dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
}
-static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
+static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0,
+ const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int half_n_dims = ncols/4;
const int i = row*ncols + col;
const float col_theta_scale = powf(theta_scale, col);
+ const float p = p0 + p_delta*(row/p_delta_rows);
- const float theta = p*col_theta_scale;
+ const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale;
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
- const float block_theta = block_p*col_theta_scale;
+ const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale;
const float sin_block_theta = sinf(block_theta);
const float cos_block_theta = cosf(block_theta);
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
}
-static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
- GGML_ASSERT(nrows % 4 == 0);
- const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
- const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
+static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
+ const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
+ GGML_ASSERT(ncols % 4 == 0);
+ const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
+ const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
+ rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx);
}
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
const float theta_scale = powf(freq_base, -2.0f/n_dims);
+ const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
// compute
if (is_glm) {
- const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
- const float id_p = min(p, n_ctx - 2.f);
- const float block_p = max(p - (n_ctx - 2.f), 0.f);
- rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
+ rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, n_ctx, cudaStream_main);
} else if (is_neox) {
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
- const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
} else {
- const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
}
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
- const int mode = ((int32_t *) dst->op_params)[2];
- const bool is_glm = mode & 4;
-
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
+ ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, true);
}
void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {