for (int i = 0; i < final_dims; i++) {
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
}
+ size_t elem_offset = offset / ggml_element_size(tensor);
+ acl_storage_len += elem_offset;
// Reverse ne and stride.
std::reverse(acl_ne, acl_ne + final_dims);
aclTensor* acl_tensor = aclCreateTensor(
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
- offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
+ elem_offset, format, &acl_storage_len, 1,
tensor->data);
return acl_tensor;
}
}
-void ggml_cann_unary_op(
+void ggml_cann_op_unary(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
ggml_cann_release_resources(ctx, acl_src, acl_dst);
}
+void ggml_cann_op_unary_gated(
+ std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
+ ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+ ggml_tensor* src0 = dst->src[0];
+ ggml_tensor* src1 = dst->src[1];
+
+ GGML_ASSERT(ggml_is_contiguous_1(src0));
+ GGML_ASSERT(ggml_is_contiguous_1(dst));
+ const int32_t swapped = ggml_get_op_params_i32(dst, 1);
+
+ aclTensor* acl_dst = ggml_cann_create_tensor(dst);
+ aclTensor *acl_src0 = nullptr, *acl_src1 = nullptr;
+ if(src1) {
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
+ GGML_ASSERT(src0->type == src1->type);
+
+ acl_src0 = ggml_cann_create_tensor(src0);
+ acl_src1 = ggml_cann_create_tensor(src1);
+ } else {
+ int64_t ne[] = {src0->ne[0] / 2, src0->ne[1], src0->ne[2], src0->ne[3]};
+ size_t nb[] = {src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]};
+ acl_src0 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, 0);
+ acl_src1 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, ne[0] * ggml_element_size(src0));
+ if (swapped) {
+ std::swap(acl_src0, acl_src1);
+ }
+ }
+
+ unary_op(ctx, acl_src0, acl_dst);
+ GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, acl_dst, acl_src1);
+
+ ggml_cann_release_resources(ctx, acl_src0, acl_dst);
+ if(src1)
+ ggml_cann_release_resources(ctx, acl_src1);
+}
+
/**
* @brief Repeats elements of a tensor along each dimension according to the
* specified repeat array.
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
*/
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
- void ggml_cann_unary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
+ void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
}
/**
- * @brief Applies a unary operation to a ggml tensor using the CANN backend.
+ * @brief Applies a unary operation to a ggml tensor using the CANN backend.
*
- * @details This function performs a unary operation on the input tensor using
- * a user-provided lambda or callable object `unary_op`, which accepts the CANN
- * context and two ACL tensors (source and destination). Internally, this function
- * creates ACL representations of the ggml tensors and invokes the unary operation.
- * The result is stored in the destination tensor `dst`. This utility abstracts the
- * common boilerplate of tensor conversion and cleanup when implementing unary ops.
+ * @details This function applies a unary operation to the input tensor using
+ * a user-provided lambda or callable `unary_op`. The lambda receives the
+ * CANN backend context and two ACL tensors: the source and the destination.
*
- * @param unary_op A callable that performs the unary operation using CANN APIs.
- * @param ctx The CANN context used for operations.
- * @param dst The destination tensor where the result will be stored.
- * The source tensor is retrieved from `dst->src[0]`.
+ * Internally, this function handles the conversion from GGML tensors to ACL tensors,
+ * calls the provided unary op, and manages resource cleanup. The input is assumed
+ * to be `dst->src[0]`, and the result is written to `dst`.
+ *
+ * This utility simplifies writing unary op wrappers by abstracting tensor preparation.
+ *
+ * @param unary_op A callable that performs the unary operation using CANN ACL APIs.
+ * @param ctx The CANN context for operation execution.
+ * @param dst The destination ggml_tensor where the result will be stored.
+ * The input tensor is assumed to be `dst->src[0]`.
+ *
+ * @see GGML_CANN_CALL_OP_UNARY
*/
-void ggml_cann_unary_op(
+void ggml_cann_op_unary(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
- * @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
+ * @brief Applies a gated (GLU-style) unary operation using the CANN backend.
+ *
+ * @details This function performs a gated activation such as GEGLU or ReGLU.
+ * It supports two input modes:
+ *
+ * 1. **Dual input mode**: `dst->src[0]` and `dst->src[1]` are both valid tensors.
+ * These are used directly as the value and gate tensors.
+ *
+ * 2. **Packed input mode**: Only `dst->src[0]` is valid, and it is assumed to
+ * contain a concatenation of value and gate along the first dimension. This tensor
+ * will be split into two equal halves to form the value and gate inputs.
+ *
+ * The function applies a user-provided unary operation (e.g., GELU) to the value tensor,
+ * then multiplies the result in-place with the gate tensor:
+ *
+ * @code
+ * dst = unary_op(value) * gate;
+ * @endcode
+ *
+ * The `swapped` parameter (from `dst->op_params[1]`) allows flipping the
+ * order of value/gate in the packed input case.
+ *
+ * @param unary_op A callable that performs the unary operation using CANN ACL APIs.
+ * It receives (ctx, acl_value_tensor, acl_output_tensor).
+ * @param ctx The CANN context used for execution.
+ * @param dst The destination ggml_tensor. Source tensors are in `dst->src[0]` and optionally `src[1]`.
+ *
+ * @see GGML_CANN_CALL_OP_UNARY_GATED
+ */
+void ggml_cann_op_unary_gated(
+ std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
+ ggml_backend_cann_context& ctx, ggml_tensor* dst);
+
+/**
+ * @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary.
+ *
+ * This macro wraps the specified ACLNN unary operator name into a lambda expression,
+ * and passes it to `ggml_cann_op_unary`, which handles the common logic for executing
+ * unary ops in the CANN backend.
+ *
+ * Internally, this macro expands to a lambda like:
+ * @code
+ * [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) {
+ * GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
+ * };
+ * @endcode
+ *
+ * This lambda is then passed to `ggml_cann_op_unary`, which applies the operation.
+ *
+ * @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
+ *
+ * @see ggml_cann_op_unary
+ * @see GGML_CANN_CALL_ACLNN_OP
+ */
+#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
+ do { \
+ auto lambda = [](ggml_backend_cann_context& ctx, \
+ aclTensor* acl_src, \
+ aclTensor* acl_dst) { \
+ GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
+ }; \
+ ggml_cann_op_unary(lambda, ctx, dst); \
+ } \
+ while (0)
+
+/**
+ * @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated.
*
- * This macro defines an inline lambda wrapping a specific ACL operation name,
- * and passes it to the templated ggml_cann_unary_op function. It simplifies
- * calling unary ops by hiding the lambda boilerplate.
+ * This macro wraps the specified ACLNN unary operator name into a lambda expression,
+ * and passes it to `ggml_cann_op_unary_gated`, which handles the common logic for
+ * executing gated unary ops in the CANN backend.
*
- * Internally, the lambda will call:
+ * Internally, this macro expands to a lambda like:
* @code
- * GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
+ * [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) {
+ * GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
+ * };
* @endcode
*
+ * This lambda is then passed to `ggml_cann_op_unary_gated`, which applies the operation.
+ *
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
*
- * @see ggml_cann_unary_op
+ * @see ggml_cann_op_unary_gated
* @see GGML_CANN_CALL_ACLNN_OP
*/
-#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
+#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
- ggml_cann_unary_op(lambda, ctx, dst); \
+ ggml_cann_op_unary_gated(lambda, ctx, dst); \
} \
while (0)
+
#endif // CANN_ACLNN_OPS
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_ABS:
- GGML_CANN_CALL_UNARY_OP(Abs);
+ GGML_CANN_CALL_OP_UNARY(Abs);
break;
case GGML_UNARY_OP_NEG:
- GGML_CANN_CALL_UNARY_OP(Neg);
+ GGML_CANN_CALL_OP_UNARY(Neg);
break;
case GGML_UNARY_OP_GELU:
- GGML_CANN_CALL_UNARY_OP(Gelu);
+ case GGML_UNARY_OP_GELU_ERF:
+ // aclnnGelu internally uses the erf-based approximation.
+ GGML_CANN_CALL_OP_UNARY(Gelu);
break;
case GGML_UNARY_OP_SILU:
- GGML_CANN_CALL_UNARY_OP(Silu);
+ GGML_CANN_CALL_OP_UNARY(Silu);
break;
case GGML_UNARY_OP_GELU_QUICK: {
auto lambda = [](ggml_backend_cann_context& ctx,
aclTensor* acl_dst) {
GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
};
- ggml_cann_unary_op(lambda, ctx, dst);
+ ggml_cann_op_unary(lambda, ctx, dst);
} break;
case GGML_UNARY_OP_TANH:
- GGML_CANN_CALL_UNARY_OP(Tanh);
+ GGML_CANN_CALL_OP_UNARY(Tanh);
break;
case GGML_UNARY_OP_RELU:
- GGML_CANN_CALL_UNARY_OP(Relu);
+ GGML_CANN_CALL_OP_UNARY(Relu);
break;
case GGML_UNARY_OP_SIGMOID:
- GGML_CANN_CALL_UNARY_OP(Sigmoid);
+ GGML_CANN_CALL_OP_UNARY(Sigmoid);
break;
case GGML_UNARY_OP_HARDSIGMOID:
- GGML_CANN_CALL_UNARY_OP(Hardsigmoid);
+ GGML_CANN_CALL_OP_UNARY(Hardsigmoid);
break;
case GGML_UNARY_OP_HARDSWISH:
- GGML_CANN_CALL_UNARY_OP(Hardswish);
+ GGML_CANN_CALL_OP_UNARY(Hardswish);
break;
case GGML_UNARY_OP_EXP:
- GGML_CANN_CALL_UNARY_OP(Exp);
+ GGML_CANN_CALL_OP_UNARY(Exp);
break;
case GGML_UNARY_OP_ELU:
ggml_cann_elu(ctx, dst);
break;
case GGML_UNARY_OP_SGN:
- GGML_CANN_CALL_UNARY_OP(Sign);
+ GGML_CANN_CALL_OP_UNARY(Sign);
break;
case GGML_UNARY_OP_STEP:
ggml_cann_step(ctx, dst);
return false;
}
break;
+ case GGML_OP_GLU:
+ switch (ggml_get_glu_op(dst)) {
+ case GGML_GLU_OP_REGLU:
+ GGML_CANN_CALL_OP_UNARY_GATED(Relu);
+ break;
+ case GGML_GLU_OP_GEGLU:
+ case GGML_GLU_OP_GEGLU_ERF:
+ // aclnnGelu internally uses the erf-based approximation.
+ GGML_CANN_CALL_OP_UNARY_GATED(Gelu);
+ break;
+ case GGML_GLU_OP_SWIGLU:
+ GGML_CANN_CALL_OP_UNARY_GATED(Silu);
+ break;
+ case GGML_GLU_OP_GEGLU_QUICK: {
+ auto lambda = [](ggml_backend_cann_context& ctx,
+ aclTensor* acl_src,
+ aclTensor* acl_dst) {
+ GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
+ };
+ ggml_cann_op_unary_gated(lambda, ctx, dst);
+ } break;
+ default:
+ return false;
+ }
+ break;
case GGML_OP_NORM:
ggml_cann_norm(ctx, dst);
break;
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
break;
case GGML_OP_SQRT:
- GGML_CANN_CALL_UNARY_OP(Sqrt);
+ GGML_CANN_CALL_OP_UNARY(Sqrt);
break;
case GGML_OP_CLAMP:
ggml_cann_clamp(ctx, dst);
ggml_cann_argmax(ctx, dst);
break;
case GGML_OP_COS:
- ggml_cann_unary_op<aclnn_cos>(ctx, dst);
+ ggml_cann_op_unary<aclnn_cos>(ctx, dst);
break;
case GGML_OP_SIN:
- ggml_cann_unary_op<aclnn_sin>(ctx, dst);
+ ggml_cann_op_unary<aclnn_sin>(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cann_conv_transpose_1d(ctx, dst);
break;
case GGML_OP_LOG:
- GGML_CANN_CALL_UNARY_OP(Log);
+ GGML_CANN_CALL_OP_UNARY(Log);
break;
case GGML_OP_MEAN:
ggml_cann_mean(ctx, dst);
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_STEP:
+ case GGML_UNARY_OP_GELU_ERF:
return true;
default:
return false;
}
+ case GGML_OP_GLU:
+ switch (ggml_get_glu_op(op)) {
+ case GGML_GLU_OP_REGLU:
+ case GGML_GLU_OP_GEGLU:
+ case GGML_GLU_OP_SWIGLU:
+ case GGML_GLU_OP_GEGLU_ERF:
+ case GGML_GLU_OP_GEGLU_QUICK:
+ return true;
+ default:
+ return false;
+ }
+ break;
case GGML_OP_MUL_MAT: {
switch (op->src[0]->type) {
case GGML_TYPE_F16: