bool scale_w,
float w_scale,
llama_expert_gating_func_type gating_op,
- int il) const {
+ int il,
+ ggml_tensor * probs_in) const {
const int64_t n_embd = cur->ne[0];
const int64_t n_tokens = cur->ne[1];
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
- ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
- cb(logits, "ffn_moe_logits", il);
+ ggml_tensor * logits = nullptr;
+
+ if (probs_in == nullptr) {
+ logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
+ cb(logits, "ffn_moe_logits", il);
+ } else {
+ logits = probs_in;
+ }
ggml_tensor * probs = nullptr;
switch (gating_op) {
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_moe_gelu", il);
} break;
+ case LLM_FFN_RELU:
+ if (gate_exps) {
+ cur = ggml_reglu_split(ctx0, cur, up);
+ cb(cur, "ffn_moe_reglu", il);
+ } else {
+ cur = ggml_relu(ctx0, cur);
+ cb(cur, "ffn_moe_relu", il);
+ } break;
default:
GGML_ABORT("fatal error");
}
return moe_out;
}
-ggml_tensor * llm_graph_context::build_moe_ffn_from_probs(
- ggml_tensor * cur,
- ggml_tensor * probs,
- ggml_tensor * up_exps,
- ggml_tensor * gate_exps,
- ggml_tensor * down_exps,
- ggml_tensor * exp_probs_b,
- int64_t n_expert,
- int64_t n_expert_used,
- llama_expert_gating_func_type gating_op,
- int il) const {
- const int64_t n_embd = cur->ne[0];
- const int64_t n_tokens = cur->ne[1];
-
- // add experts selection bias - introduced in DeepSeek V3
- // leave probs unbiased as it's later used to get expert weights
- ggml_tensor * selection_probs = probs;
- if (exp_probs_b != nullptr) {
- selection_probs = ggml_add(ctx0, probs, exp_probs_b);
- cb(selection_probs, "ffn_moe_probs_biased", il);
- }
-
- // select experts
- ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
- cb(selected_experts->src[0], "ffn_moe_argsort", il);
- cb(selected_experts, "ffn_moe_topk", il);
-
- ggml_tensor * weights = ggml_get_rows(ctx0,
- ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights", il);
-
- weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
- if (gating_op == LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX) {
- weights = ggml_soft_max(ctx0, weights);
- } else {
- weights = ggml_sigmoid(ctx0, weights);
- ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
- cb(weights_sum, "ffn_moe_weights_sum", il);
-
- weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
- cb(weights, "ffn_moe_weights_norm", il);
- }
-
- weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
-
- cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
-
- ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(up, "ffn_moe_up", il);
-
- ggml_tensor * experts = nullptr;
- cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
- cb(cur, "ffn_moe_gate", il);
-
- cur = ggml_reglu_split(ctx0, cur, up);
- cb(cur, "ffn_moe_reglu", il);
-
- experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
- cb(experts, "ffn_moe_down", il);
-
- experts = ggml_mul(ctx0, experts, weights);
- cb(cur, "ffn_moe_weighted", il);
-
- ggml_tensor * cur_experts[LLAMA_MAX_EXPERTS] = { nullptr };
-
- assert(n_expert_used > 0);
-
- // order the views before the adds
- for (uint32_t i = 0; i < hparams.n_expert_used; ++i) {
- cur_experts[i] = ggml_view_2d(ctx0, experts, n_embd, n_tokens, experts->nb[2], i*experts->nb[1]);
-
- ggml_build_forward_expand(gf, cur_experts[i]);
- }
-
- // aggregate experts
- // note: here we explicitly use hparams.n_expert_used instead of n_expert_used
- // to avoid potentially a large number of add nodes during warmup
- // ref: https://github.com/ggml-org/llama.cpp/pull/14753
- ggml_tensor * moe_out = cur_experts[0];
-
- for (uint32_t i = 1; i < hparams.n_expert_used; ++i) {
- moe_out = ggml_add(ctx0, moe_out, cur_experts[i]);
- }
-
- if (n_expert_used == 1) {
- // avoid returning a non-contiguous tensor
- moe_out = ggml_cont(ctx0, moe_out);
- }
-
- cb(moe_out, "ffn_moe_out", il);
-
- return moe_out;
-}
-
// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd;