### Recent API changes
+- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
#include <unordered_set>
#include <vector>
#include <cinttypes>
+#include <codecvt>
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#ifndef NOMINMAX
# define NOMINMAX
#endif
-#include <codecvt>
#include <locale>
#include <windows.h>
#include <fcntl.h>
GGML_UNREACHABLE();
}
+// Validate if a filename is safe to use
+// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
+bool validate_file_name(const std::string & filename) {
+ if (!filename.length()) {
+ // Empty filename invalid
+ return false;
+ }
+ if (filename.length() > 255) {
+ // Limit at common largest possible filename on Linux filesystems
+ // to avoid unnecessary further validation
+ // (On systems with smaller limits it will be caught by the OS)
+ return false;
+ }
+
+ std::u32string filename_utf32;
+ try {
+ std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
+ filename_utf32 = converter.from_bytes(filename);
+
+ // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
+ // or invalid encodings were encountered. Reject such attempts
+ std::string filename_reencoded = converter.to_bytes(filename_utf32);
+ if (filename_reencoded != filename) {
+ return false;
+ }
+ } catch (const std::exception &) {
+ return false;
+ }
+
+ // Check for forbidden codepoints:
+ // - Control characters
+ // - Unicode equivalents of illegal characters
+ // - UTF-16 surrogate pairs
+ // - UTF-8 replacement character
+ // - Byte order mark (BOM)
+ // - Illegal characters: / \ : * ? " < > |
+ for (char32_t c : filename_utf32) {
+ if (c <= 0x1F // Control characters (C0)
+ || c == 0x7F // Control characters (DEL)
+ || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
+ || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
+ || c == 0x2215 // Division Slash (forward slash equivalent)
+ || c == 0x2216 // Set Minus (backslash equivalent)
+ || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
+ || c == 0xFFFD // Replacement Character (UTF-8)
+ || c == 0xFEFF // Byte Order Mark (BOM)
+ || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
+ || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
+ return false;
+ }
+ }
+
+ // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
+ // Unicode and other whitespace is not affected, only 0x20 space
+ if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
+ return false;
+ }
+
+ // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
+ if (filename.find("..") != std::string::npos) {
+ return false;
+ }
+
+ // Reject "."
+ if (filename == ".") {
+ return false;
+ }
+
+ return true;
+}
+
//
// String utils
//
void process_escapes(std::string& input);
+bool validate_file_name(const std::string & filename);
+
//
// String utils
//
// The file exists and is not empty
session_tokens.resize(n_ctx);
size_t n_token_count_out = 0;
- if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
+ if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
need_to_save_session = false;
- llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
+ llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
LOG("saved session to %s\n", path_session.c_str());
}
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
- llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
+ llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_print_timings(ctx);
std::string result0;
std::string result1;
+ std::string result2;
// init
llama_model * model;
// save state (rng, logits, embedding and kv_cache) to file
{
- std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
- const size_t written = llama_copy_state_data(ctx, state_mem.data());
+ std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
+ const size_t written = llama_state_get_data(ctx, state_mem.data());
FILE *fp_write = fopen("dump_state.bin", "wb");
fwrite(state_mem.data(), 1, written, fp_write);
// load state (rng, logits, embedding and kv_cache) from file
{
- std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
+ std::vector<uint8_t> state_mem(llama_state_get_size(ctx2));
FILE * fp_read = fopen("dump_state.bin", "rb");
const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
fclose(fp_read);
- if (read != llama_set_state_data(ctx2, state_mem.data())) {
+ if (read != llama_state_set_data(ctx2, state_mem.data())) {
fprintf(stderr, "\n%s : failed to read state\n", __func__);
llama_free(ctx2);
llama_free_model(model);
n_past += 1;
}
- printf("\n");
+ printf("\n\n");
llama_free(ctx2);
- llama_free_model(model);
if (result0 != result1) {
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
return 1;
}
+ // make new context
+ auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
+
+ printf("\nsingle seq run: %s", params.prompt.c_str());
+
+ // load state (rng, logits, embedding and kv_cache) from file
+ {
+ std::vector<uint8_t> state_mem(llama_state_get_size(ctx3));
+
+ FILE * fp_read = fopen("dump_state.bin", "rb");
+ const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
+ fclose(fp_read);
+
+ if (read != llama_state_set_data(ctx3, state_mem.data())) {
+ fprintf(stderr, "\n%s : failed to read state\n", __func__);
+ llama_free(ctx3);
+ llama_free_model(model);
+ return 1;
+ }
+
+ fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
+ }
+
+ // restore state (last tokens)
+ n_past = n_past_saved;
+
+ // save seq 0 and load into seq 1
+ {
+ // save kv of seq 0
+ std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
+ const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), 0);
+ if (ncopy != seq_store.size()) {
+ fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
+ llama_free(ctx3);
+ llama_free_model(model);
+ return 1;
+ }
+ fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
+
+ // erase whole kv
+ llama_kv_cache_clear(ctx3);
+ fprintf(stderr, "%s : kv cache cleared\n", __func__);
+
+ // restore kv into seq 1
+ const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), 1);
+ if (nset != seq_store.size()) {
+ fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
+ llama_free(ctx3);
+ llama_free_model(model);
+ return 1;
+ }
+ fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
+ }
+
+ // third run with seq 1 instead of 0
+ for (auto i = 0; i < params.n_predict; i++) {
+ auto * logits = llama_get_logits(ctx3);
+ auto n_vocab = llama_n_vocab(model);
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ auto next_token = llama_sample_token(ctx3, &candidates_p);
+ auto next_token_str = llama_token_to_piece(ctx3, next_token);
+
+ printf("%s", next_token_str.c_str());
+ result2 += next_token_str;
+
+ if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) {
+ fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
+ llama_free(ctx3);
+ llama_free_model(model);
+ return 1;
+ }
+ n_past += 1;
+ }
+
+ printf("\n");
+
+ llama_free(ctx3);
+ llama_free_model(model);
+
+ if (result0 != result2) {
+ fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
+ return 1;
+ }
+
fprintf(stderr, "\n%s : success\n", __func__);
return 0;
- `-n N, --n-predict N`: Set the maximum tokens to predict. Default: `-1`
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
- `--metrics`: enable prometheus `/metrics` compatible endpoint. Default: disabled
+- `--slot-save-path PATH`: Specifies the path where the state of slots (the prompt cache) can be stored. If not provided, the slot management endpoints will be disabled.
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name. Default: template taken from model's metadata. We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
- `--log-disable`: Output logs to stdout only, not to `llama.log`. Default: enabled
- `--log-format FORMAT`: Define the log output to FORMAT: json or text Default: `json`
- `llamacpp:requests_processing`: Number of requests processing.
- `llamacpp:requests_deferred`: Number of requests deferred.
+- **POST** `/slots/{id_slot}?action=save`: Save the prompt cache of the specified slot to a file.
+
+ *Options:*
+
+ `filename`: Name of the file to save the slot's prompt cache. The file will be saved in the directory specified by the `--slot-save-path` server parameter.
+
+### Result JSON
+
+```json
+{
+ "id_slot": 0,
+ "filename": "slot_save_file.bin",
+ "n_saved": 1745,
+ "n_written": 14309796,
+ "timings": {
+ "save_ms": 49.865
+ }
+}
+```
+
+- **POST** `/slots/{id_slot}?action=restore`: Restore the prompt cache of the specified slot from a file.
+
+ *Options:*
+
+ `filename`: Name of the file to restore the slot's prompt cache from. The file should be located in the directory specified by the `--slot-save-path` server parameter.
+
+### Result JSON
+
+```json
+{
+ "id_slot": 0,
+ "filename": "slot_save_file.bin",
+ "n_restored": 1745,
+ "n_read": 14309796,
+ "timings": {
+ "restore_ms": 42.937
+ }
+}
+```
+
+- **POST** `/slots/{id_slot}?action=erase`: Erase the prompt cache of the specified slot.
+
+### Result JSON
+
+```json
+{
+ "id_slot": 0,
+ "n_erased": 1745
+}
+```
+
## More examples
### Change system prompt on runtime
SERVER_TASK_TYPE_COMPLETION,
SERVER_TASK_TYPE_CANCEL,
SERVER_TASK_TYPE_NEXT_RESPONSE,
- SERVER_TASK_TYPE_METRICS
+ SERVER_TASK_TYPE_METRICS,
+ SERVER_TASK_TYPE_SLOT_SAVE,
+ SERVER_TASK_TYPE_SLOT_RESTORE,
+ SERVER_TASK_TYPE_SLOT_ERASE,
};
struct server_task {
bool slots_endpoint = true;
bool metrics_endpoint = false;
+ std::string slot_save_path;
};
struct server_slot {
}
queue_results.send(res);
} break;
+ case SERVER_TASK_TYPE_SLOT_SAVE:
+ {
+ int id_slot = task.data["id_slot"];
+ server_slot * slot = get_slot(id_slot);
+ if (slot == nullptr) {
+ send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
+ break;
+ }
+
+ const size_t token_count = slot->cache_tokens.size();
+ const int64_t t_start = ggml_time_us();
+
+ std::string filename = task.data["filename"];
+ std::string filepath = task.data["filepath"];
+
+ const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
+
+ const int64_t t_end = ggml_time_us();
+ const double t_save_ms = (t_end - t_start) / 1000.0;
+
+ server_task_result result;
+ result.id = task.id;
+ result.stop = true;
+ result.error = false;
+ result.data = json {
+ { "id_slot", id_slot },
+ { "filename", filename },
+ { "n_saved", token_count }, // tokens saved
+ { "n_written", nwrite }, // bytes written
+ { "timings", {
+ { "save_ms", t_save_ms }
+ } }
+ };
+ queue_results.send(result);
+ } break;
+ case SERVER_TASK_TYPE_SLOT_RESTORE:
+ {
+ int id_slot = task.data["id_slot"];
+ server_slot * slot = get_slot(id_slot);
+ if (slot == nullptr) {
+ send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
+ break;
+ }
+
+ const int64_t t_start = ggml_time_us();
+
+ std::string filename = task.data["filename"];
+ std::string filepath = task.data["filepath"];
+
+ slot->cache_tokens.resize(slot->n_ctx);
+ size_t token_count = 0;
+ size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
+ if (nread == 0) {
+ slot->cache_tokens.resize(0);
+ send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
+ break;
+ }
+ slot->cache_tokens.resize(token_count);
+
+ const int64_t t_end = ggml_time_us();
+ const double t_restore_ms = (t_end - t_start) / 1000.0;
+
+ server_task_result result;
+ result.id = task.id;
+ result.stop = true;
+ result.error = false;
+ result.data = json {
+ { "id_slot", id_slot },
+ { "filename", filename },
+ { "n_restored", token_count }, // tokens restored
+ { "n_read", nread }, // bytes read
+ { "timings", {
+ { "restore_ms", t_restore_ms }
+ } }
+ };
+ queue_results.send(result);
+ } break;
+ case SERVER_TASK_TYPE_SLOT_ERASE:
+ {
+ int id_slot = task.data["id_slot"];
+ server_slot * slot = get_slot(id_slot);
+ if (slot == nullptr) {
+ send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
+ break;
+ }
+
+ // Erase token cache
+ const size_t n_erased = slot->cache_tokens.size();
+ llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
+ slot->cache_tokens.clear();
+
+ server_task_result result;
+ result.id = task.id;
+ result.stop = true;
+ result.error = false;
+ result.data = json {
+ { "id_slot", id_slot },
+ { "n_erased", n_erased }
+ };
+ queue_results.send(result);
+ } break;
}
}
printf(" --log-disable disables logging to a file.\n");
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
+ printf(" --slot-save-path PATH path to save slot kv cache (default: disabled)\n");
printf("\n");
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
printf(" --override-kv KEY=TYPE:VALUE\n");
sparams.slots_endpoint = false;
} else if (arg == "--metrics") {
sparams.metrics_endpoint = true;
+ } else if (arg == "--slot-save-path") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ sparams.slot_save_path = argv[i];
+ // if doesn't end with DIRECTORY_SEPARATOR, add it
+ if (!sparams.slot_save_path.empty() && sparams.slot_save_path[sparams.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
+ sparams.slot_save_path += DIRECTORY_SEPARATOR;
+ }
} else if (arg == "--chat-template") {
if (++i >= argc) {
invalid_param = true;
res.status = 200; // HTTP OK
};
+ const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
+ json request_data = json::parse(req.body);
+ std::string filename = request_data["filename"];
+ if (!validate_file_name(filename)) {
+ res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
+ return;
+ }
+ std::string filepath = sparams.slot_save_path + filename;
+
+ server_task task;
+ task.type = SERVER_TASK_TYPE_SLOT_SAVE;
+ task.data = {
+ { "id_slot", id_slot },
+ { "filename", filename },
+ { "filepath", filepath }
+ };
+
+ const int id_task = ctx_server.queue_tasks.post(task);
+ ctx_server.queue_results.add_waiting_task_id(id_task);
+
+ server_task_result result = ctx_server.queue_results.recv(id_task);
+ ctx_server.queue_results.remove_waiting_task_id(id_task);
+
+ if (result.error) {
+ res_error(res, result.data);
+ } else {
+ res.set_content(result.data.dump(), "application/json");
+ }
+ };
+
+ const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
+ json request_data = json::parse(req.body);
+ std::string filename = request_data["filename"];
+ if (!validate_file_name(filename)) {
+ res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
+ return;
+ }
+ std::string filepath = sparams.slot_save_path + filename;
+
+ server_task task;
+ task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
+ task.data = {
+ { "id_slot", id_slot },
+ { "filename", filename },
+ { "filepath", filepath }
+ };
+
+ const int id_task = ctx_server.queue_tasks.post(task);
+ ctx_server.queue_results.add_waiting_task_id(id_task);
+
+ server_task_result result = ctx_server.queue_results.recv(id_task);
+ ctx_server.queue_results.remove_waiting_task_id(id_task);
+
+ if (result.error) {
+ res_error(res, result.data);
+ } else {
+ res.set_content(result.data.dump(), "application/json");
+ }
+ };
+
+ const auto handle_slots_erase = [&ctx_server, &res_error](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
+ server_task task;
+ task.type = SERVER_TASK_TYPE_SLOT_ERASE;
+ task.data = {
+ { "id_slot", id_slot },
+ };
+
+ const int id_task = ctx_server.queue_tasks.post(task);
+ ctx_server.queue_results.add_waiting_task_id(id_task);
+
+ server_task_result result = ctx_server.queue_results.recv(id_task);
+ ctx_server.queue_results.remove_waiting_task_id(id_task);
+
+ if (result.error) {
+ res_error(res, result.data);
+ } else {
+ res.set_content(result.data.dump(), "application/json");
+ }
+ };
+
+ const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
+ res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
+
+ std::string id_slot_str = req.path_params.at("id_slot");
+ int id_slot;
+
+ try {
+ id_slot = std::stoi(id_slot_str);
+ } catch (const std::exception &) {
+ res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
+ return;
+ }
+
+ std::string action = req.get_param_value("action");
+
+ if (action == "save") {
+ handle_slots_save(req, res, id_slot);
+ } else if (action == "restore") {
+ handle_slots_restore(req, res, id_slot);
+ } else if (action == "erase") {
+ handle_slots_erase(req, res, id_slot);
+ } else {
+ res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
+ }
+ };
+
const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
json data = {
svr->Post("/v1/embeddings", handle_embeddings);
svr->Post("/tokenize", handle_tokenize);
svr->Post("/detokenize", handle_detokenize);
+ if (!sparams.slot_save_path.empty()) {
+ // only enable slot endpoints if slot_save_path is set
+ svr->Post("/slots/:id_slot", handle_slots_action);
+ }
//
// Start the server
--- /dev/null
+@llama.cpp
+@slotsave
+Feature: llama.cpp server slot management
+
+ Background: Server startup
+ Given a server listening on localhost:8080
+ And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
+ And prompt caching is enabled
+ And 2 slots
+ And . as slot save path
+ And 2048 KV cache size
+ And 42 as server seed
+ And 24 max tokens to predict
+ Then the server is starting
+ Then the server is healthy
+
+ Scenario: Save and Restore Slot
+ # First prompt in slot 1 should be fully processed
+ Given a user prompt "What is the capital of France?"
+ And using slot id 1
+ And a completion request with no api error
+ Then 24 tokens are predicted matching (Lily|cake)
+ And 22 prompt tokens are processed
+ When the slot 1 is saved with filename "slot1.bin"
+ Then the server responds with status code 200
+ # Since we have cache, this should only process the last tokens
+ Given a user prompt "What is the capital of Germany?"
+ And a completion request with no api error
+ Then 24 tokens are predicted matching (Thank|special)
+ And 7 prompt tokens are processed
+ # Loading the original cache into slot 0,
+ # we should only be processing 1 prompt token and get the same output
+ When the slot 0 is restored with filename "slot1.bin"
+ Then the server responds with status code 200
+ Given a user prompt "What is the capital of France?"
+ And using slot id 0
+ And a completion request with no api error
+ Then 24 tokens are predicted matching (Lily|cake)
+ And 1 prompt tokens are processed
+ # For verification that slot 1 was not corrupted during slot 0 load, same thing
+ Given a user prompt "What is the capital of Germany?"
+ And using slot id 1
+ And a completion request with no api error
+ Then 24 tokens are predicted matching (Thank|special)
+ And 1 prompt tokens are processed
+
+ Scenario: Erase Slot
+ Given a user prompt "What is the capital of France?"
+ And using slot id 1
+ And a completion request with no api error
+ Then 24 tokens are predicted matching (Lily|cake)
+ And 22 prompt tokens are processed
+ When the slot 1 is erased
+ Then the server responds with status code 200
+ Given a user prompt "What is the capital of France?"
+ And a completion request with no api error
+ Then 24 tokens are predicted matching (Lily|cake)
+ And 22 prompt tokens are processed
context.n_predict = None
context.n_prompts = 0
context.n_server_predict = None
+ context.slot_save_path = None
+ context.id_slot = None
+ context.cache_prompt = None
context.n_slots = None
context.prompt_prefix = None
context.prompt_suffix = None
context.n_server_predict = n_predict
+@step('{slot_save_path} as slot save path')
+def step_slot_save_path(context, slot_save_path):
+ context.slot_save_path = slot_save_path
+
+
+@step('using slot id {id_slot:d}')
+def step_id_slot(context, id_slot):
+ context.id_slot = id_slot
+
+
+@step('prompt caching is enabled')
+def step_enable_prompt_cache(context):
+ context.cache_prompt = True
+
+
@step('continuous batching')
def step_server_continuous_batching(context):
context.server_continuous_batching = True
context.base_url,
debug=context.debug,
n_predict=context.n_predict,
+ cache_prompt=context.cache_prompt,
+ id_slot=context.id_slot,
seed=await completions_seed(context),
expect_api_error=expect_api_error,
user_api_key=context.user_api_key)
await asyncio.sleep(0.1)
+@step('the slot {slot_id:d} is saved with filename "{filename}"')
+@async_run_until_complete
+async def step_save_slot(context, slot_id, filename):
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
+ json={"filename": filename},
+ headers={"Content-Type": "application/json"}) as response:
+ context.response = response
+
+
+@step('the slot {slot_id:d} is restored with filename "{filename}"')
+@async_run_until_complete
+async def step_restore_slot(context, slot_id, filename):
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
+ json={"filename": filename},
+ headers={"Content-Type": "application/json"}) as response:
+ context.response = response
+
+
+@step('the slot {slot_id:d} is erased')
+@async_run_until_complete
+async def step_erase_slot(context, slot_id):
+ async with aiohttp.ClientSession() as session:
+ async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
+ headers={"Content-Type": "application/json"}) as response:
+ context.response = response
+
+
+@step('the server responds with status code {status_code:d}')
+def step_server_responds_with_status_code(context, status_code):
+ assert context.response.status == status_code
+
+
async def request_completion(prompt,
base_url,
debug=False,
prompt_prefix=None,
prompt_suffix=None,
n_predict=None,
+ cache_prompt=False,
+ id_slot=None,
seed=None,
expect_api_error=None,
user_api_key=None):
"prompt": prompt,
"input_suffix": prompt_suffix,
"n_predict": n_predict if n_predict is not None else -1,
+ "cache_prompt": cache_prompt,
+ "id_slot": id_slot,
"seed": seed if seed is not None else 42
},
headers=headers,
server_args.extend(['--parallel', context.n_slots])
if context.n_server_predict:
server_args.extend(['--n-predict', context.n_server_predict])
+ if context.slot_save_path:
+ server_args.extend(['--slot-save-path', context.slot_save_path])
if context.server_api_key:
server_args.extend(['--api-key', context.server_api_key])
if context.n_ga:
llama_kv_cache_update_internal(*ctx);
}
+// deprecated
+size_t llama_get_state_size(const struct llama_context * ctx) {
+ return llama_state_get_size(ctx);
+}
+
+// deprecated
+size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
+ return llama_state_get_data(ctx, dst);
+}
+
+// deprecated
+size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
+ return llama_state_set_data(ctx, src);
+}
+
+// deprecated
+bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
+}
+
+// deprecated
+bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+ return llama_state_save_file(ctx, path_session, tokens, n_token_count);
+}
// Returns the *maximum* size of the state
-size_t llama_get_state_size(const struct llama_context * ctx) {
+size_t llama_state_get_size(const struct llama_context * ctx) {
const auto & cparams = ctx->cparams;
const auto & hparams = ctx->model.hparams;
* file context:
* llama_file file("/path", "wb");
* llama_data_file_context data_ctx(&file);
- * llama_copy_state_data(ctx, &data_ctx);
+ * llama_state_get_data(ctx, &data_ctx);
*
* buffer context:
* std::vector<uint8_t> buf(max_size, 0);
* llama_data_buffer_context data_ctx(&buf.data());
- * llama_copy_state_data(ctx, &data_ctx);
+ * llama_state_get_data(ctx, &data_ctx);
*
*/
-static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
+static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
// copy rng
{
std::ostringstream rng_ss;
}
}
-size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
+size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
llama_data_buffer_context data_ctx(dst);
- llama_copy_state_data_internal(ctx, &data_ctx);
+ llama_state_get_data_internal(ctx, &data_ctx);
return data_ctx.get_size_written();
}
// Sets the state reading from the specified source address
-size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
+size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
const uint8_t * inp = src;
// set rng
}
const size_t nread = inp - src;
- const size_t max_size = llama_get_state_size(ctx);
+ const size_t max_size = llama_state_get_size(ctx);
GGML_ASSERT(nread <= max_size);
return nread;
}
-static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(path_session, "rb");
// sanity checks
// restore the context state
{
const size_t n_state_size_cur = file.size - file.tell();
- const size_t n_state_size_max = llama_get_state_size(ctx);
+ const size_t n_state_size_max = llama_state_get_size(ctx);
if (n_state_size_cur > n_state_size_max) {
LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
std::vector<uint8_t> state_data(n_state_size_max);
file.read_raw(state_data.data(), n_state_size_cur);
- llama_set_state_data(ctx, state_data.data());
+ llama_state_set_data(ctx, state_data.data());
}
return true;
}
-bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
try {
- return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
+ return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
return false;
}
}
-bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
llama_file file(path_session, "wb");
file.write_u32(LLAMA_SESSION_MAGIC);
// save the context state using stream saving
llama_data_file_context data_ctx(&file);
- llama_copy_state_data_internal(ctx, &data_ctx);
+ llama_state_get_data_internal(ctx, &data_ctx);
return true;
}
+bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
+ try {
+ return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
+ return false;
+ }
+}
+
+size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
+ // save the size of size_t as a uint32_t for safety check
+ const size_t size_t_size_size = sizeof(uint32_t);
+
+ // other values
+ const size_t s_cell_count_size = sizeof(uint32_t);
+ const size_t s_layer_count_size = sizeof(uint32_t);
+ const size_t n_embd_v_gqa_size = sizeof(uint32_t);
+
+ size_t s_cell_count = 0;
+ size_t s_cell_data_size = 0;
+ const auto & kv_self = ctx->kv_self;
+ const auto & hparams = ctx->model.hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
+
+ for (uint32_t i = 0; i < kv_self.size; ++i) {
+ const auto & cell = kv_self.cells[i];
+ if (cell.seq_id.count(seq_id) > 0) {
+ ++s_cell_count;
+ s_cell_data_size += sizeof(llama_pos);
+ }
+ }
+
+ for (int il = 0; il < (int)n_layer; ++il) {
+ // types of keys and values
+ s_cell_data_size += sizeof(int32_t) * 2;
+ // k_size_row and v_size_el values of layer
+ s_cell_data_size += sizeof(size_t) * 2;
+
+ // keys
+ const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+ s_cell_data_size += k_size_row * s_cell_count;
+
+ // values (transposed)
+ const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+ s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
+ }
+
+ const size_t s_total = (
+ size_t_size_size +
+ s_cell_count_size +
+ s_layer_count_size +
+ n_embd_v_gqa_size +
+ s_cell_data_size
+ );
+
+ return s_total;
+}
+
+static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
+ const auto & kv_self = ctx->kv_self;
+ GGML_ASSERT(!kv_self.recurrent); // not implemented
+
+ // Save the size of size_t as a uint32_t for safety check
+ const uint32_t size_t_size = sizeof(size_t);
+ data_ctx.write(&size_t_size, sizeof(size_t_size));
+
+ std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
+ uint32_t cell_count = 0;
+
+ // Count the number of cells with the specified seq_id
+ // Find all the ranges of cells with this seq id
+ {
+ uint32_t cell_range_begin = kv_self.size;
+ for (uint32_t i = 0; i < kv_self.size; ++i) {
+ const auto & cell = kv_self.cells[i];
+ if (cell.has_seq_id(seq_id)) {
+ ++cell_count;
+ if (cell_range_begin == kv_self.size) {
+ cell_range_begin = i;
+ }
+ }
+ else {
+ if (cell_range_begin != kv_self.size) {
+ cell_ranges.push_back({ cell_range_begin, i });
+ cell_range_begin = kv_self.size;
+ }
+ }
+ }
+ if (cell_range_begin != kv_self.size) {
+ cell_ranges.push_back({ cell_range_begin, kv_self.size });
+ }
+
+ // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
+ uint32_t cell_count_check = 0;
+ for (const auto & range : cell_ranges) {
+ cell_count_check += range.second - range.first;
+ }
+ GGML_ASSERT(cell_count == cell_count_check);
+ }
+
+ // Write the cell count
+ data_ctx.write(&cell_count, sizeof(cell_count));
+
+ const auto & hparams = ctx->model.hparams;
+ const uint32_t n_layer = hparams.n_layer;
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
+
+ // Write the layer count
+ data_ctx.write(&n_layer, sizeof(n_layer));
+
+ // Write n_embd_v_gqa
+ data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
+
+ // Iterate the ranges and write all the pos (this is the token position in the prompt)
+ for (const auto & range : cell_ranges) {
+ for (uint32_t i = range.first; i < range.second; ++i) {
+ const auto & cell = kv_self.cells[i];
+ data_ctx.write(&cell.pos, sizeof(cell.pos));
+ }
+ }
+
+ // Iterate and write all the keys first, each row is a cell
+ // Get whole range at a time
+ std::vector<uint8_t> tmp_buf;
+ for (int il = 0; il < (int)n_layer; ++il) {
+ // Write key type
+ const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
+ data_ctx.write(&k_type_i, sizeof(k_type_i));
+
+ // Write row size of key
+ const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+ data_ctx.write(&k_size_row, sizeof(k_size_row));
+
+ // Read each range of cells of k_size length each into tmp_buf and write out
+ for (const auto & range : cell_ranges) {
+ const size_t range_size = range.second - range.first;
+ tmp_buf.resize(range_size * k_size_row);
+ ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
+ data_ctx.write(tmp_buf.data(), tmp_buf.size());
+ }
+ }
+
+ // For the values, they are transposed, so we also need the element size and get the element ranges from each row
+ const uint32_t kv_size = kv_self.size;
+ for (int il = 0; il < (int)n_layer; ++il) {
+ // Write value type
+ const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+ data_ctx.write(&v_type_i, sizeof(v_type_i));
+
+ // Write element size
+ const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+ data_ctx.write(&v_size_el, sizeof(v_size_el));
+
+ // For each row, we get the element values of each cell
+ for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+ // Read each range of cells of v_size_el length each into tmp_buf and write out
+ for (const auto & range : cell_ranges) {
+ const size_t range_size = range.second - range.first;
+ const size_t src_offset = (range.first + j * kv_size) * v_size_el;
+ tmp_buf.resize(range_size * v_size_el);
+ ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
+ data_ctx.write(tmp_buf.data(), tmp_buf.size());
+ }
+ }
+ }
+
+ return data_ctx.get_size_written();
+}
+
+size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
+ llama_data_buffer_context data_ctx(dst);
+ return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
+}
+
+size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
+ auto & kv_self = ctx->kv_self;
+ GGML_ASSERT(!kv_self.recurrent); // not implemented
+
+ // Wipe the slot
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+
+ const uint8_t * inp = src;
+
+ // Read size of size_t
+ uint32_t size_t_size;
+ memcpy(&size_t_size, inp, sizeof(size_t_size));
+ inp += sizeof(size_t_size);
+ if (size_t_size != sizeof(size_t)) {
+ LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
+ return 0;
+ }
+
+ // Read the cell count
+ uint32_t cell_count;
+ memcpy(&cell_count, inp, sizeof(cell_count));
+ inp += sizeof(cell_count);
+
+ // Read the layer count
+ uint32_t n_layer_ref;
+ memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
+ inp += sizeof(n_layer_ref);
+
+ // Read n_embd_v_gqa
+ uint32_t n_embd_v_gqa_ref;
+ memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
+ inp += sizeof(n_embd_v_gqa_ref);
+
+ // Sanity check model compatibility
+ const auto & hparams = ctx->model.hparams;
+ const uint32_t n_layer = hparams.n_layer;
+ const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
+ const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
+ if (n_layer != n_layer_ref) {
+ LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
+ return 0;
+ }
+ if (n_embd_v_gqa != n_embd_v_gqa_ref) {
+ LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
+ return 0;
+ }
+
+ // Allocate the new cells for the slot
+ if (cell_count) {
+ llama_batch batch = llama_batch_init(cell_count, 0, 1);
+ batch.n_tokens = cell_count;
+ for (uint32_t i = 0; i < cell_count; ++i) {
+ llama_pos pos;
+ memcpy(&pos, inp, sizeof(pos));
+ inp += sizeof(pos);
+
+ batch.pos[i] = pos;
+ batch.n_seq_id[i] = 1;
+ batch.seq_id[i][0] = dest_seq_id;
+ }
+ if (!llama_kv_cache_find_slot(kv_self, batch)) {
+ llama_batch_free(batch);
+ LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
+ return 0;
+ }
+
+ // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
+ // Assume that this is one contiguous block of cells
+ GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
+ GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
+ GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
+ GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
+ GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
+
+ // Cleanup
+ llama_batch_free(batch);
+ }
+
+ const uint32_t kv_size = kv_self.size;
+ const uint32_t kv_head = kv_self.head;
+
+ // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
+ for (int il = 0; il < (int)n_layer; ++il) {
+ // Read type of key
+ int32_t k_type_i_ref;
+ memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
+ inp += sizeof(k_type_i_ref);
+ const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
+ if (k_type_i != k_type_i_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
+ return 0;
+ }
+
+ // Read row size of key
+ size_t k_size_row_ref;
+ memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
+ inp += sizeof(k_size_row_ref);
+ const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
+ if (k_size_row != k_size_row_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
+ return 0;
+ }
+
+ if (cell_count) {
+ // Read and set the keys for the whole cell range
+ ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
+ inp += cell_count * k_size_row;
+ }
+ }
+
+ // For each layer, read the values for each cell (transposed)
+ for (int il = 0; il < (int)n_layer; ++il) {
+ // Read type of value
+ int32_t v_type_i_ref;
+ memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
+ inp += sizeof(v_type_i_ref);
+ const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
+ if (v_type_i != v_type_i_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
+ return 0;
+ }
+
+ // Read element size of value
+ size_t v_size_el_ref;
+ memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
+ inp += sizeof(v_size_el_ref);
+ const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
+ if (v_size_el != v_size_el_ref) {
+ llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
+ LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
+ return 0;
+ }
+
+ if (cell_count) {
+ // For each row in the transposed matrix, read the values for the whole cell range
+ for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
+ const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
+ ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
+ inp += cell_count * v_size_el;
+ }
+ }
+ }
+
+ const size_t nread = inp - src;
+ return nread;
+}
+
+static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
+ llama_file file(filepath, "wb");
+
+ file.write_u32(LLAMA_STATE_SEQ_MAGIC);
+ file.write_u32(LLAMA_STATE_SEQ_VERSION);
+
+ // save the prompt
+ file.write_u32((uint32_t)n_token_count);
+ file.write_raw(tokens, sizeof(llama_token) * n_token_count);
+
+ // save the context state using stream saving
+ llama_data_file_context data_ctx(&file);
+ llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
+
+ const size_t res = file.tell();
+ GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
+ return res;
+}
+
+static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ llama_file file(filepath, "rb");
+
+ // version checks
+ {
+ const uint32_t magic = file.read_u32();
+ const uint32_t version = file.read_u32();
+
+ if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
+ LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
+ return 0;
+ }
+ }
+
+ // load the prompt
+ {
+ const uint32_t n_token_count = file.read_u32();
+
+ if (n_token_count > n_token_capacity) {
+ LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
+ return 0;
+ }
+
+ file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
+ *n_token_count_out = n_token_count;
+ }
+
+ // restore the context state
+ {
+ const size_t state_size = file.size - file.tell();
+ std::vector<uint8_t> state_data(state_size);
+ file.read_raw(state_data.data(), state_size);
+ const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
+ if (!nread) {
+ LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
+ return 0;
+ }
+ GGML_ASSERT(nread <= state_size);
+ GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
+ }
+
+ return file.tell();
+}
+
+size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
+ try {
+ return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
+ return 0;
+ }
+}
+
+size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
+ try {
+ return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
+ } catch (const std::exception & err) {
+ LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
+ return 0;
+ }
+}
+
void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
ctx->cparams.n_threads = n_threads;
ctx->cparams.n_threads_batch = n_threads_batch;
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
+#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 5
+#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
+#define LLAMA_STATE_SEQ_VERSION 1
+
#ifdef __cplusplus
extern "C" {
#endif
struct llama_context * ctx);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
+ // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
- LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
+ LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
+ LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
+ "use llama_state_get_size instead");
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
- LLAMA_API size_t llama_copy_state_data(
+ LLAMA_API size_t llama_state_get_data(
struct llama_context * ctx,
uint8_t * dst);
+ LLAMA_API DEPRECATED(size_t llama_copy_state_data(
+ struct llama_context * ctx,
+ uint8_t * dst),
+ "use llama_state_get_data instead");
// Set the state reading from the specified address
// Returns the number of bytes read
- LLAMA_API size_t llama_set_state_data(
+ LLAMA_API size_t llama_state_set_data(
struct llama_context * ctx,
const uint8_t * src);
+ LLAMA_API DEPRECATED(size_t llama_set_state_data(
+ struct llama_context * ctx,
+ const uint8_t * src),
+ "use llama_state_set_data instead");
// Save/load session file
- LLAMA_API bool llama_load_session_file(
+ LLAMA_API bool llama_state_load_file(
struct llama_context * ctx,
const char * path_session,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
+ LLAMA_API DEPRECATED(bool llama_load_session_file(
+ struct llama_context * ctx,
+ const char * path_session,
+ llama_token * tokens_out,
+ size_t n_token_capacity,
+ size_t * n_token_count_out),
+ "use llama_state_load_file instead");
- LLAMA_API bool llama_save_session_file(
+ LLAMA_API bool llama_state_save_file(
struct llama_context * ctx,
const char * path_session,
const llama_token * tokens,
size_t n_token_count);
+ LLAMA_API DEPRECATED(bool llama_save_session_file(
+ struct llama_context * ctx,
+ const char * path_session,
+ const llama_token * tokens,
+ size_t n_token_count),
+ "use llama_state_save_file instead");
+
+ // Get the exact size needed to copy the KV cache of a single sequence
+ LLAMA_API size_t llama_state_seq_get_size(
+ struct llama_context * ctx,
+ llama_seq_id seq_id);
+
+ // Copy the KV cache of a single sequence into the specified buffer
+ LLAMA_API size_t llama_state_seq_get_data(
+ struct llama_context * ctx,
+ uint8_t * dst,
+ llama_seq_id seq_id);
+
+ // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
+ // Returns:
+ // - Positive: Ok
+ // - Zero: Failed to load
+ LLAMA_API size_t llama_state_seq_set_data(
+ struct llama_context * ctx,
+ const uint8_t * src,
+ llama_seq_id dest_seq_id);
+
+ LLAMA_API size_t llama_state_seq_save_file(
+ struct llama_context * ctx,
+ const char * filepath,
+ llama_seq_id seq_id,
+ const llama_token * tokens,
+ size_t n_token_count);
+
+ LLAMA_API size_t llama_state_seq_load_file(
+ struct llama_context * ctx,
+ const char * filepath,
+ llama_seq_id dest_seq_id,
+ llama_token * tokens_out,
+ size_t n_token_capacity,
+ size_t * n_token_count_out);
//
// Decoding