]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
cann: support q4_0 model (#8822)
authorwangshuai09 <redacted>
Mon, 5 Aug 2024 04:22:30 +0000 (12:22 +0800)
committerGitHub <redacted>
Mon, 5 Aug 2024 04:22:30 +0000 (12:22 +0800)
ggml/src/ggml-cann.cpp
ggml/src/ggml-cann/acl_tensor.cpp
ggml/src/ggml-cann/acl_tensor.h
ggml/src/ggml-cann/aclnn_ops.cpp
ggml/src/ggml-cann/kernels/CMakeLists.txt
ggml/src/ggml-cann/kernels/ascendc_kernels.h
ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp [new file with mode: 0644]

index 461febcc03a8969b29f6a6d6e669efb2763ad6b3..a15bc8aa29fcb7649ab8de260e5b8d05237053c7 100644 (file)
@@ -627,7 +627,6 @@ GGML_CALL static void* ggml_backend_cann_buffer_get_base(
 GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
                                                        const void* src,
                                                        void* dst) {
-    GGML_ASSERT(tensor->op == GGML_OP_NONE);
 
     int64_t n_elems = ggml_nelements(tensor);
     int64_t groups = n_elems / QK4_0;
@@ -679,7 +678,6 @@ GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
  */
 GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
     const ggml_tensor* tensor, void* src, void* dst) {
-    GGML_ASSERT(tensor->op == GGML_OP_NONE);
 
     int64_t n_elems = ggml_nelements(tensor);
     int64_t groups = n_elems / QK4_0;
@@ -1666,10 +1664,17 @@ GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
             }
         case GGML_OP_MUL_MAT: {
             switch (op->src[0]->type) {
-                // case GGML_TYPE_Q4_0:
                 case GGML_TYPE_F16:
                 case GGML_TYPE_F32:
                 case GGML_TYPE_Q8_0:
+                    // TODO: fix me
+                    // Current groupsize should not be greater than k-1 in
+                    // aclnnWeightQuantBatchMatmulV2GetWorkspaceSize().
+                    if (op->src[0]->ne[0]-1 > QK8_0) {
+                        return true;
+                    }
+                    return false;
+                case GGML_TYPE_Q4_0:
                     return true;
                 default:
                     return false;
@@ -1694,6 +1699,7 @@ GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
                 case GGML_TYPE_F32:
                 case GGML_TYPE_F16:
                 case GGML_TYPE_Q8_0:
+                case GGML_TYPE_Q4_0:
                     return true;
                 default:
                     return false;
index 960ce9a0368d7f53de27c7d93d13194da3072e48..d120ce6acf8a7a62feead52a36b97da8f8d51055 100644 (file)
@@ -37,6 +37,10 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
             return ACL_INT16;
         case GGML_TYPE_I32:
             return ACL_INT32;
+        case GGML_TYPE_Q4_0:
+            return ACL_INT4;
+        case GGML_TYPE_Q8_0:
+            return ACL_INT8;
         default:
             return ACL_DT_UNDEFINED;
     }
@@ -89,33 +93,6 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
     return false;
 }
 
-aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
-                                   size_t type_size, int64_t* ne, size_t* nb,
-                                   int64_t dims, aclFormat format,
-                                   size_t offset) {
-    int64_t tmp_ne[GGML_MAX_DIMS * 2];
-    int64_t tmp_stride[GGML_MAX_DIMS * 2];
-
-    memcpy(tmp_ne, ne, dims * sizeof(int64_t));
-    for (int i = 0; i < dims; i++) {
-        tmp_stride[i] = nb[i] / type_size;
-    }
-
-    std::reverse(tmp_ne, tmp_ne + dims);
-    std::reverse(tmp_stride, tmp_stride + dims);
-
-    int64_t acl_storage_len = 0;
-    for (int i = 0; i < dims; i++) {
-        acl_storage_len += (ne[i] - 1) * nb[i];
-    }
-
-    aclTensor* acl_tensor =
-        aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
-                        format, &acl_storage_len, 1, data_ptr);
-
-    return acl_tensor;
-}
-
 int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
                                   const ggml_tensor* src1,
                                   int64_t* bcast_src0_ne,
index 7d0bf04e072a311d119cba680d73e390027c710b..4734a9cb8c301b529120cfbee80fa3d2d6aa95ba 100644 (file)
@@ -23,6 +23,9 @@
 #ifndef CANN_ACL_TENSOR_H
 #define CANN_ACL_TENSOR_H
 
+#include <algorithm>
+#include <cstring>
+
 #include <aclnn/aclnn_base.h>
 #include "common.h"
 
@@ -65,7 +68,8 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
                              size_t offset = 0);
 
 /**
- * @brief   Creates an ACL tensor from provided parameters.
+ * @brief   Template for creating an ACL tensor from provided parameters. typename TYPE
+ *          should be size_t or float.
  *
  * @details This function creates an ACL tensor using the provided data pointer,
  *          data type, dimensions, strides, format, offset, and additional parameters.
@@ -83,10 +87,34 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
  * @param   offset      Offset in bytes for the ACL tensor data. Defaults to 0.
  * @return  Pointer to the created ACL tensor.
  */
+template<typename TYPE>
 aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
-                             size_t type_size, int64_t* ne, size_t* nb,
-                             int64_t dims, aclFormat format = ACL_FORMAT_ND,
-                             size_t offset = 0);
+                                   TYPE type_size, int64_t* ne, TYPE* nb,
+                                   int64_t dims,
+                                   aclFormat format = ACL_FORMAT_ND,
+                                   size_t offset = 0) {
+    int64_t tmp_ne[GGML_MAX_DIMS * 2];
+    int64_t tmp_stride[GGML_MAX_DIMS * 2];
+
+    memcpy(tmp_ne, ne, dims * sizeof(int64_t));
+    for (int i = 0; i < dims; i++) {
+        tmp_stride[i] = nb[i] / type_size;
+    }
+
+    std::reverse(tmp_ne, tmp_ne + dims);
+    std::reverse(tmp_stride, tmp_stride + dims);
+
+    int64_t acl_storage_len = 0;
+    for (int i = 0; i < dims; i++) {
+        acl_storage_len += (ne[i] - 1) * nb[i];
+    }
+
+    aclTensor* acl_tensor =
+        aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
+                        format, &acl_storage_len, 1, data_ptr);
+
+    return acl_tensor;
+}
 
 /**
  * @brief   Checks if tensors require broadcasting based on their shapes.
index 556284888e71c75e5cbffe4be6247b61c9465d16..171439132ff2a6110c2f40fe807ae5203ffef3fb 100644 (file)
@@ -910,6 +910,13 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
                 ((ggml_tensor*)dst->extra)->ne);
             return;
         }
+        if (dst->type == GGML_TYPE_Q4_0) {
+            aclrtlaunch_ascendc_quantize_f16_to_q4_0(
+                24, ctx.stream(), src->data, dst->data,
+                ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
+                ((ggml_tensor*)dst->extra)->ne);
+            return;
+        }
         if (dst->type == GGML_TYPE_F16) {
             if (ggml_are_same_shape(src, dst)) {
                 cann_copy(ctx, acl_src, acl_dst);
@@ -971,6 +978,13 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
                 ((ggml_tensor*)dst->extra)->ne);
             return;
         }
+        if (dst->type == GGML_TYPE_Q4_0) {
+            aclrtlaunch_ascendc_quantize_f32_to_q4_0(
+                24, ctx.stream(), src->data, dst->data,
+                ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
+                ((ggml_tensor*)dst->extra)->ne);
+            return;
+        }
         if (dst->type == GGML_TYPE_F32) {
             if (ggml_are_same_shape(src, dst)) {
                 cann_copy(ctx, acl_src, acl_dst);
@@ -2463,21 +2477,33 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
  * @param dst The destination tensor where the result of the matrix
  * multiplication will be stored.
  */
-static void ggml_cann_mul_mat_q8_0(ggml_backend_cann_context& ctx,
-                                   ggml_tensor* dst) {
+static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
+                                   ggml_tensor* dst,
+                                   const enum ggml_type type) {
     ggml_tensor* src0 = dst->src[0];  // weight
     ggml_tensor* src1 = dst->src[1];  // input
 
     // The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC
     // is regarded as batch. weight need transpose.
     int64_t weight_ne[] = {src0->ne[1], src0->ne[0]};
-    size_t weight_elem_size = sizeof(uint8_t);
-    size_t weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
+    float weight_elem_size;
+    if (type == GGML_TYPE_Q4_0) {
+        weight_elem_size = float(sizeof(uint8_t)) / 2;
+    }
+    else if (type == GGML_TYPE_Q8_0) {
+        weight_elem_size = float(sizeof(uint8_t));
+    }
+    else {
+        GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT");
+    }
+    float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
+
     // size of one matrix is element_size * height * width.
     size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1];
     size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3];
 
     // scale stored at the end of weight. Also need transpose.
+    GGML_ASSERT(QK4_0 == QK8_0);
     int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0};
     size_t scale_elem_size = sizeof(uint16_t);
     size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size,
@@ -2541,8 +2567,9 @@ static void ggml_cann_mul_mat_q8_0(ggml_backend_cann_context& ctx,
                 (char*)input_buffer + batch1 * input_stride, ACL_FLOAT16,
                 input_elem_size, input_ne, input_nb, 2);
             aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
-                (char*)src0->data + batch0 * weight_stride, ACL_INT8,
-                weight_elem_size, weight_ne, weight_nb, 2);
+                (char*)src0->data + batch0 * weight_stride,
+                ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
+                weight_nb, 2);
             aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
                 scale_offset + batch0 * scale_stride, ACL_FLOAT16,
                 scale_elem_size, scale_ne, scale_nb, 2);
@@ -2596,11 +2623,9 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
         case GGML_TYPE_F16:
             ggml_cann_mat_mul_fp(ctx, dst);
             break;
-        // case GGML_TYPE_Q4_0:
-        //     ggml_cann_mul_mat_q4_0(ctx, dst);
-        //     break;
+        case GGML_TYPE_Q4_0:
         case GGML_TYPE_Q8_0:
-            ggml_cann_mul_mat_q8_0(ctx, dst);
+            ggml_cann_mul_mat_quant(ctx, dst, type);
             break;
         default:
             GGML_ABORT("fatal error");
index f12a4d43f2df6fc4230f07dbb03dade36ad33e5b..5b4fef91b5877111a06ec413e87ad029ec2e3bc0 100644 (file)
@@ -9,6 +9,7 @@ file(GLOB SRC_FILES
     get_row_q8_0.cpp
     quantize_f32_q8_0.cpp
     quantize_f16_q8_0.cpp
+    quantize_float_to_q4_0.cpp
     dup.cpp
 )
 
@@ -29,4 +30,4 @@ ascendc_library(ascendc_kernels STATIC
     ${SRC_FILES}
 )
 
-#ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
+# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
index bf8914751483513f8dace119bb2c34040a7544e3..7e153208cfdbceeb71bfaf17ecdf95e30f39d554 100644 (file)
@@ -8,6 +8,8 @@
 
 #include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
 #include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
+#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
+#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
 
 #include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
 #include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
diff --git a/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp b/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp
new file mode 100644 (file)
index 0000000..f6deee3
--- /dev/null
@@ -0,0 +1,273 @@
+#include "kernel_operator.h"
+
+using namespace AscendC;
+
+#define BUFFER_NUM 2
+#define Group_Size 32
+
+template <typename SRC_T>
+class QUANTIZE_FLOAT_TO_Q4_0 {
+   public:
+    __aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
+    __aicore__ inline void init(GM_ADDR input, GM_ADDR output,
+                                int64_t *input_ne_ub, size_t *input_nb_ub,
+                                int64_t *output_ne_ub) {
+        int64_t op_block_num = GetBlockNum();
+        int64_t op_block_idx = GetBlockIdx();
+
+        // input stride of data elements
+        for (int i = 0; i < 4; i++) {
+            input_ne[i] = input_ne_ub[i];
+            input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
+            output_ne[i] = output_ne_ub[i];
+        }
+
+        // output stride of data elements
+        output_stride[0] = 1;
+        for (int i = 1; i < 4; i++) {
+            output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
+        }
+
+        // scale saved one by one after data:. [group1_scale, group2_scale, ...]
+        scale_ne = input_ne;
+        scale_stride[0] = 1;
+        scale_stride[1] = input_ne[0] / Group_Size;
+        for (int i = 2; i < 4; i++) {
+            scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
+        }
+
+        // split input tensor by rows.
+        uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
+        dr = nr / op_block_num;
+
+        uint64_t tails = nr % op_block_num;
+        if (op_block_idx < tails) {
+            dr += 1;
+            ir = dr * op_block_idx;
+        } else {
+            ir = dr * op_block_idx + tails;
+        }
+
+        group_size_in_row = scale_stride[1];
+        int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
+                              output_ne[3] * sizeof(uint8_t) / 2;
+
+        input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
+        output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
+        scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
+                                                 group_size_in_row *
+                                                 sizeof(half)));
+
+        pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
+        pipe.InitBuffer(output_queue, BUFFER_NUM,
+                            Group_Size * sizeof(int8_t) / 2);
+        pipe.InitBuffer(cast_queue , BUFFER_NUM, Group_Size * sizeof(float));
+        pipe.InitBuffer(work_queue, BUFFER_NUM, Group_Size*sizeof(float));
+        pipe.InitBuffer(max_queue, BUFFER_NUM, Group_Size*sizeof(float));
+        pipe.InitBuffer(min_queue, BUFFER_NUM, Group_Size*sizeof(float));
+        pipe.InitBuffer(scale_queue, BUFFER_NUM, 16*sizeof(half));
+        pipe.InitBuffer(int8_queue, BUFFER_NUM, Group_Size * sizeof(int8_t));
+        pipe.InitBuffer(half_queue, BUFFER_NUM, Group_Size * sizeof(half));
+    }
+
+    __aicore__ inline void copy_in(uint32_t offset) {
+        LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
+        DataCopy(input_local, input_gm[offset], Group_Size);
+        input_queue.EnQue(input_local);
+    }
+
+    __aicore__ inline void copy_out(uint32_t offset) {
+        // reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
+        // and using DataCopyPad to avoid 32 bits align.
+        LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
+        LocalTensor<int8_t> output_int8_local =
+                                    output_local.ReinterpretCast<int8_t>();
+
+        DataCopyExtParams dataCopyParams;
+        dataCopyParams.blockCount = 1;
+        dataCopyParams.blockLen = Group_Size / 2  * sizeof(int8_t);
+        DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
+
+        output_queue.FreeTensor(output_local);
+    }
+
+    __aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
+                                         LocalTensor<float> input_local) {
+        DataCopy(cast_local, input_local, Group_Size);
+    }
+
+    __aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
+                                         LocalTensor<half> input_local) {
+        Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
+    }
+
+    __aicore__ inline half calculate_group(int64_t row, int64_t group) {
+        const int64_t i3 = row / (input_ne[1] * input_ne[2]);
+        const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
+        const int64_t i1 =
+            row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
+
+        const int64_t input_offset = i1 * input_stride[1] +
+                                     i2 * input_stride[2] +
+                                     i3 * input_stride[3] + Group_Size * group;
+
+        // output_offset is stride for output_gm which datatype is int8_t and
+        // divided by 2 is needed for int4b_t.
+        const int64_t output_offset = (i1 * output_stride[1] +
+                                       i2 * output_stride[2] +
+                                       i3 * output_stride[3] +
+                                       Group_Size * group) / 2;
+        copy_in(input_offset);
+
+        LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
+        LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
+        LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
+        LocalTensor<float> work_local = work_queue.AllocTensor<float>();
+        LocalTensor<float> max_local = max_queue.AllocTensor<float>();
+        LocalTensor<float> min_local = min_queue.AllocTensor<float>();
+        LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
+        LocalTensor<half> half_local = half_queue.AllocTensor<half>();
+
+        input_to_cast(cast_local, input_local);
+
+        ReduceMax(max_local, cast_local, work_local, Group_Size);
+        ReduceMin(min_local, cast_local, work_local, Group_Size);
+        const float max_value = max_local.GetValue(0);
+        const float min_value = min_local.GetValue(0);
+        float d = max_value;
+        if (min_value < 0 && (-1 * min_value) > max_value) {
+            d = min_value;
+        }
+
+        d = d / (-8);
+        if (d != 0) {
+            Muls(cast_local, cast_local, 1.0f / d, Group_Size);
+        }
+
+        // range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
+        float scalar = 8.5f;
+        Adds(cast_local, cast_local, scalar, Group_Size);
+        Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
+        scalar = 15.0f;
+        Mins(cast_local, cast_local, scalar, Group_Size);
+        scalar = -8.0f;
+        Adds(cast_local, cast_local, scalar, Group_Size);
+
+        // float->half->int4b
+        Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
+        Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
+
+        output_queue.EnQue(output_local);
+        copy_out(output_offset);
+
+        input_queue.FreeTensor(input_local);
+        work_queue.FreeTensor(work_local);
+        max_queue.FreeTensor(max_local);
+        min_queue.FreeTensor(min_local);
+        int8_queue.FreeTensor(int8_local);
+        half_queue.FreeTensor(half_local);
+        cast_queue.FreeTensor(cast_local);
+        return (half)d;
+    }
+
+    __aicore__ inline void calculate() {
+        LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
+        uint32_t scale_local_offset = 0;
+        uint32_t scale_global_offset = 0;
+        for (int64_t i = ir; i < ir + dr; i++) {
+            for (int64_t j = 0; j < group_size_in_row; j++) {
+                half scale = calculate_group(i, j);
+                scale_local.SetValue(scale_local_offset++, scale);
+                if (scale_local_offset == 16) {
+                    scale_local_offset = 0;
+                    // TODO: OPTIMIZE ME
+                    pipe_barrier(PIPE_ALL);
+                    DataCopy(scale_gm[scale_global_offset], scale_local, 16);
+                    pipe_barrier(PIPE_ALL);
+                    scale_global_offset += 16;
+                }
+            }
+        }
+
+        if (scale_local_offset != 0) {
+            pipe_barrier(PIPE_ALL);
+            DataCopyExtParams dataCopyParams;
+            dataCopyParams.blockCount = 1;
+            dataCopyParams.blockLen = scale_local_offset * sizeof(half);
+            DataCopyPad(scale_gm[scale_global_offset], scale_local,
+                        dataCopyParams);
+            pipe_barrier(PIPE_ALL);
+        }
+        scale_queue.FreeTensor(scale_local);
+    }
+
+   private:
+    int64_t input_ne[4];
+    size_t input_stride[4];
+
+    int64_t *scale_ne;
+    size_t scale_stride[4];
+
+    int64_t output_ne[4];
+    size_t output_stride[4];
+
+    int64_t group_size_in_row;
+
+    int64_t ir;
+    int64_t dr;
+
+    TPipe pipe;
+    GlobalTensor<SRC_T> input_gm;
+    GlobalTensor<half> scale_gm;
+    GlobalTensor<int8_t> output_gm;
+    TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
+    TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
+    TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
+    TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
+    TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
+    TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
+    TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
+    TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
+    TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
+};
+
+template <typename T>
+__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
+    auto gm_ptr = (__gm__ uint8_t *)gm;
+    auto ub_ptr = (uint8_t *)(ub);
+    for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
+        *ub_ptr = *gm_ptr;
+    }
+}
+
+extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
+    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
+    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
+    int64_t input_ne_ub[4];
+    size_t input_nb_ub[4];
+    int64_t output_ne_ub[4];
+
+    copy_to_ub(input_ne_gm, input_ne_ub, 32);
+    copy_to_ub(input_nb_gm, input_nb_ub, 32);
+    copy_to_ub(output_ne_gm, output_ne_ub, 32);
+
+    QUANTIZE_FLOAT_TO_Q4_0<half> op;
+    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
+    op.calculate();
+}
+
+extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
+    GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
+    GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
+    int64_t input_ne_ub[4];
+    size_t input_nb_ub[4];
+    int64_t output_ne_ub[4];
+
+    copy_to_ub(input_ne_gm, input_ne_ub, 32);
+    copy_to_ub(input_nb_gm, input_nb_ub, 32);
+    copy_to_ub(output_ne_gm, output_ne_ub, 32);
+
+    QUANTIZE_FLOAT_TO_Q4_0<float> op;
+    op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
+    op.calculate();
+}