]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
opencl: initial `q8_0` mv support (#15732)
authorlhez <redacted>
Sun, 21 Sep 2025 21:48:44 +0000 (14:48 -0700)
committerGitHub <redacted>
Sun, 21 Sep 2025 21:48:44 +0000 (14:48 -0700)
ggml/src/ggml-opencl/CMakeLists.txt
ggml/src/ggml-opencl/ggml-opencl.cpp
ggml/src/ggml-opencl/kernels/cvt.cl
ggml/src/ggml-opencl/kernels/mul_mv_id_q8_0_f32.cl [new file with mode: 0644]
ggml/src/ggml-opencl/kernels/mul_mv_id_q8_0_f32_flat.cl [new file with mode: 0644]
ggml/src/ggml-opencl/kernels/mul_mv_q8_0_f32.cl [new file with mode: 0644]
ggml/src/ggml-opencl/kernels/mul_mv_q8_0_f32_flat.cl [new file with mode: 0644]

index 1c06aa138bf07cc894e4c0c35b069c035b5fb43e..7e6c843846708dae0fb8d82a3720d64e1642cb8c 100644 (file)
@@ -82,9 +82,13 @@ set(GGML_OPENCL_KERNELS
     mul_mv_q4_0_f32_1d_8x_flat
     mul_mv_q4_0_f32_1d_16x_flat
     mul_mv_q6_k
+    mul_mv_q8_0_f32
+    mul_mv_q8_0_f32_flat
     mul_mv_mxfp4_f32
     mul_mv_mxfp4_f32_flat
     mul_mv_id_q4_0_f32_8x_flat
+    mul_mv_id_q8_0_f32
+    mul_mv_id_q8_0_f32_flat
     mul_mv_id_mxfp4_f32
     mul_mv_id_mxfp4_f32_flat
     mul_mm_f32_f32_l4_lm
index 2cb838b7139c9e91740345c77d725ec75f915311..9de15c051b79f6576f004add11d3f13db25bad76 100644 (file)
@@ -367,6 +367,7 @@ struct ggml_backend_opencl_context {
     cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
     cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
     cl_program program_mul_mv_q6_K;
+    cl_program program_mul_mv_q8_0_f32, program_mul_mv_q8_0_f32_flat;
     cl_program program_mul_mv_mxfp4_f32;
     cl_program program_mul_mv_mxfp4_f32_flat;
     cl_program program_mul_mv_f16_f16;
@@ -402,6 +403,7 @@ struct ggml_backend_opencl_context {
     cl_program program_conv_2d_f16_f32;
     cl_program program_tsembd;
     cl_program program_mul_mv_id_q4_0_f32_8x_flat;
+    cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
     cl_program program_mul_mv_id_mxfp4_f32;
     cl_program program_mul_mv_id_mxfp4_f32_flat;
     cl_program program_mul_mm_f32_f32_l4_lm;
@@ -450,11 +452,13 @@ struct ggml_backend_opencl_context {
     cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
     cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
     cl_kernel kernel_convert_block_mxfp4, kernel_restore_block_mxfp4;
+    cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
     cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
     cl_kernel kernel_convert_block_q4_0_noshuffle;
     cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
     cl_kernel kernel_mul_mv_q6_K_f32;
     cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
+    cl_kernel kernel_mul_mv_q8_0_f32, kernel_mul_mv_q8_0_f32_flat;
     cl_kernel kernel_im2col_f32, kernel_im2col_f16;
     cl_kernel kernel_argsort_f32_i32;
     cl_kernel kernel_sum_rows_f32;
@@ -471,6 +475,7 @@ struct ggml_backend_opencl_context {
     cl_kernel kernel_conv_2d_f16_f32;
     cl_kernel kernel_timestep_embedding;
     cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
+    cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
     cl_kernel kernel_mul_mv_id_mxfp4_f32;
     cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
     cl_kernel kernel_mul_mm_f32_f32_l4_lm;
@@ -769,8 +774,10 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
         CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
         CL_CHECK((backend_ctx->kernel_convert_block_q4_0  = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
         CL_CHECK((backend_ctx->kernel_restore_block_q4_0  = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
-        CL_CHECK((backend_ctx->kernel_convert_block_mxfp4  = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
-        CL_CHECK((backend_ctx->kernel_restore_block_mxfp4  = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
+        CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
+        CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
+        CL_CHECK((backend_ctx->kernel_convert_block_q8_0  = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
+        CL_CHECK((backend_ctx->kernel_restore_block_q8_0  = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
         GGML_LOG_CONT(".");
     }
 
@@ -992,6 +999,38 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
         GGML_LOG_CONT(".");
     }
 
+    // mul_mv_q8_0_f32
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "mul_mv_q8_0_f32.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("mul_mv_q8_0_f32.cl");
+#endif
+        backend_ctx->program_mul_mv_q8_0_f32 =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32, "kernel_mul_mv_q8_0_f32", &err), err));
+        GGML_LOG_CONT(".");
+    }
+
+    // mul_mv_q8_0_f32_flat
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "mul_mv_q8_0_f32_flat.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("mul_mv_q8_0_f32_flat.cl");
+#endif
+        backend_ctx->program_mul_mv_q8_0_f32_flat =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32_flat, "kernel_mul_mv_q8_0_f32_flat", &err), err));
+        GGML_LOG_CONT(".");
+    }
+
     // mul_mv_mxfp4_f32
     {
 #ifdef GGML_OPENCL_EMBED_KERNELS
@@ -1733,6 +1772,38 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
         GGML_LOG_CONT(".");
     }
 
+    // mul_mv_id_q8_0_f32
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "mul_mv_id_q8_0_f32.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("mul_mv_id_q8_0_f32.cl");
+#endif
+        backend_ctx->program_mul_mv_id_q8_0_f32 =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32, "kernel_mul_mv_id_q8_0_f32", &err), err));
+        GGML_LOG_CONT(".");
+    }
+
+    // mul_mv_id_q8_0_f32_flat
+    {
+#ifdef GGML_OPENCL_EMBED_KERNELS
+        const std::string kernel_src {
+            #include "mul_mv_id_q8_0_f32_flat.cl.h"
+        };
+#else
+        const std::string kernel_src = read_file("mul_mv_id_q8_0_f32_flat.cl");
+#endif
+        backend_ctx->program_mul_mv_id_q8_0_f32_flat =
+            build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
+
+        CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32_flat, "kernel_mul_mv_id_q8_0_f32_flat", &err), err));
+        GGML_LOG_CONT(".");
+    }
+
     // mul_mv_id_mxfp4_f32
     {
 #ifdef GGML_OPENCL_EMBED_KERNELS
@@ -2463,10 +2534,8 @@ struct ggml_tensor_extra_cl_mxfp4 {
             CL_CHECK(clReleaseMemObject(q_img));
             q = nullptr;
         }
-        // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
-        // enabled. They point to the images in ggml_backend_opencl_buffer_context.
-        // So, there is no need to release them here.
-        // TODO: initialize them for non SMALL_PATH path, or remove them.
+        // Currently, q_img and d_img are not used. They can be image1d_buffer_t
+        // that wraps around q and d to utilize image access path.
         q_img = nullptr;
         e_img = nullptr;
         size_q = 0;
@@ -2474,6 +2543,41 @@ struct ggml_tensor_extra_cl_mxfp4 {
     }
 };
 
+struct ggml_tensor_extra_cl_q8_0 {
+    cl_mem q = nullptr;
+    cl_mem q_img = nullptr;
+
+    cl_mem d = nullptr;
+    cl_mem d_img = nullptr;
+
+    size_t size_q = 0;
+    size_t size_d = 0;
+
+    ~ggml_tensor_extra_cl_q8_0() {
+        reset();
+    }
+
+    void reset() {
+        // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
+        // They must be properly released so that the original buffer can be
+        // properly released to avoid memory leak.
+        if (q != nullptr) {
+            CL_CHECK(clReleaseMemObject(q));
+            q = nullptr;
+        }
+        if (d != nullptr) {
+            CL_CHECK(clReleaseMemObject(d));
+            d = nullptr;
+        }
+        // Currently, q_img and d_img are not used. They can be image1d_buffer_t
+        // that wraps around q and d to utilize image access path.
+        q_img = nullptr;
+        d_img = nullptr;
+        size_q = 0;
+        size_d = 0;
+    }
+};
+
 //------------------------------------------------------------------------------
 // Backend API
 //------------------------------------------------------------------------------
@@ -2807,10 +2911,13 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
             } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
                        op->src[0]->type == GGML_TYPE_Q6_K) {
                 return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
+            } else if (op->src[0]->type == GGML_TYPE_Q8_0) {
+                return op->src[1]->type == GGML_TYPE_F32;
             }
             return false;
         case GGML_OP_MUL_MAT_ID:
             if (op->src[0]->type == GGML_TYPE_Q4_0 ||
+                op->src[0]->type == GGML_TYPE_Q8_0 ||
                 op->src[0]->type == GGML_TYPE_MXFP4) {
                 if (op->src[1]->type == GGML_TYPE_F32) {
                     return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
@@ -2983,6 +3090,12 @@ struct ggml_backend_opencl_buffer_context {
         for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
             delete e;
         }
+        for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0) {
+            delete e;
+        }
+        for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
+            delete e;
+        }
     }
 
     ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
@@ -3030,6 +3143,21 @@ struct ggml_backend_opencl_buffer_context {
         return extra;
     }
 
+    ggml_tensor_extra_cl_q8_0 * ggml_opencl_alloc_temp_tensor_extra_q8_0() {
+        ggml_tensor_extra_cl_q8_0 * extra;
+        if (temp_tensor_extras_q8_0.empty()) {
+            extra = new ggml_tensor_extra_cl_q8_0();
+        } else {
+            extra = temp_tensor_extras_q8_0.back();
+            temp_tensor_extras_q8_0.pop_back();
+        }
+
+        temp_tensor_extras_q8_0_in_use.push_back(extra);
+
+        extra->reset();
+        return extra;
+    }
+
     void reset() {
         for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
             temp_tensor_extras.push_back(e);
@@ -3045,6 +3173,11 @@ struct ggml_backend_opencl_buffer_context {
             temp_tensor_extras_mxfp4.push_back(e);
         }
         temp_tensor_extras_mxfp4_in_use.clear();
+
+        for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
+            temp_tensor_extras_q8_0.push_back(e);
+        }
+        temp_tensor_extras_q8_0_in_use.clear();
     }
 
     // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
@@ -3058,6 +3191,8 @@ struct ggml_backend_opencl_buffer_context {
     std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
     std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
     std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
+    std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
+    std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0_in_use;
 
     // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
     // before any tensor is initialized (at the beginning of alloc_tensor_range).
@@ -3470,6 +3605,65 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
 
         tensor->extra = extra;
 
+        return;
+    }
+    if (tensor->type == GGML_TYPE_Q8_0) {
+        ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
+        GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
+
+        // Allocate the new extra and create aliases from the original.
+        ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
+        ggml_tensor_extra_cl_q8_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q8_0();
+
+        size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
+        size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*(ggml_blck_size(tensor->type)*sizeof(char));
+        GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
+
+        cl_int err;
+        cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
+            ggml_nbytes(tensor), NULL, &err);
+        CL_CHECK(err);
+        CL_CHECK(clEnqueueWriteBuffer(
+            queue, data_device, CL_TRUE, 0,
+            ggml_nbytes(tensor), data, 0, NULL, NULL));
+
+        // The original tensor memory is divided into scales and quants, i.e.,
+        // we first store scales, then quants.
+        cl_buffer_region region;
+
+        // Create subbuffer for scales.
+        region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
+        region.size = size_d;
+        extra->d = clCreateSubBuffer(
+            extra_orig->data_device, CL_MEM_READ_WRITE,
+            CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
+        CL_CHECK(err);
+        auto previous_origin = region.origin;
+
+        // Create subbuffer for quants.
+        region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
+        region.size = size_q;
+        extra->q = clCreateSubBuffer(
+            extra_orig->data_device, CL_MEM_READ_WRITE,
+            CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
+        CL_CHECK(err);
+
+        cl_kernel kernel = backend_ctx->kernel_convert_block_q8_0;
+
+        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
+        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
+        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
+
+        size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
+        size_t local_work_size[] = {64, 1, 1};
+
+        cl_event evt;
+        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
+        CL_CHECK(clWaitForEvents(1, &evt));
+        CL_CHECK(clReleaseMemObject(data_device));
+
+        tensor->extra = extra;
+
         return;
     }
 #endif // GGML_OPENCL_SOA_Q
@@ -3543,6 +3737,32 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
         size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
         size_t local_work_size[] = {1, 1, 1};
 
+        cl_event evt;
+        CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
+            global_work_size, local_work_size, 0, NULL, &evt));
+        CL_CHECK(clWaitForEvents(1, &evt));
+        CL_CHECK(clEnqueueReadBuffer(
+            queue, data_device, CL_TRUE, offset,
+            size, data, 0, NULL, NULL));
+        CL_CHECK(clReleaseMemObject(data_device));
+        return;
+    }
+    if (tensor->type == GGML_TYPE_Q8_0) {
+        ggml_tensor_extra_cl_q8_0 * extra = (ggml_tensor_extra_cl_q8_0 *)tensor->extra;
+
+        cl_int err;
+        cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
+            ggml_nbytes(tensor), NULL, &err);
+        CL_CHECK(err);
+
+        cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
+        CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
+        CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
+        CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
+
+        size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
+        size_t local_work_size[] = {1, 1, 1};
+
         cl_event evt;
         CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
             global_work_size, local_work_size, 0, NULL, &evt));
@@ -6268,6 +6488,7 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
 #ifdef GGML_OPENCL_SOA_Q
     ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
     ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
+    ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
 #endif
 
     const int  ne00 = src0 ? src0->ne[0] : 0;
@@ -6937,7 +7158,84 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
 #endif // GGML_OPENCL_SOA_Q
             break;
         case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q8_0:
+        case GGML_TYPE_Q8_0: {
+#ifdef GGML_OPENCL_SOA_Q
+            kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
+
+            // nth0 - subgroup size
+            // nth1 - number of subgroups per workgroup
+            // ndst - number of output values per workgroup = output per subgroup * number of subgroups
+            if (backend_ctx->gpu_family == INTEL) {
+                nth0 = 16;
+                nth1 = 2;
+                ndst = nth1*4;
+            } else if (backend_ctx->gpu_family == ADRENO) {
+                nth0 = 64;
+                nth1 = 2;
+                ndst = nth1*4;
+            } else {
+                GGML_ASSERT(false && "TODO: Unknown GPU");
+            }
+
+            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0_q8_0->q));
+            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_mem),   &extra0_q8_0->d));
+            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
+            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
+            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
+            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
+            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(cl_ulong), &nb01));
+            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb02));
+            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
+            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int),      &ne12));
+            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
+            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
+            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
+            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne0));
+            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &ne1));
+            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &r2));
+            CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int),      &r3));
+#else
+            kernel = backend_ctx->kernel_mul_mv_q8_0_f32;
+
+            // nth0 - subgroup size
+            // nth1 - number of subgroups per workgroup
+            // ndst - number of output values per workgroup = output per subgroup * number of subgroups
+            if (backend_ctx->gpu_family == INTEL) {
+                nth0 = 16;
+                nth1 = 2;
+                ndst = nth1*4;
+            } else if (backend_ctx->gpu_family == ADRENO) {
+                nth0 = 64;
+                nth1 = 2;
+                ndst = nth1*4;
+            } else {
+                GGML_ASSERT(false && "TODO: Unknown GPU");
+            }
+
+            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
+            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
+            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extrad->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offsetd));
+            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(int),      &ne00));
+            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(int),      &ne01));
+            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(cl_ulong), &nb01));
+            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(cl_ulong), &nb02));
+            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
+            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int),      &ne12));
+            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
+            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
+            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
+            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int),      &ne0));
+            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &ne1));
+            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &r2));
+            CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int),      &r3));
+#endif // GGML_OPENCL_SOA_Q
+            break;
+        }
         case GGML_TYPE_Q2_K:
         case GGML_TYPE_Q3_K:
         case GGML_TYPE_Q4_K:
@@ -7115,6 +7413,7 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
 #ifdef GGML_OPENCL_SOA_Q
     ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
     ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
+    ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
 #endif
 
     const int ne00 = src0->ne[0];
@@ -7202,6 +7501,82 @@ static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0,
 
             break;
         }
+        case GGML_TYPE_Q8_0: {
+#ifdef GGML_OPENCL_SOA_Q
+            kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32_flat;
+
+            if (backend_ctx->gpu_family == INTEL) {
+                sgs  = 16;
+                nsg  = 2;
+                ndst = 4;
+            } else if (backend_ctx->gpu_family == ADRENO) {
+                sgs  = 64;
+                nsg  = 2;
+                ndst = 4;
+            } else {
+                GGML_ASSERT(false && "TODO: Unknown GPU");
+            }
+
+            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0_q8_0->q));
+            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_mem),   &extra0_q8_0->d));
+            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
+            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extra2->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offset2));
+            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(cl_mem),   &extrad->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(cl_ulong), &offsetd));
+            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne00));
+            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne01));
+            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
+            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
+            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne11));
+            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &ne12));
+            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
+            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
+            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &ne20));
+            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &ne21));
+            CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
+            CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int),      &ne0));
+            CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int),      &ne1));
+#else
+            kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32;
+
+            if (backend_ctx->gpu_family == INTEL) {
+                sgs  = 16;
+                nsg  = 2;
+                ndst = 4;
+            } else if (backend_ctx->gpu_family == ADRENO) {
+                sgs  = 64;
+                nsg  = 2;
+                ndst = 4;
+            } else {
+                GGML_ASSERT(false && "TODO: Unknown GPU");
+            }
+
+            CL_CHECK(clSetKernelArg(kernel,  0, sizeof(cl_mem),   &extra0->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  1, sizeof(cl_ulong), &offset0));
+            CL_CHECK(clSetKernelArg(kernel,  2, sizeof(cl_mem),   &extra1->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  3, sizeof(cl_ulong), &offset1));
+            CL_CHECK(clSetKernelArg(kernel,  4, sizeof(cl_mem),   &extra2->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  5, sizeof(cl_ulong), &offset2));
+            CL_CHECK(clSetKernelArg(kernel,  6, sizeof(cl_mem),   &extrad->data_device));
+            CL_CHECK(clSetKernelArg(kernel,  7, sizeof(cl_ulong), &offsetd));
+            CL_CHECK(clSetKernelArg(kernel,  8, sizeof(int),      &ne00));
+            CL_CHECK(clSetKernelArg(kernel,  9, sizeof(int),      &ne01));
+            CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
+            CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
+            CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int),      &ne11));
+            CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int),      &ne12));
+            CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
+            CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
+            CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int),      &ne20));
+            CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int),      &ne21));
+            CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
+            CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int),      &ne0));
+            CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int),      &ne1));
+#endif // GGML_OPENCL_SOA_Q
+            break;
+        }
         case GGML_TYPE_MXFP4: {
 #ifdef GGML_OPENCL_SOA_Q
             kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
index 3440ff50796c9570b1b6022cd14075afea87d706..045300eb3a53778a45a890bd16462fdae7ddbce6 100644 (file)
@@ -117,9 +117,8 @@ kernel void kernel_convert_block_q4_0_noshuffle(
     }
 }
 
-
 //------------------------------------------------------------------------------
-// block_q4_0
+// block_mxfp4
 //------------------------------------------------------------------------------
 #define QK_MXFP4 32
 struct block_mxfp4 {
@@ -162,3 +161,42 @@ kernel void kernel_restore_block_mxfp4(
         b->qs[i] = q[i];
     }
 }
+
+//------------------------------------------------------------------------------
+// block_q8_0
+//------------------------------------------------------------------------------
+typedef struct {
+    half d;       // delta
+    char qs[QK8_0]; // quants
+} block_q8_0;
+
+kernel void kernel_convert_block_q8_0(
+    global block_q8_0 * src0,
+    global uchar * dst_q,
+    global half  * dst_d
+) {
+    global block_q8_0 * b = (global block_q8_0 *) src0 + get_global_id(0);
+    global uchar      * q = (global uchar *) dst_q + QK8_0*get_global_id(0);
+    global half       * d = (global half *) dst_d + get_global_id(0);
+
+    *d = b->d;
+
+    for (int i = 0; i < QK8_0; ++i) {
+        q[i] = b->qs[i];
+    }
+}
+
+kernel void kernel_restore_block_q8_0(
+    global uchar * src_q,
+    global half  * src_d,
+    global block_q8_0 * dst
+) {
+    global block_q8_0 * b = (global block_q8_0 *) dst + get_global_id(0);
+    global uchar      * q = (global uchar *) src_q + QK8_0*get_global_id(0);
+    global half       * d = (global half *) src_d + get_global_id(0);
+
+    b->d = *d;
+    for (int i = 0; i < QK8_0; ++i) {
+        b->qs[i] = q[i];
+    }
+}
diff --git a/ggml/src/ggml-opencl/kernels/mul_mv_id_q8_0_f32.cl b/ggml/src/ggml-opencl/kernels/mul_mv_id_q8_0_f32.cl
new file mode 100644 (file)
index 0000000..f37e83e
--- /dev/null
@@ -0,0 +1,140 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64  __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK8_0 32
+typedef struct {
+    half d;       // delta
+    char qs[QK8_0]; // quants
+} block_q8_0;
+
+#define NB_Q8_0 8
+
+#ifdef INTEL_GPU
+#define N_R0_Q8_0 4 // number of rows each subgroup works on
+#define N_SG_Q8_0 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_Q8_0 4
+#define N_SG_Q8_0 2
+#define N_SIMDWIDTH 64
+#endif
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_id_q8_0_f32(
+    global char * src0,
+    ulong         offset0,
+    global char * src1,
+    ulong         offset1,
+    global char * src2,
+    ulong         offset2,
+    global char * dst,
+    ulong         offsetd,
+    int           ne00,
+    int           ne01,
+    ulong         nb01,
+    ulong         nb02,
+    int           ne11,
+    int           ne12,
+    ulong         nb11,
+    ulong         nb12,
+    int           ne20,
+    int           ne21,
+    ulong         nb21,
+    int           ne0,
+    int           ne1
+) {
+    src0 = (global char *)((global char *)src0 + offset0);
+    src1 = (global char *)((global char *)src1 + offset1);
+    src2 = (global char *)((global char *)src2 + offset2);
+    dst  = (global char *)((global char *)dst  + offsetd);
+
+    int iid1 = get_group_id(2)/ne20;
+    int idx  = get_group_id(2)%ne20;
+
+    int i02 = ((global int *) (src2 + iid1*nb21))[idx];
+
+    int i11_ = idx % ne11;
+    int i12_ = iid1;
+
+    int i1 = idx;
+    int i2 = i12_;
+
+    global char * src0_cur = src0 + i02*nb02;
+    global char * src1_cur = src1 + i11_*nb11 + i12_*nb12;
+
+    global char * dst_cur = dst + (i1*ne0 + i2*ne1*ne0)*sizeof(float);
+
+    int nb = ne00/QK8_0;
+
+    int r0 = get_group_id(0);
+    int r1 = get_group_id(1);
+
+    int first_row = (r0*N_SG_Q8_0 + get_sub_group_id()) * N_R0_Q8_0;
+
+    ulong offset_src1 = r1*nb11;
+    global float * y  = (global float *) (src1_cur + offset_src1);
+
+    // pointers to src0 rows
+    global block_q8_0 * ax[N_R0_Q8_0];
+    for (int row = 0; row < N_R0_Q8_0; ++row) {
+        ulong offset_src0 = (first_row + row)*nb01;
+        ax[row] = (global block_q8_0 *) ((global char *) src0_cur + offset_src0);
+    }
+
+    float yl[NB_Q8_0];
+    float sumf[N_R0_Q8_0] = { 0.f };
+
+    const short ix = get_sub_group_local_id()/4;
+    const short il = get_sub_group_local_id()%4;
+
+    global float * yb = y + ix*QK8_0 + il*NB_Q8_0;
+
+    // each thread handles NB_Q8_0 quants at a time
+    for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/4) {
+        for (short i = 0; i < NB_Q8_0; ++i) {
+            yl[i] = yb[i];
+        }
+
+        for (short row = 0; row < N_R0_Q8_0; row++) {
+            global char * qs = ax[row][ib].qs + il*NB_Q8_0;
+            float sumq = 0.f;
+            for (short iq = 0; iq < NB_Q8_0; ++iq) {
+                sumq += qs[iq] * yl[iq];
+            }
+            sumf[row] += sumq*ax[row][ib].d;
+        }
+
+        yb += N_SIMDWIDTH*NB_Q8_0;
+    }
+
+    global float * dst_f32 = (global float *) dst_cur + (ulong)r1*ne0;
+
+    for (int row = 0; row < N_R0_Q8_0; ++row) {
+        float tot = sub_group_reduce_add(sumf[row]);
+
+        if (get_sub_group_local_id() == 0 && first_row + row < ne01) {
+            dst_f32[first_row + row] = tot;
+        }
+    }
+}
diff --git a/ggml/src/ggml-opencl/kernels/mul_mv_id_q8_0_f32_flat.cl b/ggml/src/ggml-opencl/kernels/mul_mv_id_q8_0_f32_flat.cl
new file mode 100644 (file)
index 0000000..fd3a071
--- /dev/null
@@ -0,0 +1,222 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64  __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK8_0 32
+typedef struct {
+    half d;       // delta
+    char qs[QK8_0]; // quants
+} block_q8_0;
+
+#define NB_Q8_0 8
+
+#ifdef INTEL_GPU
+#define N_R0_Q8_0 4 // number of rows each subgroup works on
+#define N_SG_Q8_0 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_Q8_0 4
+#define N_SG_Q8_0 2
+#define N_SIMDWIDTH 64
+#endif
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_id_q8_0_f32_flat(
+    global char * src0_q,
+    global half * src0_d,
+    global char * src1,
+    ulong         offset1,
+    global char * src2,
+    ulong         offset2,
+    global char * dst,
+    ulong         offsetd,
+    int           ne00,
+    int           ne01,
+    ulong         nb01,
+    ulong         nb02,
+    int           ne11,
+    int           ne12,
+    ulong         nb11,
+    ulong         nb12,
+    int           ne20,
+    int           ne21,
+    ulong         nb21,
+    int           ne0,
+    int           ne1
+) {
+    src1 = (global char *)((global char *)src1 + offset1);
+    src2 = (global char *)((global char *)src2 + offset2);
+    dst  = (global char *)((global char *)dst  + offsetd);
+
+    int iid1 = (int)get_group_id(2)/ne20;
+    int idx  = (int)get_group_id(2)%ne20;
+
+    int i02 = ((global int *) (src2 + iid1*nb21))[idx];
+
+    int i11_ = idx % ne11;
+    int i12_ = iid1;
+
+    int i1 = idx;
+    int i2 = i12_;
+
+    // 34 == sizeof(block_q8_0)
+    uint src0_off = i02*nb02;
+    src0_off /= 34;
+
+    global char * src0_q_cur = src0_q + src0_off*sizeof(char)*QK8_0;
+    global half * src0_d_cur = src0_d + src0_off;
+    global char * src1_cur   = src1 + i11_*nb11 + i12_*nb12;
+
+    global char * dst_cur = dst + (i1*ne0 + i2*ne1*ne0)*sizeof(float);
+
+    int nb = ne00/QK8_0;
+
+    int r0 = get_group_id(0);
+    int r1 = get_group_id(1);
+
+    int first_row = (r0*N_SG_Q8_0 + get_sub_group_id()) * N_R0_Q8_0;
+
+    ulong offset_src1 = r1*nb11;
+    global float * y  = (global float *) (src1_cur + offset_src1);
+
+    // pointers to src0 rows
+    uint offset_src0_base = first_row*nb01;
+
+    global char * ax0, * ax1, * ax2, * ax3;
+    global half * ad0, * ad1, * ad2, * ad3;
+    uint offset_src0;
+
+    offset_src0 = offset_src0_base + 0*nb01;
+    offset_src0 = offset_src0/34;
+    ax0 = (global char *) ((global char *) src0_q_cur + offset_src0*sizeof(char)*QK8_0);
+    ad0 = (global half *) ((global char *) src0_d_cur + offset_src0*sizeof(half));
+
+    offset_src0 = offset_src0_base + 1*nb01;
+    offset_src0 = offset_src0/34;
+    ax1 = (global char *) ((global char *) src0_q_cur + offset_src0*sizeof(char)*QK8_0);
+    ad1 = (global half *) ((global char *) src0_d_cur + offset_src0*sizeof(half));
+
+    offset_src0 = offset_src0_base + 2*nb01;
+    offset_src0 = offset_src0/34;
+    ax2 = (global char *) ((global char *) src0_q_cur + offset_src0*sizeof(char)*QK8_0);
+    ad2 = (global half *) ((global char *) src0_d_cur + offset_src0*sizeof(half));
+
+    offset_src0 = offset_src0_base + 3*nb01;
+    offset_src0 = offset_src0/34;
+    ax3 = (global char *) ((global char *) src0_q_cur + offset_src0*sizeof(char)*QK8_0);
+    ad3 = (global half *) ((global char *) src0_d_cur + offset_src0*sizeof(half));
+
+    const short ix = get_sub_group_local_id()/4;
+    const short il = get_sub_group_local_id()%4;
+
+    global float * yb = y + ix*QK8_0 + il*NB_Q8_0;
+
+    float8 yl;
+    float8 qv;
+    float4 sumf = 0.f;
+    float  sumq = 0.f;
+    global char * qs;
+
+    // each thread handles NB_Q8_0 quants at a time
+    for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/4) {
+        yl = vload8(0, yb);
+
+        qs = ax0 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s0 += sumq*ad0[ib];
+
+        qs = ax1 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s1 += sumq*ad1[ib];
+
+        qs = ax2 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s2 += sumq*ad2[ib];
+
+        qs = ax3 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s3 += sumq*ad3[ib];
+
+        yb += N_SIMDWIDTH*NB_Q8_0;
+    }
+
+    global float * dst_f32 = (global float *) dst_cur + (ulong)r1*ne0;
+
+    float4 tot = (float4)(
+        sub_group_reduce_add(sumf.s0),
+        sub_group_reduce_add(sumf.s1),
+        sub_group_reduce_add(sumf.s2),
+        sub_group_reduce_add(sumf.s3)
+    );
+
+    if (get_sub_group_local_id() == 0) {
+        if (first_row + 0 < ne01) {
+            dst_f32[first_row + 0] = tot.s0;
+        }
+        if (first_row + 1 < ne01) {
+            dst_f32[first_row + 1] = tot.s1;
+        }
+        if (first_row + 2 < ne01) {
+            dst_f32[first_row + 2] = tot.s2;
+        }
+        if (first_row + 3 < ne01) {
+            dst_f32[first_row + 3] = tot.s3;
+        }
+    }
+}
diff --git a/ggml/src/ggml-opencl/kernels/mul_mv_q8_0_f32.cl b/ggml/src/ggml-opencl/kernels/mul_mv_q8_0_f32.cl
new file mode 100644 (file)
index 0000000..7e88c74
--- /dev/null
@@ -0,0 +1,125 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64  __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK8_0 32
+typedef struct {
+    half d;       // delta
+    char qs[QK8_0]; // quants
+} block_q8_0;
+
+#define NB_Q8_0 8
+
+#ifdef INTEL_GPU
+#define N_R0_Q8_0 4 // number of rows each subgroup works on
+#define N_SG_Q8_0 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_Q8_0 4
+#define N_SG_Q8_0 2
+#define N_SIMDWIDTH 64
+#endif
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_q8_0_f32(
+    global char * src0,
+    ulong         offset0,
+    global char * src1,
+    ulong         offset1,
+    global char * dst,
+    ulong         offsetd,
+    int           ne00,
+    int           ne01,
+    ulong         nb01,
+    ulong         nb02,
+    ulong         nb03,
+    int           ne12,
+    ulong         nb11,
+    ulong         nb12,
+    ulong         nb13,
+    int           ne0,
+    int           ne1,
+    int           r2,
+    int           r3
+) {
+    src0 = (global char*)((global char*)src0 + offset0);
+    src1 = (global char*)((global char*)src1 + offset1);
+    dst  = (global char*)((global char*)dst  + offsetd);
+
+    int nb = ne00/QK8_0;
+
+    int r0 = get_group_id(0);
+    int r1 = get_group_id(1);
+    int im = get_group_id(2);
+
+    int first_row = (r0*N_SG_Q8_0 + get_sub_group_id()) * N_R0_Q8_0;
+
+    uint i12 = im%ne12;
+    uint i13 = im/ne12;
+
+    ulong offset_src1 = r1*nb11 + i12*nb12 + i13*nb13;
+    global float * y  = (global float *) (src1 + offset_src1);
+
+    // pointers to src0 rows
+    global block_q8_0 * ax[N_R0_Q8_0];
+    for (int row = 0; row < N_R0_Q8_0; ++row) {
+        ulong offset_src0 = (first_row + row)*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+        ax[row] = (global block_q8_0 *) ((global char *) src0 + offset_src0);
+    }
+
+    float yl[NB_Q8_0];
+    float sumf[N_R0_Q8_0] = { 0.f };
+
+    const short ix = get_sub_group_local_id()/4;
+    const short il = get_sub_group_local_id()%4;
+
+    global float * yb = y + ix*QK8_0 + il*NB_Q8_0;
+
+    // each thread handles NB_Q8_0 quants at a time
+    for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/4) {
+        for (short i = 0; i < NB_Q8_0; ++i) {
+            yl[i] = yb[i];
+        }
+
+        for (short row = 0; row < N_R0_Q8_0; row++) {
+            global char * qs = ax[row][ib].qs + il*NB_Q8_0;
+            float sumq = 0.f;
+            for (short iq = 0; iq < NB_Q8_0; ++iq) {
+                sumq += qs[iq] * yl[iq];
+            }
+            sumf[row] += sumq*ax[row][ib].d;
+        }
+
+        yb += N_SIMDWIDTH*NB_Q8_0;
+    }
+
+    global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
+
+    for (int row = 0; row < N_R0_Q8_0; ++row) {
+        float tot = sub_group_reduce_add(sumf[row]);
+
+        if (get_sub_group_local_id() == 0 && first_row + row < ne01) {
+            dst_f32[first_row + row] = tot;
+        }
+    }
+}
diff --git a/ggml/src/ggml-opencl/kernels/mul_mv_q8_0_f32_flat.cl b/ggml/src/ggml-opencl/kernels/mul_mv_q8_0_f32_flat.cl
new file mode 100644 (file)
index 0000000..71d159f
--- /dev/null
@@ -0,0 +1,202 @@
+#pragma OPENCL EXTENSION cl_khr_fp16 : enable
+
+#ifdef cl_intel_subgroups
+#pragma OPENCL EXTENSION cl_intel_subgroups : enable
+#else
+#pragma OPENCL EXTENSION cl_khr_subgroups : enable
+#endif
+
+#ifdef cl_intel_required_subgroup_size
+#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
+#define INTEL_GPU 1
+#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
+#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
+#elif defined(cl_qcom_reqd_sub_group_size)
+#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
+#define ADRENO_GPU 1
+#define REQD_SUBGROUP_SIZE_64  __attribute__((qcom_reqd_sub_group_size("half")))
+#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
+#endif
+
+#define QK8_0 32
+typedef struct {
+    half d;       // delta
+    char qs[QK8_0]; // quants
+} block_q8_0;
+
+#define NB_Q8_0 8
+
+#ifdef INTEL_GPU
+#define N_R0_Q8_0 4 // number of rows each subgroup works on
+#define N_SG_Q8_0 2 // number of subgroups in a work group
+#define N_SIMDWIDTH 16 // subgroup size
+#elif defined (ADRENO_GPU)
+#define N_R0_Q8_0 4
+#define N_SG_Q8_0 2
+#define N_SIMDWIDTH 64
+#endif
+
+#ifdef INTEL_GPU
+REQD_SUBGROUP_SIZE_16
+#elif defined (ADRENO_GPU)
+REQD_SUBGROUP_SIZE_64
+#endif
+kernel void kernel_mul_mv_q8_0_f32_flat(
+    global char * src0_q,
+    global half * src0_d,
+    global char * src1,
+    ulong         offset1,
+    global char * dst,
+    ulong         offsetd,
+    int           ne00,
+    int           ne01,
+    ulong         nb01,
+    ulong         nb02,
+    ulong         nb03,
+    int           ne12,
+    ulong         nb11,
+    ulong         nb12,
+    ulong         nb13,
+    int           ne0,
+    int           ne1,
+    int           r2,
+    int           r3
+) {
+    src1 = (global char*)((global char*)src1 + offset1);
+    dst  = (global char*)((global char*)dst  + offsetd);
+
+    int nb = ne00/QK8_0;
+
+    int r0 = get_group_id(0);
+    int r1 = get_group_id(1);
+    int im = get_group_id(2);
+
+    int first_row = (r0*N_SG_Q8_0 + get_sub_group_id()) * N_R0_Q8_0;
+
+    uint i12 = im%ne12;
+    uint i13 = im/ne12;
+
+    ulong offset_src1 = r1*nb11 + i12*nb12 + i13*nb13;
+    global float * y  = (global float *) (src1 + offset_src1);
+
+    // pointers to src0 rows
+    uint offset_src0_base = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
+
+    global char * ax0, * ax1, * ax2, * ax3;
+    global half * ad0, * ad1, * ad2, * ad3;
+    uint offset_src0;
+
+    offset_src0 = offset_src0_base + 0*nb01;
+    offset_src0 = offset_src0/34;
+    ax0 = (global char *) ((global char *) src0_q + offset_src0*sizeof(char)*QK8_0);
+    ad0 = (global half *) ((global char *) src0_d + offset_src0*sizeof(half));
+
+    offset_src0 = offset_src0_base + 1*nb01;
+    offset_src0 = offset_src0/34;
+    ax1 = (global char *) ((global char *) src0_q + offset_src0*sizeof(char)*QK8_0);
+    ad1 = (global half *) ((global char *) src0_d + offset_src0*sizeof(half));
+
+    offset_src0 = offset_src0_base + 2*nb01;
+    offset_src0 = offset_src0/34;
+    ax2 = (global char *) ((global char *) src0_q + offset_src0*sizeof(char)*QK8_0);
+    ad2 = (global half *) ((global char *) src0_d + offset_src0*sizeof(half));
+
+    offset_src0 = offset_src0_base + 3*nb01;
+    offset_src0 = offset_src0/34;
+    ax3 = (global char *) ((global char *) src0_q + offset_src0*sizeof(char)*QK8_0);
+    ad3 = (global half *) ((global char *) src0_d + offset_src0*sizeof(half));
+
+    const short ix = get_sub_group_local_id()/4;
+    const short il = get_sub_group_local_id()%4;
+
+    global float * yb = y + ix*QK8_0 + il*NB_Q8_0;
+
+    float8 yl;
+    float8 qv;
+    float4 sumf = 0.f;
+    float  sumq = 0.f;
+    global char * qs;
+
+    // each thread handles NB_Q8_0 quants at a time
+    for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/4) {
+        yl = vload8(0, yb);
+
+        qs = ax0 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s0 += sumq*ad0[ib];
+
+        qs = ax1 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s1 += sumq*ad1[ib];
+
+        qs = ax2 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s2 += sumq*ad2[ib];
+
+        qs = ax3 + ib*sizeof(char)*QK8_0 + il*NB_Q8_0;
+        qv = convert_float8(vload8(0, qs));
+        sumq = 0;
+        sumq += qv.s0*yl.s0;
+        sumq += qv.s1*yl.s1;
+        sumq += qv.s2*yl.s2;
+        sumq += qv.s3*yl.s3;
+        sumq += qv.s4*yl.s4;
+        sumq += qv.s5*yl.s5;
+        sumq += qv.s6*yl.s6;
+        sumq += qv.s7*yl.s7;
+        sumf.s3 += sumq*ad3[ib];
+
+        yb += N_SIMDWIDTH*NB_Q8_0;
+    }
+
+    global float * dst_f32 = (global float *) dst + (ulong)im*ne0*ne1 + (ulong)r1*ne0;
+
+    float4 tot = (float4)(
+        sub_group_reduce_add(sumf.s0),
+        sub_group_reduce_add(sumf.s1),
+        sub_group_reduce_add(sumf.s2),
+        sub_group_reduce_add(sumf.s3)
+    );
+
+    if (get_sub_group_local_id() == 0) {
+        if (first_row + 0 < ne01) {
+            dst_f32[first_row + 0] = tot.s0;
+        }
+        if (first_row + 1 < ne01) {
+            dst_f32[first_row + 1] = tot.s1;
+        }
+        if (first_row + 2 < ne01) {
+            dst_f32[first_row + 2] = tot.s2;
+        }
+        if (first_row + 3 < ne01) {
+            dst_f32[first_row + 3] = tot.s3;
+        }
+    }
+}