ASSERT(!ggml_is_transposed(src0));
+ GGML_ASSERT(!ggml_is_transposed(src1));
+ GGML_ASSERT(!ggml_is_permuted(src0));
+ GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
- return extra;
- }
-};
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
-GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->name.c_str();
-}
+ const int64_t nb01 = src0->nb[1];
+ const int64_t nb02 = src0->nb[2];
-GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
-}
+ const int64_t ne12 = src1->ne[2];
-GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- CUDA_CHECK(cudaFree(ctx->dev_ptr));
- delete ctx;
-}
+ ggml_cuda_set_device(ctx.device);
+ cudaStream_t main_stream = ctx.stream();
-GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->dev_ptr;
+ void * src0_ddq = src0->data;
+ float * src1_ddf = (float *) src1->data;
+ float * dst_ddf = (float *) dst->data;
+
+ const int64_t row_stride_x = nb01 / sizeof(half);
+ const int64_t channel_stride_x = nb02 / sizeof(half);
+
+ ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
}
-GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+static __global__ void k_compute_batched_ptrs(
+ const half * src0_as_f16, const half * src1_as_f16, char * dst,
+ const void ** ptrs_src, void ** ptrs_dst,
+ int64_t ne12, int64_t ne13,
+ int64_t ne23,
+ size_t nb02, size_t nb03,
+ size_t nb12, size_t nb13,
+ size_t nbd2, size_t nbd3,
+ int64_t r2, int64_t r3) {
+ int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
+ int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (tensor->view_src != NULL && tensor->view_offs == 0) {
- assert(tensor->view_src->buffer->buft == buffer->buft);
- tensor->backend = tensor->view_src->backend;
- tensor->extra = tensor->view_src->extra;
+ if (i13 >= ne13 || i12 >= ne12) {
return;
}
- ggml_tensor_extra_gpu * extra = ctx->ggml_cuda_alloc_temp_tensor_extra();
+ int64_t i03 = i13 / r3;
+ int64_t i02 = i12 / r2;
- extra->data_device[ctx->device] = tensor->data;
+ ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
+ ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
+ ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
+}
- tensor->backend = GGML_BACKEND_TYPE_GPU;
- tensor->extra = extra;
+static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(!ggml_is_transposed(src0));
+ GGML_ASSERT(!ggml_is_transposed(src1));
- if (ggml_is_quantized(tensor->type)) {
- // initialize padding to 0 to avoid possible NaN values
- size_t original_size = ggml_nbytes(tensor);
- size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
+ GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
+ GGML_ASSERT(src0->type == GGML_TYPE_F16);
- if (padded_size > original_size && tensor->view_src == nullptr) {
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
- }
+ GGML_TENSOR_BINARY_OP_LOCALS
+
+ const int64_t ne_dst = ggml_nelements(dst);
+
+ ggml_cuda_set_device(ctx.device);
+ cudaStream_t main_stream = ctx.stream();
+
+ CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
+
+ void * src0_ddq = src0->data;
+ half * src0_f16 = (half *) src0_ddq;
+ float * src1_ddf = (float *) src1->data;
+ float * dst_ddf = (float *) dst->data;
+
+ // convert src1 to fp16
+ ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
+ if (src1->type != GGML_TYPE_F16) {
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+ const int64_t ne_src1 = ggml_nelements(src1);
+ src1_f16_alloc.alloc(ne_src1);
+ GGML_ASSERT(to_fp16_cuda != nullptr);
+ to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
}
-}
+ half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
-GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
+ ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
+ char * dst_t;
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+ cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
+ cudaDataType_t cu_data_type = CUDA_R_16F;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
-}
+ // dst strides
+ size_t nbd2 = dst->nb[2];
+ size_t nbd3 = dst->nb[3];
-GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
+ const half alpha_f16 = 1.0f;
+ const half beta_f16 = 0.0f;
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+ const float alpha_f32 = 1.0f;
+ const float beta_f32 = 0.0f;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
-}
+ const void * alpha = &alpha_f16;
+ const void * beta = &beta_f16;
-GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
- if (ggml_backend_buffer_is_cuda(src->buffer)) {
- ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
- ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
- if (src_ctx->device == dst_ctx->device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
- } else {
- CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
- }
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- return true;
+ if (dst->op_params[0] == GGML_PREC_DEFAULT) {
+ dst_t = (char *) dst_f16.alloc(ne_dst);
+
+ nbd2 /= sizeof(float) / sizeof(half);
+ nbd3 /= sizeof(float) / sizeof(half);
+ } else {
+ dst_t = (char *) dst_ddf;
+
+ cu_compute_type = CUBLAS_COMPUTE_32F;
+ cu_data_type = CUDA_R_32F;
+
+ alpha = &alpha_f32;
+ beta = &beta_f32;
}
- return false;
- UNUSED(buffer);
-}
+ GGML_ASSERT(ne12 % ne02 == 0);
+ GGML_ASSERT(ne13 % ne03 == 0);
-GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
+ // broadcast factors
+ const int64_t r2 = ne12/ne02;
+ const int64_t r3 = ne13/ne03;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
- CUDA_CHECK(cudaDeviceSynchronize());
-}
+#if 0
+ // use cublasGemmEx
+ {
+ for (int i13 = 0; i13 < ne13; ++i13) {
+ for (int i12 = 0; i12 < ne12; ++i12) {
+ int i03 = i13 / r3;
+ int i02 = i12 / r2;
-static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_cuda_buffer_clear,
- /* .reset = */ NULL,
-};
+ CUBLAS_CHECK(
+ cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
+ (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
+ beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
+ cu_compute_type,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+ }
+ }
+ }
+#else
+ if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
+ // there is no broadcast and src0, src1 are contiguous across dims 2, 3
+ // use cublasGemmStridedBatchedEx
+ CUBLAS_CHECK(
+ cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
+ (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
+ beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
+ ne12*ne13,
+ cu_compute_type,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+ } else {
+ // use cublasGemmBatchedEx
+ const int ne23 = ne12*ne13;
-// cuda buffer type
-struct ggml_backend_cuda_buffer_type_context {
- int device;
- std::string name;
-};
+ ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
+ ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
+
+ dim3 block_dims(ne13, ne12);
+ k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
+ src0_f16, src1_f16, dst_t,
+ ptrs_src.get(), ptrs_dst.get(),
+ ne12, ne13,
+ ne23,
+ nb02, nb03,
+ src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
+ src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
+ nbd2, nbd3,
+ r2, r3);
+ CUDA_CHECK(cudaGetLastError());
-GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+ CUBLAS_CHECK(
+ cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
+ (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
+ beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
+ ne23,
+ cu_compute_type,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+ }
+#endif
- return ctx->name.c_str();
+ if (dst->op_params[0] == GGML_PREC_DEFAULT) {
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
+ to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
+ }
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
- ggml_cuda_set_device(buft_ctx->device);
+ int64_t min_compute_capability = INT_MAX;
- size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
+ bool any_pascal_with_slow_fp16 = false;
+ if (split) {
+ ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
+ auto & tensor_split = buft_ctx->tensor_split;
+ for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
+ // skip devices that are not going to do any work:
+ if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
+ continue;
+ }
- void * dev_ptr;
- cudaError_t err = cudaMalloc(&dev_ptr, size);
- if (err != cudaSuccess) {
- fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
- return nullptr;
+ if (min_compute_capability > get_cuda_global_info().devices[id].cc) {
+ min_compute_capability = get_cuda_global_info().devices[id].cc;
+ }
+ if (get_cuda_global_info().devices[id].cc == 610) {
+ any_pascal_with_slow_fp16 = true;
+ }
+ }
+ } else {
+ min_compute_capability = get_cuda_global_info().devices[ctx.device].cc;
+ any_pascal_with_slow_fp16 = get_cuda_global_info().devices[ctx.device].cc == 610;
}
- ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
+ // check data types and tensor shapes for custom matrix multiplication kernels:
+ bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
+ && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
-}
+ bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
+ && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
+ bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
+ && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
- UNUSED(buft);
-}
+#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- size_t size = ggml_nbytes(tensor);
- int64_t ne0 = tensor->ne[0];
+ const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
- if (ggml_is_quantized(tensor->type)) {
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
+#ifdef CUDA_USE_TENSOR_CORES
+ use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
+#endif // CUDA_USE_TENSOR_CORES
- return size;
+#else
- UNUSED(buft);
-}
+ // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
+ const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
-GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- if (!ggml_backend_is_cuda(backend)) {
- return false;
- }
+ // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
+ use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
+ use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+#ifdef CUDA_USE_TENSOR_CORES
+ // when tensor cores are available, use them for large batch size
+ // ref: https://github.com/ggerganov/llama.cpp/pull/3776
+ use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
+#endif // CUDA_USE_TENSOR_CORES
- return buft_ctx->device == cuda_ctx->device;
-}
+#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
-static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
- /* .is_host = */ NULL,
-};
+ // if mmvq is available it's a better choice than dmmv:
+#ifndef GGML_CUDA_FORCE_DMMV
+ use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
+#endif // GGML_CUDA_FORCE_DMMV
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
- ggml_init_cublas();
+ // debug helpers
+ //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
+ //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
+ //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
+ //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
+ //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
+ //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
- // FIXME: this is not thread safe
- if (device >= ggml_backend_cuda_get_device_count()) {
- return nullptr;
+ if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
+ // KQ single-batch
+ ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
+ } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
+ // KQV single-batch
+ ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
+ } else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
+ // KQ + KQV multi-batch
+ ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
+ } else if (use_dequantize_mul_mat_vec) {
+ ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
+ } else if (use_mul_mat_vec_q) {
+ ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
+ } else if (use_mul_mat_q) {
+ ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
+ } else {
+ ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
}
+}
- static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
+#if 0
+template<typename ... Srcs>
+static __global__ void k_compute_batched_ptrs_id(
+ const void ** ptrs_src, void ** ptrs_dst,
+ int ne12, int ne13,
+ int ne23,
+ int nb02, int nb03,
+ int nb12, int nb13,
+ int nb2, int nb3,
+ int r2, int r3,
+ ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
+ const half * src1_f16, half * dst_f16,
+ const int32_t * ids, const int id,
+ Srcs... src0s) {
- static bool ggml_backend_cuda_buffer_type_initialized = false;
+ int i = ids[id];
- if (!ggml_backend_cuda_buffer_type_initialized) {
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
- ggml_backend_cuda_buffer_types[i] = {
- /* .iface = */ ggml_backend_cuda_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
- };
+ half * src0_f16;
+ const void * srcs_ar[] = { (const half *) src0s... };
+ if (src0_type == GGML_TYPE_F16) {
+ src0_f16 = (half *) srcs_ar[i];
+ } else {
+ src0_f16 = src0_as_f16;
+ if (threadIdx.x == 0 && threadIdx.y == 0) {
+ const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
+ to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
}
- ggml_backend_cuda_buffer_type_initialized = true;
}
- return &ggml_backend_cuda_buffer_types[device];
-}
-
-// cuda split buffer
+ int i13 = blockIdx.x * blockDim.x + threadIdx.x;
+ int i12 = blockIdx.y * blockDim.y + threadIdx.y;
-struct ggml_backend_cuda_split_buffer_context {
- ~ggml_backend_cuda_split_buffer_context() {
- for (ggml_tensor_extra_gpu * extra : tensor_extras) {
- for (int id = 0; id < g_device_count; ++id) {
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- if (extra->events[id][is] != nullptr) {
- CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
- }
- }
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- }
- delete extra;
- }
+ if (i13 >= ne13 || i12 >= ne12) {
+ return;
}
- std::vector<ggml_tensor_extra_gpu *> tensor_extras;
-};
-
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Split";
+ int i03 = i13 / r3;
+ int i02 = i12 / r2;
- UNUSED(buffer);
+ ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
+ ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
+ ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
}
-static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
- UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
-}
+static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
+ const struct ggml_tensor * ids = dst->src[0];
+ const struct ggml_tensor * src1 = dst->src[1];
+ const struct ggml_tensor * src00 = dst->src[2];
-GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- delete ctx;
-}
+ const int id = dst->op_params[0];
-GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
- // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
- return (void *)0x1000;
+ GGML_ASSERT(!ggml_is_transposed(src00));
+ GGML_ASSERT(!ggml_is_transposed(src1));
- UNUSED(buffer);
-}
+ GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
+ GGML_ASSERT(src1->type == GGML_TYPE_F32);
-GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
+ const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
+ const int64_t ne01 = src00->ne[1];
+ const int64_t ne02 = src00->ne[2];
+ const int64_t ne03 = src00->ne[3];
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
+ //const int64_t nb01 = src00->nb[1];
+ const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
+ const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
- const int64_t ne0 = tensor->ne[0];
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
- ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
+ //const int64_t nb11 = src1->nb[1];
+ const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
+ const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
- ctx->tensor_extras.push_back(extra);
+ const int64_t ne1 = ggml_nelements(src1);
+ const int64_t ne = ggml_nelements(dst);
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
+ ggml_cuda_set_device(g_main_device);
+ cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
+ CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
+ //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
+ //void * src0_ddq = src0_extra->data_device[g_main_device];
+ //half * src0_as_f16 = (half *) src0_ddq;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
+ ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
+ float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- // FIXME: do not crash if cudaMalloc fails
- // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
- ggml_cuda_set_device(id);
- char * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
+ ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
+ float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
+ // convert src1 to fp16
+ const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
+ GGML_ASSERT(to_fp16_cuda != nullptr);
- extra->data_device[id] = buf;
+ size_t src1_as = 0;
+ half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
+ to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
- }
- }
- tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
- tensor->extra = extra;
-}
+ size_t dst_as = 0;
+ half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
-GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
+ GGML_ASSERT(ne12 % ne02 == 0);
+ GGML_ASSERT(ne13 % ne03 == 0);
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
+ // broadcast factors
+ const int64_t r2 = ne12/ne02;
+ const int64_t r3 = ne13/ne03;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
+ const half alpha_f16 = 1.0f;
+ const half beta_f16 = 0.0f;
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
+ // use cublasGemmBatchedEx
+ const int ne23 = ne12*ne13;
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
+ const void ** ptrs_src = nullptr;
+ void ** ptrs_dst = nullptr;
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
+ size_t ptrs_src_s = 0;
+ size_t ptrs_dst_s = 0;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
+ ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
+ ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
- const char * buf_host = (const char *)data + offset_split;
- CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
+ int64_t src0_ne = ggml_nelements(src00);
+ half * src0_as_f16 = nullptr;
+ size_t src0_as = 0;
+ if (src00->type != GGML_TYPE_F16) {
+ src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
}
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
+ static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
+ dim3 block_dims(ne13, ne12);
+ k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
+ ptrs_src, ptrs_dst,
+ ne12, ne13,
+ ne23,
+ ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
+ nb12, nb13,
+ dst->nb[2], dst->nb[3],
+ r2, r3,
+ src00->type, src0_as_f16, src0_ne,
+ src1_as_f16, dst_f16,
+ (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
+ dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
+ dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
+ dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
+ dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
+ );
+ CUDA_CHECK(cudaGetLastError());
+
+ CUBLAS_CHECK(
+ cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
+ (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
+ &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
+ ne23,
+ CUBLAS_COMPUTE_16F,
+ CUBLAS_GEMM_DEFAULT_TENSOR_OP));
+
+ if (src0_as != 0) {
+ ggml_cuda_pool_free(src0_as_f16, src0_as);
+ }
+ if (ptrs_src_s != 0) {
+ ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
+ }
+ if (ptrs_dst_s != 0) {
+ ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
}
+
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
+ to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
+
+ ggml_cuda_pool_free(src1_as_f16, src1_as);
+ ggml_cuda_pool_free(dst_f16, dst_as);
}
+#endif
-GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
+static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+#if 0
+ ggml_cuda_mul_mat_id_cublas(dst);
+ // TODO: mmq/mmv support
+#endif
+ cudaStream_t stream = ctx.stream();
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
+ const size_t nb11 = src1->nb[1];
+ const size_t nb1 = dst->nb[1];
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
+ const struct ggml_tensor * ids = src0;
+ const int32_t id = ((int32_t *) dst->op_params)[0];
+ const int32_t n_as = ((int32_t *) dst->op_params)[1];
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
+ std::vector<char> ids_host(ggml_nbytes(ids));
+ const char * ids_dev = (const char *) ids->data;
+ CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
+ CUDA_CHECK(cudaStreamSynchronize(stream));
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
+ ggml_tensor src1_row = *src1;
+ ggml_tensor dst_row = *dst;
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
+ char * src1_original = (char *) src1->data;
+ char * dst_original = (char *) dst->data;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
+ if (src1->ne[1] == 1) {
+ for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+ const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- char * buf_host = (char *)data + offset_split;
- CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
- }
+ GGML_ASSERT(row_id >= 0 && row_id < n_as);
- for (int id = 0; id < g_device_count; ++id) {
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
-}
+ const struct ggml_tensor * src0_row = dst->src[row_id + 2];
-GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- UNUSED(buffer);
- UNUSED(value);
-}
+ src1_row.data = src1_original + i01*src1->nb[1];
+ dst_row.data = dst_original + i01*dst->nb[1];
-static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_cuda_split_buffer_clear,
- /* .reset = */ NULL,
-};
+ ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
+ }
+ } else {
+ ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
+ ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
-// cuda split buffer type
+ src1_row.data = src1_contiguous.get();
+ dst_row.data = dst_contiguous.get();
-GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Split";
+ for (int32_t row_id = 0; row_id < n_as; ++row_id) {
+ const struct ggml_tensor * src0_row = dst->src[row_id + 2];
- UNUSED(buft);
-}
+ int64_t num_src1_rows = 0;
+ for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+ const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
- // instead, we allocate them for each tensor separately in init_tensor
- // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
- // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
- ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
+ if (row_id_i != row_id) {
+ continue;
+ }
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
-}
+ GGML_ASSERT(row_id >= 0 && row_id < n_as);
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
+ CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
+ nb11, cudaMemcpyDeviceToDevice, stream));
+ num_src1_rows++;
+ }
- UNUSED(buft);
-}
+ if (num_src1_rows == 0) {
+ continue;
+ }
-GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
+ src1_row.ne[1] = num_src1_rows;
+ dst_row.ne[1] = num_src1_rows;
- size_t total_size = 0;
+ src1_row.nb[1] = nb11;
+ src1_row.nb[2] = num_src1_rows*nb11;
+ src1_row.nb[3] = num_src1_rows*nb11;
- const int64_t ne0 = tensor->ne[0];
+ dst_row.nb[1] = nb1;
+ dst_row.nb[2] = num_src1_rows*nb1;
+ dst_row.nb[3] = num_src1_rows*nb1;
- for (int id = 0; id < g_device_count; ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
+ ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
+ num_src1_rows = 0;
+ for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
+ const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- total_size += ggml_nbytes_split(tensor, nrows_split);
+ if (row_id_i != row_id) {
+ continue;
+ }
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
+ GGML_ASSERT(row_id >= 0 && row_id < n_as);
+
+ CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
+ nb1, cudaMemcpyDeviceToDevice, stream));
+ num_src1_rows++;
+ }
}
}
+}
- return total_size;
+static void ggml_cuda_scale(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_scale);
}
-GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_cuda(backend);
+static void ggml_cuda_clamp(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_clamp);
+}
+
+static void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ const int64_t ne = ggml_nelements(src0);
+ GGML_ASSERT(ne == ggml_nelements(src1));
+
+ GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
+
+ GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
+ GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
- UNUSED(buft);
-}
+ //GGML_ASSERT(src0->ne[3] == 1);
-GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
- return false;
+ const int64_t nb00 = src0->nb[0];
+ const int64_t nb01 = src0->nb[1];
+ const int64_t nb02 = src0->nb[2];
+ const int64_t nb03 = src0->nb[3];
- UNUSED(buft);
-}
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
-static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
- /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
-};
+ //GGML_ASSERT(src1->ne[3] == 1);
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
- ggml_init_cublas();
+ const int64_t nb10 = src1->nb[0];
+ const int64_t nb11 = src1->nb[1];
+ const int64_t nb12 = src1->nb[2];
+ const int64_t nb13 = src1->nb[3];
- // FIXME: this is not thread safe
- static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
+ ggml_cuda_set_device(ctx.device);
+ cudaStream_t main_stream = ctx.stream();
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
+ char * src0_ddc = (char *) src0->data;
+ char * src1_ddc = (char *) src1->data;
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
- if (all_zero) {
- tensor_split_arr = g_default_tensor_split;
+ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
+ ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
+ ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
+ ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
+ ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
+ ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
+ ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
+ } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
+ ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- tensor_split_arr[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- tensor_split_arr[i] /= split_sum;
- }
+ fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
+ ggml_type_name(src0->type), ggml_type_name(src1->type));
+ GGML_ASSERT(false);
}
- auto it = buft_map.find(tensor_split_arr);
- if (it != buft_map.end()) {
- return &it->second;
- }
+ GGML_UNUSED(dst);
+}
- struct ggml_backend_buffer_type buft {
- /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
- };
+static void ggml_cuda_dup(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ // TODO: why do we pass dst as src1 here?
+ ggml_cuda_cpy(ctx, src0, dst, nullptr);
+ GGML_UNUSED(src1);
+}
- auto result = buft_map.emplace(tensor_split_arr, buft);
- return &result.first->second;
+static void ggml_cuda_diag_mask_inf(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_diag_mask_inf);
}
-// host buffer type
+static void ggml_cuda_soft_max(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_soft_max);
+}
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Host";
+static void ggml_cuda_rope(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_rope);
+}
- UNUSED(buft);
+static void ggml_cuda_alibi(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_alibi);
}
-GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Host";
+static void ggml_cuda_pool2d(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_pool2d);
+}
- UNUSED(buffer);
+static void ggml_cuda_im2col(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_im2col);
}
-GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_cuda_host_free(buffer->context);
+static void ggml_cuda_sum_rows(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_sum_rows);
}
-GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- void * ptr = ggml_cuda_host_malloc(size);
+static void ggml_cuda_argsort(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ ggml_cuda_op_flatten(ctx, src0, src1, dst, ggml_cuda_op_argsort);
+}
- if (ptr == nullptr) {
- // fallback to cpu buffer
- return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
+static void ggml_cuda_nop(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_UNUSED(ctx);
+ GGML_UNUSED(src0);
+ GGML_UNUSED(src1);
+ GGML_UNUSED(dst);
+}
+
+static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * tensor) {
+ // FIXME: where should this be?
+ if (tensor->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(tensor->src[0]->buffer)) {
+ ggml_cuda_set_peer_access(tensor->src[1]->ne[1], ctx.device);
}
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
- buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
+ ggml_cuda_func_t func;
- return buffer;
+ switch (tensor->op) {
+ case GGML_OP_REPEAT:
+ func = ggml_cuda_repeat;
+ break;
+ case GGML_OP_GET_ROWS:
+ func = ggml_cuda_get_rows;
+ break;
+ case GGML_OP_DUP:
+ func = ggml_cuda_dup;
+ break;
+ case GGML_OP_ADD:
+ func = ggml_cuda_add;
+ break;
+ case GGML_OP_ACC:
+ func = ggml_cuda_acc;
+ break;
+ case GGML_OP_MUL:
+ func = ggml_cuda_mul;
+ break;
+ case GGML_OP_DIV:
+ func = ggml_cuda_div;
+ break;
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(tensor)) {
+ case GGML_UNARY_OP_GELU:
+ func = ggml_cuda_gelu;
+ break;
+ case GGML_UNARY_OP_SILU:
+ func = ggml_cuda_silu;
+ break;
+ case GGML_UNARY_OP_GELU_QUICK:
+ func = ggml_cuda_gelu_quick;
+ break;
+ case GGML_UNARY_OP_TANH:
+ func = ggml_cuda_tanh;
+ break;
+ case GGML_UNARY_OP_RELU:
+ func = ggml_cuda_relu;
+ break;
+ case GGML_UNARY_OP_HARDSIGMOID:
+ func = ggml_cuda_hardsigmoid;
+ break;
+ case GGML_UNARY_OP_HARDSWISH:
+ func = ggml_cuda_hardswish;
+ break;
+ default:
+ return false;
+ }
+ break;
+ case GGML_OP_NORM:
+ func = ggml_cuda_norm;
+ break;
+ case GGML_OP_GROUP_NORM:
+ func = ggml_cuda_group_norm;
+ break;
+ case GGML_OP_CONCAT:
+ func = ggml_cuda_concat;
+ break;
+ case GGML_OP_UPSCALE:
+ func = ggml_cuda_upscale;
+ break;
+ case GGML_OP_PAD:
+ func = ggml_cuda_pad;
+ break;
+ case GGML_OP_ARANGE:
+ func = ggml_cuda_arange;
+ break;
+ case GGML_OP_TIMESTEP_EMBEDDING:
+ func = ggml_cuda_timestep_embedding;
+ break;
+ case GGML_OP_LEAKY_RELU:
+ func = ggml_cuda_leaky_relu;
+ break;
+ case GGML_OP_RMS_NORM:
+ func = ggml_cuda_rms_norm;
+ break;
+ case GGML_OP_MUL_MAT:
+ if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
+ fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
+ return false;
+ } else {
+ func = ggml_cuda_mul_mat;
+ }
+ break;
+ case GGML_OP_MUL_MAT_ID:
+ func = ggml_cuda_mul_mat_id;
+ break;
+ case GGML_OP_SCALE:
+ func = ggml_cuda_scale;
+ break;
+ case GGML_OP_SQR:
+ func = ggml_cuda_sqr;
+ break;
+ case GGML_OP_CLAMP:
+ func = ggml_cuda_clamp;
+ break;
+ case GGML_OP_CPY:
+ func = ggml_cuda_cpy;
+ break;
+ case GGML_OP_CONT:
+ func = ggml_cuda_dup;
+ break;
+ case GGML_OP_NONE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_TRANSPOSE:
+ func = ggml_cuda_nop;
+ break;
+ case GGML_OP_DIAG_MASK_INF:
+ func = ggml_cuda_diag_mask_inf;
+ break;
+ case GGML_OP_SOFT_MAX:
+ func = ggml_cuda_soft_max;
+ break;
+ case GGML_OP_ROPE:
+ func = ggml_cuda_rope;
+ break;
+ case GGML_OP_ALIBI:
+ func = ggml_cuda_alibi;
+ break;
+ case GGML_OP_IM2COL:
+ func = ggml_cuda_im2col;
+ break;
+ case GGML_OP_POOL_2D:
+ func = ggml_cuda_pool2d;
+ break;
+ case GGML_OP_SUM_ROWS:
+ func = ggml_cuda_sum_rows;
+ break;
+ case GGML_OP_ARGSORT:
+ func = ggml_cuda_argsort;
+ break;
+ default:
+ return false;
+ }
+
+ func(ctx, tensor->src[0], tensor->src[1], tensor);
+ return true;
}
-GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
- static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .context = */ nullptr,
- };
- return &ggml_backend_cuda_buffer_type_host;
-}
+////////////////////////////////////////////////////////////////////////////////
-//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
-// return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
-//}
// backend
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
+ CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}
GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
+ CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
// copy on src stream
if (cuda_ctx_src->device == cuda_ctx_dst->device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx_dst->device][0]));
+ CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
} else {
- CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), g_cudaStreams[cuda_ctx_src->device][0]));
+ CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
}
// record event on src stream
- CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, g_cudaStreams[cuda_ctx_src->device][0]));
+ CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
// wait on dst stream for the copy to complete
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[cuda_ctx_dst->device][0], cuda_ctx_src->copy_event, 0));
+ CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
} else {
// src and dst are on the same backend
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, g_cudaStreams[cuda_ctx_dst->device][0]));
+ CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
}
return true;
}
GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0]));
+ CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
- UNUSED(backend);
+ GGML_UNUSED(backend);
}
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_cuda_set_main_device(cuda_ctx->device);
+ ggml_cuda_set_device(cuda_ctx->device);
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
}
#ifndef NDEBUG
- assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
- assert(node->extra != nullptr);
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
- assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
- assert(node->src[j]->extra != nullptr);
}
}
#endif
- bool ok = ggml_cuda_compute_forward(node);
+ bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
if (!ok) {
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
return false;
}
- UNUSED(backend);
+ GGML_UNUSED(backend);
}
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
- UNUSED(backend);
+ GGML_UNUSED(backend);
}
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
- CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, g_cudaStreams[cuda_ctx->device][0]));
+ CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
}
static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
if (ggml_backend_is_cuda(event->backend)) {
- CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[cuda_ctx->device][0], (cudaEvent_t)event->context, 0));
+ CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
} else {
#if 0
// untested
ggml_backend_event_synchronize(event);
};
- CUDA_CHECK(cudaLaunchHostFunc(g_cudaStreams[cuda_ctx->device][0], wait_fn, event));
+ CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
#endif
GGML_ASSERT(false);
}
}
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
- ggml_init_cublas();
-
- if (device < 0 || device >= ggml_cuda_get_device_count()) {
+ if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
return nullptr;
}
- // not strictly necessary, but it may reduce the overhead of the first graph_compute
- ggml_cuda_set_main_device(device);
-
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
if (ctx == nullptr) {
fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
}
GGML_CALL int ggml_backend_cuda_get_device_count() {
- return ggml_cuda_get_device_count();
+ return get_cuda_global_info().device_count;
}
GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
- ggml_cuda_get_device_description(device, description, description_size);
+ cudaDeviceProp prop;
+ CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
+ snprintf(description, description_size, "%s", prop.name);
}
GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
return cuda_backend;
- UNUSED(params);
+ GGML_UNUSED(params);
}
extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
GGML_CALL int ggml_backend_cuda_reg_devices() {
- int device_count = ggml_cuda_get_device_count();
+ int device_count = ggml_backend_cuda_get_device_count();
//int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
for (int i = 0; i < device_count; i++) {
char name[128];