]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
examples : remove `finetune` and `train-text-from-scratch` (#8669)
authorXuan Son Nguyen <redacted>
Thu, 25 Jul 2024 08:39:04 +0000 (10:39 +0200)
committerGitHub <redacted>
Thu, 25 Jul 2024 08:39:04 +0000 (10:39 +0200)
* examples : remove finetune and train-text-from-scratch

* fix build

* update help message

* fix small typo for export-lora

15 files changed:
.devops/nix/apps.nix
.devops/tools.sh
Makefile
examples/CMakeLists.txt
examples/deprecation-warning/README.md
examples/export-lora/README.md
examples/finetune/CMakeLists.txt [deleted file]
examples/finetune/README.md [deleted file]
examples/finetune/convert_finetune_checkpoint_to_gguf.py [deleted file]
examples/finetune/finetune.cpp [deleted file]
examples/finetune/finetune.sh [deleted file]
examples/train-text-from-scratch/CMakeLists.txt [deleted file]
examples/train-text-from-scratch/README.md [deleted file]
examples/train-text-from-scratch/convert_train_checkpoint_to_gguf.py [deleted file]
examples/train-text-from-scratch/train-text-from-scratch.cpp [deleted file]

index 897fce4d324c13a5339e9203df6d7655a47e2b74..0ecf19fc56d554c69aeef8a03b253fc15338688e 100644 (file)
@@ -10,7 +10,6 @@
             "llama-embedding"
             "llama-server"
             "llama-quantize"
-            "llama-train-text-from-scratch"
           ];
           mkApp = name: {
             type = "app";
index cf0e8f32d738c01d4eba129abb55f0710081cc33..24dcfd35079cb73236dc80d911480bcbacc7008d 100755 (executable)
@@ -13,8 +13,6 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
     ./llama-quantize "$@"
 elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
     ./llama-cli "$@"
-elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
-    ./llama-finetune "$@"
 elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
     echo "Converting PTH to GGML..."
     for i in `ls $1/$2/ggml-model-f16.bin*`; do
@@ -36,8 +34,6 @@ else
     echo "              ex: --outtype f16 \"/models/7B/\" "
     echo "  --quantize (-q): Optimize with quantization process ggml"
     echo "              ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
-    echo "  --finetune (-f): Run finetune command to create a lora finetune of the model"
-    echo "              See documentation for finetune for command-line parameters"
     echo "  --all-in-one (-a): Execute --convert & --quantize"
     echo "              ex: \"/models/\" 7B"
     echo "  --server (-s): Run a model on the server"
index 58a93db1aac301aa0cbab5042ada714e63b2aca8..8d2ccddc469f9768ef5e7d20b3abc5bc5fbe9835 100644 (file)
--- a/Makefile
+++ b/Makefile
@@ -11,7 +11,6 @@ BUILD_TARGETS = \
        llama-embedding \
        llama-eval-callback \
        llama-export-lora \
-       llama-finetune \
        llama-gbnf-validator \
        llama-gguf \
        llama-gguf-hash \
@@ -37,7 +36,6 @@ BUILD_TARGETS = \
        llama-simple \
        llama-speculative \
        llama-tokenize \
-       llama-train-text-from-scratch \
        llama-vdot \
        llama-cvector-generator \
        tests/test-c.o
@@ -64,13 +62,13 @@ TEST_TARGETS = \
        tests/test-tokenizer-1-spm
 
 # Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
-LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
+LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
        simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
-       retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm
+       retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
 
 # Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
 #  We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
-LEGACY_TARGETS_BUILD = main quantize perplexity embedding server finetune
+LEGACY_TARGETS_BUILD = main quantize perplexity embedding server
 
 # Deprecation aliases
 ifdef LLAMA_CUBLAS
@@ -1296,11 +1294,6 @@ llama-cvector-generator: examples/cvector-generator/cvector-generator.cpp \
        $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
        $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
 
-llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp \
-       $(OBJ_ALL)
-       $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
-       $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-
 llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp \
        $(OBJ_GGML) $(OBJ_LLAMA)
        $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@@ -1316,11 +1309,6 @@ llama-baby-llama: examples/baby-llama/baby-llama.cpp \
        $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
        $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
 
-llama-finetune: examples/finetune/finetune.cpp \
-       $(OBJ_ALL)
-       $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
-       $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-
 llama-export-lora: examples/export-lora/export-lora.cpp \
        $(OBJ_ALL)
        $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@@ -1578,7 +1566,7 @@ llama-q8dot: pocs/vdot/q8dot.cpp ggml/src/ggml.o \
 # Deprecated binaries that we want to keep around long enough for people to migrate to the new filenames, then these can be removed.
 #
 # Mark legacy binary targets as .PHONY so that they are always checked.
-.PHONY: main quantize perplexity embedding server finetune
+.PHONY: main quantize perplexity embedding server
 
 # NOTE: We currently will always build the deprecation-warning `main` and `server` binaries to help users migrate.
 #  Eventually we will want to remove these target from building all the time.
@@ -1621,13 +1609,3 @@ ifneq (,$(wildcard embedding))
        @echo "  Remove the 'embedding' binary to remove this warning."
        @echo "#########"
 endif
-
-finetune: examples/deprecation-warning/deprecation-warning.cpp
-ifneq (,$(wildcard finetune))
-       $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
-       $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-       @echo "#########"
-       @echo "WARNING: The 'finetune' binary is deprecated. Please use 'llama-finetune' instead."
-       @echo "  Remove the 'finetune' binary to remove this warning."
-       @echo "#########"
-endif
index 155743639adfda332570ee6f47541d49ecfbde3c..67b3d277478508c5aae22109cb0a975710164c27 100644 (file)
@@ -21,7 +21,6 @@ else()
     add_subdirectory(embedding)
     add_subdirectory(eval-callback)
     add_subdirectory(export-lora)
-    add_subdirectory(finetune)
     add_subdirectory(gbnf-validator)
     add_subdirectory(gguf-hash)
     add_subdirectory(gguf-split)
@@ -53,5 +52,4 @@ else()
     add_subdirectory(simple)
     add_subdirectory(speculative)
     add_subdirectory(tokenize)
-    add_subdirectory(train-text-from-scratch)
 endif()
index 1e20feb4aab8720b55419e55cd6b52f384dae93b..59918ec2bbf72fcb702ba4cf9723d465ba6ae6c0 100644 (file)
@@ -13,7 +13,6 @@ Please update all scripts and workflows to use the new binary names.
 | server | llama-server |
 | llama-bench | llama-bench |
 | embedding | llama-embedding |
-| finetune | llama-finetune |
 | quantize | llama-quantize |
 | tokenize | llama-tokenize |
 | export-lora | llama-export-lora |
@@ -45,7 +44,6 @@ Please update all scripts and workflows to use the new binary names.
 | save-load-state | llama-save-load-state |
 | simple | llama-simple |
 | speculative | llama-speculative |
-| train-text-from-scratch | llama-train-text-from-scratch |
 | vdot | llama-vdot |
 | tests/test-c.o | tests/test-c.o |
 
index 6d51f4b24dc6f4e3f0f346576e7ca21fbf332d71..91c33c34acaa936befd0fd8f402c6672d21b21c1 100644 (file)
@@ -19,7 +19,15 @@ For example:
 ./bin/llama-export-lora \
     -m open-llama-3b-v2-q8_0.gguf \
     -o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
-    --lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin
+    --lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf
 ```
 
-Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters.
+Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
+
+```bash
+./bin/llama-export-lora \
+    -m your_base_model.gguf \
+    -o your_merged_model.gguf \
+    --lora-scaled lora_task_A.gguf 0.5 \
+    --lora-scaled lora_task_B.gguf 0.5
+```
diff --git a/examples/finetune/CMakeLists.txt b/examples/finetune/CMakeLists.txt
deleted file mode 100644 (file)
index 64afe6d..0000000
+++ /dev/null
@@ -1,5 +0,0 @@
-set(TARGET llama-finetune)
-add_executable(${TARGET} finetune.cpp)
-install(TARGETS ${TARGET} RUNTIME)
-target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
-target_compile_features(${TARGET} PRIVATE cxx_std_11)
diff --git a/examples/finetune/README.md b/examples/finetune/README.md
deleted file mode 100644 (file)
index 1c27df0..0000000
+++ /dev/null
@@ -1,90 +0,0 @@
-# finetune
-
-Basic usage instructions:
-
-```bash
-# get training data
-wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
-
-# finetune LORA adapter
-./bin/llama-finetune \
-        --model-base open-llama-3b-v2-q8_0.gguf \
-        --checkpoint-in  chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
-        --checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
-        --lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
-        --train-data "shakespeare.txt" \
-        --save-every 10 \
-        --threads 6 --adam-iter 30 --batch 4 --ctx 64 \
-        --use-checkpointing
-
-# predict
-./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
-```
-
-**Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
-The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
-So in above example after 10 iterations these files will be written:
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
-- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
-- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
-
-After 10 more iterations:
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
-- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
-- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
-
-Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
-
-llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
-These LORA adapters can then be used by `llama-cli` together with the base model, like in the 'predict' example command above.
-
-In `llama-cli` you can also load multiple LORA adapters, which will then be mixed together.
-
-For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
-
-```bash
-./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
-  --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
-  --lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
-```
-
-You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
-
-For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
-
-```bash
-./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
-  --lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
-  --lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
-  --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
-```
-
-The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
-
-Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
-If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
-
-The default LORA rank can be specified with `--lora-r N`.
-The LORA rank can be configured for each model tensor type separately with these command line options:
-
-```bash
-  --lora-r N                 LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
-  --rank-att-norm N          LORA rank for attention norm tensor (default 1)
-  --rank-ffn-norm N          LORA rank for feed-forward norm tensor (default 1)
-  --rank-out-norm N          LORA rank for output norm tensor (default 1)
-  --rank-tok-embd N          LORA rank for token embeddings tensor (default 4)
-  --rank-out N               LORA rank for output tensor (default 4)
-  --rank-wq N                LORA rank for wq tensor (default 4)
-  --rank-wk N                LORA rank for wk tensor (default 4)
-  --rank-wv N                LORA rank for wv tensor (default 4)
-  --rank-wo N                LORA rank for wo tensor (default 4)
-  --rank-ffn_gate N          LORA rank for ffn_gate tensor (default 4)
-  --rank-ffn_down N          LORA rank for ffn_down tensor (default 4)
-  --rank-ffn_up N            LORA rank for ffn_up tensor (default 4)
-```
-
-The LORA rank of 'norm' tensors should always be 1.
-
-To see all available options use `llama-finetune --help`.
diff --git a/examples/finetune/convert_finetune_checkpoint_to_gguf.py b/examples/finetune/convert_finetune_checkpoint_to_gguf.py
deleted file mode 100644 (file)
index 1b79d69..0000000
+++ /dev/null
@@ -1,487 +0,0 @@
-#!/usr/bin/env python3
-# finetune checkpoint --> gguf conversion
-
-import argparse
-import gguf
-import struct
-import numpy as np
-from pathlib import Path
-
-# gguf constants
-LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
-LLM_KV_OPTIMIZER_TYPE_ADAM  = "adam"
-LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
-LLM_KV_OPTIMIZER_FILE_VERSION               = "optimizer.file_version"
-LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT     = "optimizer.convergence_past_count"
-LLM_KV_OPTIMIZER_PARAMETER_COUNT            = "optimizer.parameter_count"
-LLM_KV_OPTIMIZER_ITERATION_COUNT            = "optimizer.iteration_count"
-LLM_KV_OPTIMIZER_JUST_INITIALIZED           = "optimizer.just_initialized"
-LLM_KV_OPTIMIZER_ADAM_BEST_LOSS             = "optimizer.adam.best_loss"
-LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS         = "optimizer.adam.previous_loss"
-LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT  = "optimizer.adam.no_improvement_count"
-LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
-LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS            = "optimizer.lbfgs.best_loss"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP     = "optimizer.lbfgs.line_search_step"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J        = "optimizer.lbfgs.line_search_j"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K        = "optimizer.lbfgs.line_search_k"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END      = "optimizer.lbfgs.line_search_end"
-LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
-
-LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS    = "optimizer.adam.first_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS   = "optimizer.adam.second_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
-
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS  = "optimizer.lbfgs.current_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS   = "optimizer.lbfgs.current_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS  = "optimizer.lbfgs.previous_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION    = "optimizer.lbfgs.search_direction"
-LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES    = "optimizer.lbfgs.past_loss_values"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA        = "optimizer.lbfgs.memory_alpha"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS           = "optimizer.lbfgs.memory_ys"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S            = "optimizer.lbfgs.memory_s"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y            = "optimizer.lbfgs.memory_y"
-
-LLM_KV_TRAINING_TYPE_TRAIN_MODEL   = "train_model"
-LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
-LLM_KV_TRAINING_TYPE               = "training.type"
-LLM_KV_TRAINING_FILE_VERSION       = "training.file_version"
-LLM_KV_TRAINING_ITERATION_COUNT    = "training.iteration_count"
-LLM_KV_TRAINING_SAMPLE_COUNT       = "training.sample_count"
-LLM_KV_TRAINING_TOKEN_COUNT        = "training.token_count"
-
-LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD  = "training.lora.rank.token_embd"
-LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
-LLM_KV_TRAINING_LORA_RANK_OUTPUT      = "training.lora.rank.output"
-LLM_KV_TRAINING_LORA_RANK_ATTN_NORM   = "training.lora.rank.attn_norm"
-LLM_KV_TRAINING_LORA_RANK_ATTN_Q      = "training.lora.rank.attn_q"
-LLM_KV_TRAINING_LORA_RANK_ATTN_K      = "training.lora.rank.attn_k"
-LLM_KV_TRAINING_LORA_RANK_ATTN_V      = "training.lora.rank.attn_v"
-LLM_KV_TRAINING_LORA_RANK_ATTN_OUT    = "training.lora.rank.attn_output"
-LLM_KV_TRAINING_LORA_RANK_FFN_NORM    = "training.lora.rank.ffn_norm"
-LLM_KV_TRAINING_LORA_RANK_FFN_GATE    = "training.lora.rank.ffn_gate"
-LLM_KV_TRAINING_LORA_RANK_FFN_DOWN    = "training.lora.rank.ffn_down"
-LLM_KV_TRAINING_LORA_RANK_FFN_UP      = "training.lora.rank.ffn_up"
-
-class Tensor:
-    def __init__(self, dtype='f', ne=None):
-        if ne is None:
-            ne = []
-        self.dtype = dtype
-        self.ne = ne
-        self.nbytes = 0
-        if self.dtype == 'f':
-            if len(self.ne) == 0:
-                self.nbytes = 0
-            else:
-                self.nbytes = int(np.prod(self.ne)) * 4
-        else:
-            raise ValueError(f"Unhandled data type '{self.dtype}'")
-
-    def load(self, data, offset):
-        nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
-        assert(nd == len(self.ne))
-        ne = []
-        for d in range(nd):
-            n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-            ne.append(n)
-
-        if tuple(ne) != tuple(self.ne):
-            raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
-
-        if self.dtype == 'f':
-            assert(dtype == 0)
-        else:
-            raise ValueError(f"Unhandled data type '{self.dtype}'")
-
-        self.name = bytes(data[offset:offset+namelen]); offset += namelen
-        # 32-byte alignment
-        offset += (0 - offset) & 31
-        self.data = data[offset:offset+self.nbytes]
-        offset += self.nbytes
-        return offset
-
-    def max_storage_size(self):
-        result = 0
-        result += 4 # nd
-        result += 4 # namelen
-        result += 4 # dtype
-        result += len(self.ne)*8 # ne
-        result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
-        result += 31 # 32-byte alignment
-        result += self.nbytes
-        return result
-
-    def save_gguf(self, gguf_writer, name):
-        gguf_writer.add_tensor(
-            name=name,
-            tensor=self.data,
-            raw_shape=np.array(list(reversed(self.ne))),
-            raw_dtype=gguf.GGMLQuantizationType.F32)
-
-class OptimizationContext:
-    def __init__(self):
-        pass
-
-    def load(self, data, offset):
-        self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
-        offset += 4
-
-        if self.version != 1:
-            raise ValueError('Invalid version of optimization context in checkpoint file')
-
-        self.past    = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.nx      = struct.unpack('N',  bytes(data[offset:offset + 8]))[0];  offset += 8
-        self.iter    = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]);  offset += 4
-
-        self.adam_m  = Tensor('f', [self.nx])
-        self.adam_v  = Tensor('f', [self.nx])
-        self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
-        self.lbfgs_x    = Tensor('f', [self.nx])
-        self.lbfgs_xp   = Tensor('f', [self.nx])
-        self.lbfgs_g    = Tensor('f', [self.nx])
-        self.lbfgs_gp   = Tensor('f', [self.nx])
-        self.lbfgs_d    = Tensor('f', [self.nx])
-        self.lbfgs_pf   = Tensor('f', [self.past] if self.past > 0 else [])
-        self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
-        self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
-        self.lbfgs_lms  = Tensor('f', [self.nx, self.lbfgs_m])
-        self.lbfgs_lmy  = Tensor('f', [self.nx, self.lbfgs_m])
-
-        # forgot to save type in version 1:
-        # guess self.type from number of remaining bytes
-        size_type_0 = 12 + sum([t.max_storage_size() for t in
-                                [self.adam_m, self.adam_v]
-                                +([self.adam_pf] if (self.past > 0) else [])])
-        size_type_1 = 24 + sum([t.max_storage_size() for t in
-                                [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
-                                 self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
-                                 self.lbfgs_lmal, self.lbfgs_lmys,
-                                 self.lbfgs_lms, self.lbfgs_lmy]
-                                 +([self.lbfgs_pf] if (self.past > 0) else [])])
-        # due to alignment padding the size might not by exact
-        # but the difference in size for both types is significant,
-        # so we can just use whichever is closest
-        remaining = len(data) - offset
-        if abs(remaining - size_type_0) < abs(remaining - size_type_1):
-            self.type = 0
-        else:
-            self.type = 1
-
-        if self.type == 0:
-            offset = self.adam_m.load(data, offset)
-            offset = self.adam_v.load(data, offset)
-            offset = self.adam_pf.load(data,offset)
-
-            self.adam_fx_best          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.adam_fx_prev          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-
-        elif self.type == 1:
-            offset = self.lbfgs_x.load(data, offset)
-            offset = self.lbfgs_xp.load(data, offset)
-            offset = self.lbfgs_g.load(data, offset)
-            offset = self.lbfgs_gp.load(data, offset)
-            offset = self.lbfgs_d.load(data, offset)
-            offset = self.lbfgs_pf.load(data, offset)
-            offset = self.lbfgs_lmal.load(data, offset)
-            offset = self.lbfgs_lmys.load(data, offset)
-            offset = self.lbfgs_lms.load(data, offset)
-            offset = self.lbfgs_lmy.load(data, offset)
-
-            self.lbfgs_fx_best          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.lbfgs_step             = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.lbfgs_j                = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.lbfgs_k                = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.lbfgs_end              = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-
-        else:
-            raise ValueError(f"Invalid optimizer type '{self.type}'")
-
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
-        gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
-        gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
-        gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
-        gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
-
-        if self.type == 0:
-            gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
-            gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
-
-            self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
-            self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
-            if self.past > 0:
-                self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
-
-        elif self.type == 1:
-            gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
-            gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
-            gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
-            gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
-            gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
-            gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
-
-            self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
-            self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
-            self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
-            self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
-            self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
-            if self.past > 0:
-                self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
-            self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
-            self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
-            self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
-            self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
-        else:
-            raise ValueError('Unknown optimizer type')
-
-class LoraParams:
-    def __init__(self):
-        pass
-
-    def load(self, data, offset):
-        self.n_rank_attention_norm  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_wq              = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_wk              = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_wv              = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_wo              = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_ffn_norm        = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_w1              = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_w2              = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_w3              = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_tok_embeddings  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_norm            = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rank_output          = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD,  self.n_rank_tok_embeddings)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT,      self.n_rank_output)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM,   self.n_rank_attention_norm)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q,      self.n_rank_wq)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K,      self.n_rank_wk)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V,      self.n_rank_wv)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT,    self.n_rank_wo)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM,    self.n_rank_ffn_norm)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE,    self.n_rank_w1)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN,    self.n_rank_w2)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP,      self.n_rank_w3)
-
-class ModelParams:
-    def __init__(self, n_ff = None):
-        self.n_ff = n_ff
-
-    def load(self, data, offset):
-        self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_embd  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_mult  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_head  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rot   = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        return offset
-
-    def get_n_ff(self):
-        if self.n_ff is None:
-            # struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
-            return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
-        else:
-            return self.n_ff
-
-    def save_gguf(self, gguf_writer):
-        # self.n_vocab not saved
-        gguf_writer.add_embedding_length(self.n_embd)
-        gguf_writer.add_head_count(self.n_head)
-        gguf_writer.add_block_count(self.n_layer)
-        gguf_writer.add_rope_dimension_count(self.n_rot)
-        gguf_writer.add_feed_forward_length(self.get_n_ff())
-
-def tensor_name(key, bid=None, suffix=".weight"):
-    return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
-
-class Layer:
-    def __init__(self, params, lora_params, bid):
-        self.bid = bid
-        self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
-        self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
-        self.wq_a       = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
-        self.wq_b       = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
-        self.wk_a       = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
-        self.wk_b       = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
-        self.wv_a       = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
-        self.wv_b       = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
-        self.wo_a       = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
-        self.wo_b       = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
-        self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
-        self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
-        self.w1_a       = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
-        self.w1_b       = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
-        self.w2_a       = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
-        self.w2_b       = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
-        self.w3_a       = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
-        self.w3_b       = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
-
-    def load(self, data, offset):
-        offset = self.att_norm_a.load(data, offset)
-        offset = self.att_norm_b.load(data, offset)
-        offset = self.wq_a.load(data, offset)
-        offset = self.wq_b.load(data, offset)
-        offset = self.wk_a.load(data, offset)
-        offset = self.wk_b.load(data, offset)
-        offset = self.wv_a.load(data, offset)
-        offset = self.wv_b.load(data, offset)
-        offset = self.wo_a.load(data, offset)
-        offset = self.wo_b.load(data, offset)
-        offset = self.ffn_norm_a.load(data, offset)
-        offset = self.ffn_norm_b.load(data, offset)
-        offset = self.w1_a.load(data, offset)
-        offset = self.w1_b.load(data, offset)
-        offset = self.w2_a.load(data, offset)
-        offset = self.w2_b.load(data, offset)
-        offset = self.w3_a.load(data, offset)
-        offset = self.w3_b.load(data, offset)
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
-        self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
-        self.wq_a.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q,    self.bid, ".weight.lora_a"))
-        self.wq_b.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q,    self.bid, ".weight.lora_b"))
-        self.wk_a.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K,    self.bid, ".weight.lora_a"))
-        self.wk_b.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K,    self.bid, ".weight.lora_b"))
-        self.wv_a.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V,    self.bid, ".weight.lora_a"))
-        self.wv_b.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V,    self.bid, ".weight.lora_b"))
-        self.wo_a.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT,  self.bid, ".weight.lora_a"))
-        self.wo_b.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT,  self.bid, ".weight.lora_b"))
-        self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM,  self.bid, ".weight.lora_a"))
-        self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM,  self.bid, ".weight.lora_b"))
-        self.w1_a.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE,  self.bid, ".weight.lora_a"))
-        self.w1_b.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE,  self.bid, ".weight.lora_b"))
-        self.w2_a.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN,  self.bid, ".weight.lora_a"))
-        self.w2_b.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN,  self.bid, ".weight.lora_b"))
-        self.w3_a.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP,    self.bid, ".weight.lora_a"))
-        self.w3_b.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP,    self.bid, ".weight.lora_b"))
-
-class LoraModel:
-    def __init__(self, n_ff = None):
-        self.params = ModelParams(n_ff = n_ff)
-        self.lora_params = LoraParams()
-        self.layers = []
-
-    def load(self, data, offset):
-        offset = self.params.load(data, offset)
-        offset = self.lora_params.load(data, offset)
-
-        self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
-        self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
-        self.norm_a     = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
-        self.norm_b     = Tensor('f', [self.lora_params.n_rank_norm, 1])
-        self.output_a   = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
-        self.output_b   = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
-
-        offset = self.tok_embd_a.load(data, offset)
-        offset = self.tok_embd_b.load(data, offset)
-        offset = self.norm_a.load(data, offset)
-        offset = self.norm_b.load(data, offset)
-        offset = self.output_a.load(data, offset)
-        offset = self.output_b.load(data, offset)
-
-        self.layers.clear()
-        for bid in range(self.params.n_layer):
-            layer = Layer(self.params, self.lora_params, bid)
-            offset = layer.load(data, offset)
-            self.layers.append(layer)
-
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        self.params.save_gguf(gguf_writer)
-        self.lora_params.save_gguf(gguf_writer)
-
-        self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD,  suffix=".weight.lora_a"))
-        self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD,  suffix=".weight.lora_b"))
-        self.norm_a.save_gguf    (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
-        self.norm_b.save_gguf    (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
-        self.output_a.save_gguf  (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT,      suffix=".weight.lora_a"))
-        self.output_b.save_gguf  (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT,      suffix=".weight.lora_b"))
-
-        for layer in self.layers:
-            layer.save_gguf(gguf_writer)
-
-class LoraCheckpoint:
-    def __init__(self, n_ff = None):
-        self.model = LoraModel(n_ff = n_ff)
-        self.opt_ctx = OptimizationContext()
-
-    def load(self, data, offset):
-        magic   = bytes(reversed(data[offset:offset + 4])); offset += 4
-        if magic != b'ggcl':
-            raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
-
-        self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        if self.version != 0:
-            raise ValueError('Invalid version of checkpoint file')
-
-        self.train_its     = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        self.train_tokens  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
-        offset = self.model.load(data, offset)
-        offset = self.opt_ctx.load(data, offset)
-
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
-        gguf_writer.add_layer_norm_rms_eps(1e-5)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION,    0)
-        gguf_writer.add_string(LLM_KV_TRAINING_TYPE,            LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT,    self.train_samples)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT,     self.train_tokens)
-        self.model.save_gguf(gguf_writer)
-        self.opt_ctx.save_gguf(gguf_writer)
-
-def handle_args():
-    parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
-    parser.add_argument('--input',  '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
-    parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
-    parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
-    return parser.parse_args()
-
-def main():
-    cfg = handle_args()
-    print(cfg)
-    data = np.memmap(cfg.input, mode = 'r')
-    chk = LoraCheckpoint(n_ff = cfg.ff)
-    offset = 0
-    offset = chk.load(data, offset)
-    # we should have read all available data
-    assert(offset == len(data))
-
-    gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
-    chk.save_gguf(gguf_writer)
-    print("    gguf: write header")
-    gguf_writer.write_header_to_file()
-    print("    gguf: write metadata")
-    gguf_writer.write_kv_data_to_file()
-    print("    gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-    gguf_writer.close()
-
-if __name__ == '__main__':
-    main()
diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp
deleted file mode 100644 (file)
index 71a4333..0000000
+++ /dev/null
@@ -1,1862 +0,0 @@
-#include "ggml.h"
-#include "ggml-alloc.h"
-#include "ggml-backend.h"
-#include "llama.h"
-#include "common.h"
-#include "train.h"
-#include <vector>
-#include <cstring>
-#include <ctime>
-#include <algorithm>
-#include <string>
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-struct my_llama_hparams {
-    uint32_t n_vocab    = 32000;
-    uint32_t n_ctx      = 512;
-    uint32_t n_embd     = 4096;
-    uint32_t n_ff       = 11008;
-    uint32_t n_head     = 32;
-    uint32_t n_head_kv  = 32;
-    uint32_t n_layer    = 32;
-
-    // float f_norm_eps     = 1e-5f; // falcon
-    float f_norm_rms_eps = 1e-5f; // llama
-
-    float rope_freq_base  = 10000.0f;
-    float rope_freq_scale = 1.0f;
-
-    uint32_t n_gqa() const {
-        return n_head/n_head_kv;
-    }
-
-    uint32_t n_embd_head() const {
-        return n_embd/n_head;
-    }
-
-    uint32_t n_embd_gqa() const {
-        return n_embd/n_gqa();
-    }
-
-    bool operator!=(const my_llama_hparams& other) const {
-        return memcmp(this, &other, sizeof(other));
-    }
-};
-
-struct my_llama_layer {
-    // normalization
-    struct ggml_tensor * attention_norm;
-
-    // attention
-    struct ggml_tensor * wq;
-    struct ggml_tensor * wk;
-    struct ggml_tensor * wv;
-    struct ggml_tensor * wo;
-
-    // normalization
-    struct ggml_tensor * ffn_norm;
-
-    // ff
-    struct ggml_tensor * ffn_gate; // w1
-    struct ggml_tensor * ffn_down; // w2
-    struct ggml_tensor * ffn_up;   // w3
-};
-
-struct my_llama_model {
-    struct my_llama_hparams hparams;
-
-    struct ggml_tensor * tok_embeddings;
-
-    struct ggml_tensor * norm;
-    struct ggml_tensor * output;
-
-    std::vector<my_llama_layer> layers;
-};
-
-struct my_llama_lora_hparams {
-    uint32_t lora_r = 1;
-    uint32_t lora_alpha = 1;
-    uint32_t n_rank_attention_norm = 1;
-    uint32_t n_rank_wq = 4;
-    uint32_t n_rank_wk = 4;
-    uint32_t n_rank_wv = 4;
-    uint32_t n_rank_wo = 4;
-    uint32_t n_rank_ffn_norm = 1;
-    uint32_t n_rank_ffn_gate = 4;
-    uint32_t n_rank_ffn_down = 4;
-    uint32_t n_rank_ffn_up = 4;
-    uint32_t n_rank_tok_embeddings = 4;
-    uint32_t n_rank_norm = 1;
-    uint32_t n_rank_output = 4;
-
-    bool operator!=(const my_llama_lora_hparams& other) const {
-        return memcmp(this, &other, sizeof(other));
-    }
-};
-
-struct my_llama_lora_layer {
-    // normalization
-    struct ggml_tensor * attention_norm_a;
-    struct ggml_tensor * attention_norm_b;
-
-    // attention
-    struct ggml_tensor * wq_a;
-    struct ggml_tensor * wq_b;
-    struct ggml_tensor * wk_a;
-    struct ggml_tensor * wk_b;
-    struct ggml_tensor * wv_a;
-    struct ggml_tensor * wv_b;
-    struct ggml_tensor * wo_a;
-    struct ggml_tensor * wo_b;
-
-    // normalization
-    struct ggml_tensor * ffn_norm_a;
-    struct ggml_tensor * ffn_norm_b;
-
-    // ff
-    struct ggml_tensor * ffn_gate_a;
-    struct ggml_tensor * ffn_gate_b;
-    struct ggml_tensor * ffn_down_a;
-    struct ggml_tensor * ffn_down_b;
-    struct ggml_tensor * ffn_up_a;
-    struct ggml_tensor * ffn_up_b;
-};
-
-struct my_llama_lora {
-    struct ggml_context * ctx = NULL;
-    ggml_backend_buffer_t data;
-
-    my_llama_lora_hparams hparams;
-
-    struct ggml_tensor * tok_embeddings_a;
-    struct ggml_tensor * tok_embeddings_b;
-
-    struct ggml_tensor * norm_a;
-    struct ggml_tensor * norm_b;
-    struct ggml_tensor * output_a;
-    struct ggml_tensor * output_b;
-
-    std::vector<my_llama_lora_layer> layers;
-};
-
-// gguf constants
-static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA   = "finetune_lora";
-static const char * LLM_KV_TRAINING_TYPE                 = "training.type";
-
-static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD  = "training.lora.rank.token_embd";
-static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm";
-static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT      = "training.lora.rank.output";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM   = "training.lora.rank.attn_norm";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q      = "training.lora.rank.attn_q";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K      = "training.lora.rank.attn_k";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V      = "training.lora.rank.attn_v";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT    = "training.lora.rank.attn_output";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM    = "training.lora.rank.ffn_norm";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE    = "training.lora.rank.ffn_gate";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN    = "training.lora.rank.ffn_down";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP      = "training.lora.rank.ffn_up";
-
-// gguf constants (sync with gguf.py)
-
-static const char * LLM_KV_GENERAL_ARCHITECTURE        = "general.architecture";
-static const char * LLM_KV_GENERAL_FILE_TYPE           = "general.file_type";
-
-static const char * LLM_KV_CONTEXT_LENGTH              = "%s.context_length";
-static const char * LLM_KV_EMBEDDING_LENGTH            = "%s.embedding_length";
-static const char * LLM_KV_BLOCK_COUNT                 = "%s.block_count";
-static const char * LLM_KV_FEED_FORWARD_LENGTH         = "%s.feed_forward_length";
-static const char * LLM_KV_ATTENTION_HEAD_COUNT        = "%s.attention.head_count";
-static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV     = "%s.attention.head_count_kv";
-static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
-static const char * LLM_KV_ROPE_DIMENSION_COUNT        = "%s.rope.dimension_count";
-static const char * LLM_KV_ROPE_FREQ_BASE              = "%s.rope.freq_base"; // TODO load in llama.cpp
-static const char * LLM_KV_ROPE_SCALE_LINEAR           = "%s.rope.scale_linear";
-
-static const char * LLM_TENSOR_TOKEN_EMBD    = "token_embd";
-static const char * LLM_TENSOR_OUTPUT_NORM   = "output_norm";
-static const char * LLM_TENSOR_OUTPUT        = "output";
-static const char * LLM_TENSOR_ATTN_NORM     = "blk.%d.attn_norm";
-static const char * LLM_TENSOR_ATTN_Q        = "blk.%d.attn_q";
-static const char * LLM_TENSOR_ATTN_K        = "blk.%d.attn_k";
-static const char * LLM_TENSOR_ATTN_V        = "blk.%d.attn_v";
-static const char * LLM_TENSOR_ATTN_OUT      = "blk.%d.attn_output";
-static const char * LLM_TENSOR_FFN_NORM      = "blk.%d.ffn_norm";
-static const char * LLM_TENSOR_FFN_GATE      = "blk.%d.ffn_gate";
-static const char * LLM_TENSOR_FFN_DOWN      = "blk.%d.ffn_down";
-static const char * LLM_TENSOR_FFN_UP        = "blk.%d.ffn_up";
-
-static void print_params(struct my_llama_hparams * params) {
-    printf("%s: n_vocab               : %u\n", __func__, params->n_vocab);
-    printf("%s: n_ctx                 : %u\n", __func__, params->n_ctx);
-    printf("%s: n_embd                : %u\n", __func__, params->n_embd);
-    printf("%s: n_ff                  : %u\n", __func__, params->n_ff);
-    printf("%s: n_head                : %u\n", __func__, params->n_head);
-    printf("%s: n_head_kv             : %u\n", __func__, params->n_head_kv);
-    printf("%s: n_layer               : %u\n", __func__, params->n_layer);
-    printf("%s: norm_rms_eps          : %f\n", __func__, params->f_norm_rms_eps);
-    printf("%s: rope_freq_base        : %f\n", __func__, params->rope_freq_base);
-    printf("%s: rope_freq_scale       : %f\n", __func__, params->rope_freq_scale);
-}
-
-static void print_lora_params(struct my_llama_lora_hparams * params) {
-    printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm);
-    printf("%s: n_rank_wq             : %u\n", __func__, params->n_rank_wq);
-    printf("%s: n_rank_wk             : %u\n", __func__, params->n_rank_wk);
-    printf("%s: n_rank_wv             : %u\n", __func__, params->n_rank_wv);
-    printf("%s: n_rank_wo             : %u\n", __func__, params->n_rank_wo);
-    printf("%s: n_rank_ffn_norm       : %u\n", __func__, params->n_rank_ffn_norm);
-    printf("%s: n_rank_ffn_gate       : %u\n", __func__, params->n_rank_ffn_gate);
-    printf("%s: n_rank_ffn_down       : %u\n", __func__, params->n_rank_ffn_down);
-    printf("%s: n_rank_ffn_up         : %u\n", __func__, params->n_rank_ffn_up);
-    printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings);
-    printf("%s: n_rank_norm           : %u\n", __func__, params->n_rank_norm);
-    printf("%s: n_rank_output         : %u\n", __func__, params->n_rank_output);
-}
-
-#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
-{ \
-    const std::string skey(key); \
-    const int kid = gguf_find_key(ctx, skey.c_str()); \
-    if (kid >= 0) { \
-        enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
-        if (ktype != (type)) { \
-            die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
-        } \
-        (dst) = func(ctx, kid); \
-    } else if (req) { \
-        die_fmt("key not found in model: %s", skey.c_str()); \
-    } \
-}
-
-static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) {
-    std::string arch;
-
-    GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
-    if (expected_arch != NULL) {
-        if (arch != expected_arch) {
-            printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch);
-        }
-        GGML_ASSERT(arch == expected_arch);
-    }
-
-    std::vector<char> keybuf;
-    keybuf.resize(512);
-    auto kv = [&arch, &keybuf](const char * key) -> const char * {
-        snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
-        return keybuf.data();
-    };
-
-    GGUF_GET_KEY(ctx, hparams->n_embd,         gguf_get_val_u32, GGUF_TYPE_UINT32,  true, kv(LLM_KV_EMBEDDING_LENGTH));
-    GGUF_GET_KEY(ctx, hparams->n_ctx,          gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
-    GGUF_GET_KEY(ctx, hparams->n_ff,           gguf_get_val_u32, GGUF_TYPE_UINT32,  true, kv(LLM_KV_FEED_FORWARD_LENGTH));
-    GGUF_GET_KEY(ctx, hparams->n_head,         gguf_get_val_u32, GGUF_TYPE_UINT32,  true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
-    GGUF_GET_KEY(ctx, hparams->n_layer,        gguf_get_val_u32, GGUF_TYPE_UINT32,  true, kv(LLM_KV_BLOCK_COUNT));
-
-    // n_head_kv is optional, default to n_head
-    hparams->n_head_kv = hparams->n_head;
-    GGUF_GET_KEY(ctx, hparams->n_head_kv,      gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
-
-    float rope_freq_scale = 1.0f;
-    GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
-    GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
-    GGUF_GET_KEY(ctx, rope_freq_scale,         gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
-    if (rope_freq_scale != 1.0f) {
-        hparams->rope_freq_scale = 1.0f / rope_freq_scale;
-    }
-}
-
-static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) {
-    auto & hparams = model->hparams;
-
-    std::vector<char> tn_buf;
-    tn_buf.resize(GGML_MAX_NAME);
-    auto tn = [&tn_buf](const char * key) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
-        return tn_buf.data();
-    };
-    auto tni = [&tn_buf](const char * key, int bid) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), key, bid);
-        std::string s = tn_buf.data();
-        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
-        return tn_buf.data();
-    };
-
-
-    // get parameters directly from gguf file
-    {
-        struct gguf_init_params params = {
-            /*.no_alloc = */ false,
-            /*.ctx      = */ NULL,
-        };
-        struct gguf_context * mctx = gguf_init_from_file(fn_model, params);
-
-        load_model_hparams_gguf(mctx, &hparams, "llama");
-
-        gguf_free(mctx);
-    }
-    hparams.n_vocab = llama_n_vocab(input);
-    hparams.n_ctx = n_ctx;
-
-    // get tensors from llama_model (possibly mmapped)
-    model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD));
-    model->norm           = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM));
-    model->output         = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT));
-
-    assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab);
-    assert_shape_1d(model->norm,           hparams.n_embd);
-    assert_shape_2d(model->output,         hparams.n_embd, hparams.n_vocab);
-
-    model->layers.resize(hparams.n_layer);
-    for (uint32_t i = 0; i < hparams.n_layer; ++i) {
-        auto & layer = model->layers[i];
-
-        layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i));
-        layer.wq             = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i));
-        layer.wk             = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i));
-        layer.wv             = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i));
-        layer.wo             = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i));
-        layer.ffn_norm       = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i));
-        layer.ffn_gate       = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i));
-        layer.ffn_down       = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i));
-        layer.ffn_up         = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i));
-
-        assert_shape_1d(layer.attention_norm, hparams.n_embd);
-        assert_shape_2d(layer.wq,             hparams.n_embd, hparams.n_embd);
-        assert_shape_2d(layer.wk,             hparams.n_embd, hparams.n_embd_gqa());
-        assert_shape_2d(layer.wv,             hparams.n_embd, hparams.n_embd_gqa());
-        assert_shape_2d(layer.wo,             hparams.n_embd, hparams.n_embd);
-        assert_shape_1d(layer.ffn_norm,       hparams.n_embd);
-        assert_shape_2d(layer.ffn_gate,       hparams.n_embd, hparams.n_ff);
-        assert_shape_2d(layer.ffn_down,       hparams.n_ff,   hparams.n_embd);
-        assert_shape_2d(layer.ffn_up,         hparams.n_embd, hparams.n_ff);
-    }
-}
-
-static void set_param_lora(struct my_llama_lora * lora) {
-    const uint32_t n_layer = lora->layers.size();
-
-    struct ggml_context* ctx = lora->ctx;
-
-    ggml_set_param(ctx, lora->tok_embeddings_a);
-    ggml_set_param(ctx, lora->tok_embeddings_b);
-    ggml_set_param(ctx, lora->norm_a);
-    ggml_set_param(ctx, lora->norm_b);
-    ggml_set_param(ctx, lora->output_a);
-    ggml_set_param(ctx, lora->output_b);
-
-    for (uint32_t i = 0; i < n_layer; ++i) {
-        auto & layer = lora->layers[i];
-
-        ggml_set_param(ctx, layer.attention_norm_a);
-        ggml_set_param(ctx, layer.attention_norm_b);
-        ggml_set_param(ctx, layer.wq_a);
-        ggml_set_param(ctx, layer.wq_b);
-        ggml_set_param(ctx, layer.wk_a);
-        ggml_set_param(ctx, layer.wk_b);
-        ggml_set_param(ctx, layer.wv_a);
-        ggml_set_param(ctx, layer.wv_b);
-        ggml_set_param(ctx, layer.wo_a);
-        ggml_set_param(ctx, layer.wo_b);
-        ggml_set_param(ctx, layer.ffn_norm_a);
-        ggml_set_param(ctx, layer.ffn_norm_b);
-        ggml_set_param(ctx, layer.ffn_gate_a);
-        ggml_set_param(ctx, layer.ffn_gate_b);
-        ggml_set_param(ctx, layer.ffn_down_a);
-        ggml_set_param(ctx, layer.ffn_down_b);
-        ggml_set_param(ctx, layer.ffn_up_a);
-        ggml_set_param(ctx, layer.ffn_up_b);
-    }
-}
-
-static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) {
-    const auto & lparams = lora->hparams;
-
-    const uint32_t n_embd     = model->hparams.n_embd;
-    const uint32_t n_embd_gqa = model->hparams.n_embd_gqa();
-    const uint32_t n_layer    = model->hparams.n_layer;
-    const uint32_t n_vocab    = model->hparams.n_vocab;
-    const uint32_t n_ff       = model->hparams.n_ff;
-
-    std::vector<char> tn_buf;
-    tn_buf.resize(GGML_MAX_NAME);
-    auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
-        return tn_buf.data();
-    };
-    auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), key, bid);
-        std::string s = tn_buf.data();
-        snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
-        return tn_buf.data();
-    };
-
-    // context for lora tensors without their data
-    struct ggml_init_params ctx_lora_params;
-    ctx_lora_params.mem_size   = ggml_tensor_overhead()*2*(6 + n_layer*18);
-    ctx_lora_params.mem_buffer = NULL;
-    ctx_lora_params.no_alloc   = true;
-
-    struct ggml_context * ctx = ggml_init(ctx_lora_params);
-    lora->ctx = ctx;
-
-    lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd);
-    lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab);
-    lora->norm_a           = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd);
-    lora->norm_b           = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1);
-    lora->output_a         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd);
-    lora->output_b         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab);
-
-    ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD,  ".weight.lora_a"));
-    ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD,  ".weight.lora_b"));
-    ggml_set_name(lora->norm_a,           tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a"));
-    ggml_set_name(lora->norm_b,           tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b"));
-    ggml_set_name(lora->output_a,         tn(LLM_TENSOR_OUTPUT,      ".weight.lora_a"));
-    ggml_set_name(lora->output_b,         tn(LLM_TENSOR_OUTPUT,      ".weight.lora_b"));
-
-    lora->layers.resize(n_layer);
-    for (uint32_t i = 0; i < n_layer; ++i) {
-        auto & layer = lora->layers[i];
-
-        layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd);
-        layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1);
-
-        layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
-        layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
-        layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd);
-        layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa);
-        layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd);
-        layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa);
-        layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
-        layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
-
-        layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd);
-        layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1);
-
-        layer.ffn_gate_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_embd);
-        layer.ffn_gate_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_ff);
-        layer.ffn_down_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_ff);
-        layer.ffn_down_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_embd);
-        layer.ffn_up_a   = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up,   n_embd);
-        layer.ffn_up_b   = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up,   n_ff);
-
-        ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i));
-        ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i));
-        ggml_set_name(layer.wq_a,             tni(LLM_TENSOR_ATTN_Q,    ".weight.lora_a", i));
-        ggml_set_name(layer.wq_b,             tni(LLM_TENSOR_ATTN_Q,    ".weight.lora_b", i));
-        ggml_set_name(layer.wk_a,             tni(LLM_TENSOR_ATTN_K,    ".weight.lora_a", i));
-        ggml_set_name(layer.wk_b,             tni(LLM_TENSOR_ATTN_K,    ".weight.lora_b", i));
-        ggml_set_name(layer.wv_a,             tni(LLM_TENSOR_ATTN_V,    ".weight.lora_a", i));
-        ggml_set_name(layer.wv_b,             tni(LLM_TENSOR_ATTN_V,    ".weight.lora_b", i));
-        ggml_set_name(layer.wo_a,             tni(LLM_TENSOR_ATTN_OUT,  ".weight.lora_a", i));
-        ggml_set_name(layer.wo_b,             tni(LLM_TENSOR_ATTN_OUT,  ".weight.lora_b", i));
-        ggml_set_name(layer.ffn_norm_a,       tni(LLM_TENSOR_FFN_NORM,  ".weight.lora_a", i));
-        ggml_set_name(layer.ffn_norm_b,       tni(LLM_TENSOR_FFN_NORM,  ".weight.lora_b", i));
-        ggml_set_name(layer.ffn_gate_a,       tni(LLM_TENSOR_FFN_GATE,  ".weight.lora_a", i));
-        ggml_set_name(layer.ffn_gate_b,       tni(LLM_TENSOR_FFN_GATE,  ".weight.lora_b", i));
-        ggml_set_name(layer.ffn_down_a,       tni(LLM_TENSOR_FFN_DOWN,  ".weight.lora_a", i));
-        ggml_set_name(layer.ffn_down_b,       tni(LLM_TENSOR_FFN_DOWN,  ".weight.lora_b", i));
-        ggml_set_name(layer.ffn_up_a,         tni(LLM_TENSOR_FFN_UP,    ".weight.lora_a", i));
-        ggml_set_name(layer.ffn_up_b,         tni(LLM_TENSOR_FFN_UP,    ".weight.lora_b", i));
-    }
-
-    set_param_lora(lora);
-
-    // allocate data for lora tensors
-    lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
-}
-
-static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) {
-    const uint32_t n_layer = lora->layers.size();
-
-    struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
-
-    randomize_tensor_normal(lora->tok_embeddings_a, rnd);
-    ggml_set_zero(lora->tok_embeddings_b);
-    randomize_tensor_normal(lora->norm_a,           rnd);
-    ggml_set_zero(lora->norm_b);
-    randomize_tensor_normal(lora->output_a,         rnd);
-    ggml_set_zero(lora->output_b);
-
-    for (uint32_t i = 0; i < n_layer; ++i) {
-        auto & layer = lora->layers[i];
-        randomize_tensor_normal(layer.attention_norm_a, rnd);
-        ggml_set_zero(layer.attention_norm_b);
-
-        randomize_tensor_normal(layer.wq_a, rnd);
-        ggml_set_zero(layer.wq_b);
-        randomize_tensor_normal(layer.wk_a, rnd);
-        ggml_set_zero(layer.wk_b);
-        randomize_tensor_normal(layer.wv_a, rnd);
-        ggml_set_zero(layer.wv_b);
-        randomize_tensor_normal(layer.wo_a, rnd);
-        ggml_set_zero(layer.wo_b);
-
-        randomize_tensor_normal(layer.ffn_norm_a, rnd);
-        ggml_set_zero(layer.ffn_norm_b);
-
-        randomize_tensor_normal(layer.ffn_gate_a, rnd);
-        ggml_set_zero(layer.ffn_gate_b);
-        randomize_tensor_normal(layer.ffn_down_a, rnd);
-        ggml_set_zero(layer.ffn_down_b);
-        randomize_tensor_normal(layer.ffn_up_a, rnd);
-        ggml_set_zero(layer.ffn_up_b);
-    }
-
-    free_random_normal_distribution(rnd);
-}
-
-static struct ggml_tensor * llama_build_lora_finetune_graphs(
-        struct my_llama_model * model,
-        struct my_llama_lora  * lora,
-        ggml_gallocr_t          alloc,
-        struct ggml_context   * ctx,
-        struct ggml_cgraph    * gf,
-        struct ggml_cgraph    * gb,
-        struct ggml_cgraph    * gb_tmp,
-        struct ggml_tensor  * * logits,
-        struct ggml_tensor    * tokens_input,
-        struct ggml_tensor    * targets,
-        const  int              n_tokens,
-        const  int              n_batch,
-        const  bool             enable_flash_attn,
-        const  bool             enable_checkpointing,
-        const  bool             measure_only) {
-
-    ggml_set_scratch(ctx, { 0, 0, nullptr, });
-    const int n_past = 0;
-    const int N = n_tokens;
-    const auto & hparams  = model->hparams;
-    const int n_ctx       = hparams.n_ctx;
-    const int n_vocab     = hparams.n_vocab;
-    const int n_embd      = hparams.n_embd;
-    const int n_layer     = hparams.n_layer;
-    const int n_head      = hparams.n_head;
-    const int n_head_kv   = hparams.n_head_kv;
-    const int n_ff        = hparams.n_ff;
-    const int n_rot       = hparams.n_embd_head();
-    const int n_embd_head = hparams.n_embd_head();
-    const int n_embd_gqa  = hparams.n_embd_gqa();
-
-    const float rms_norm_eps    = hparams.f_norm_rms_eps;
-    const float rope_freq_base  = hparams.rope_freq_base;
-    const float rope_freq_scale = hparams.rope_freq_scale;
-
-    GGML_ASSERT((size_t) n_layer == lora->layers.size());
-
-    auto set_name = [](struct ggml_tensor * t, const char * n) {
-        ggml_set_name(t, n);
-        if (t->grad) {
-            ggml_format_name(t->grad, "%s->grad", n);
-        }
-    };
-
-    // KQ_pos - contains the positions
-    struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
-    ggml_set_input(KQ_pos);
-
-    // rope has so much parameters that we make a custom function for it
-    auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
-                (struct ggml_tensor * t) -> struct ggml_tensor * {
-        // not capturing these, to silcence warnings
-        const int rope_mode = 0;
-
-        return ggml_rope_ext(ctx,
-            t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx,
-            rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
-        );
-    };
-
-    set_name(tokens_input, "tokens_input");
-    set_name(targets,      "targets");
-
-    GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
-
-    auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
-        if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16 || a->type == GGML_TYPE_BF16) {
-            return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
-        } else if (a->type == GGML_TYPE_F32) {
-            return ggml_add(ctx, a, b);
-        } else {
-            die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n",
-                __func__, ggml_type_name(a->type));
-        }
-    };
-
-    struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b));
-    struct ggml_tensor * norm           = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b));
-    struct ggml_tensor * output         = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b));
-
-    struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch);  set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
-    struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00);        set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
-
-    struct ggml_tensor * cur = t01;
-
-    std::vector<struct ggml_tensor *> checkpoints;
-    if (enable_checkpointing) {
-        checkpoints.push_back(tokens_input);
-        checkpoints.push_back(targets);
-        checkpoints.push_back(t00);
-        checkpoints.push_back(t01);
-    }
-
-    const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
-
-    for (int il = 0; il < n_layer; ++il) {
-        struct my_llama_layer & layer = model->layers[il];
-        struct my_llama_lora_layer & llayer = lora->layers[il];
-
-        struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b));
-        struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b));
-        struct ggml_tensor * wq       = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b));
-        struct ggml_tensor * wk       = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b));
-        struct ggml_tensor * wv       = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b));
-        struct ggml_tensor * wo       = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b));
-        struct ggml_tensor * ffn_gate = add_to_f32(ctx, layer.ffn_gate, ggml_mul_mat(ctx, llayer.ffn_gate_a, llayer.ffn_gate_b));
-        struct ggml_tensor * ffn_down = add_to_f32(ctx, layer.ffn_down, ggml_mul_mat(ctx, llayer.ffn_down_a, llayer.ffn_down_b));
-        struct ggml_tensor * ffn_up   = add_to_f32(ctx, layer.ffn_up, ggml_mul_mat(ctx, llayer.ffn_up_a, llayer.ffn_up_b));
-
-        struct ggml_tensor * t02 = ggml_rms_norm     (ctx, cur, rms_norm_eps);                       set_name(t02, "t02");     assert_shape_2d(t02, n_embd, N*n_batch);
-        struct ggml_tensor * t03 = ggml_repeat       (ctx, attention_norm, t02);                     set_name(t03, "t03");     assert_shape_2d(t03, n_embd, N*n_batch);
-        struct ggml_tensor * t04 = ggml_mul          (ctx, t03, t02);                                set_name(t04, "t04");     assert_shape_2d(t04, n_embd, N*n_batch);
-        struct ggml_tensor * t05 = ggml_mul_mat      (ctx, wq, t04);                                 set_name(t05, "t05");     assert_shape_2d(t05, n_embd, N*n_batch);
-        struct ggml_tensor * t06 = ggml_reshape_4d   (ctx, t05, n_embd_head, n_head, N, n_batch);    set_name(t06, "t06");     assert_shape_4d(t06, n_embd_head, n_head, N, n_batch);
-        struct ggml_tensor * t07 = rope              (t06);                                          set_name(t07, "t07");     assert_shape_4d(t07, n_embd_head, n_head, N, n_batch);
-        struct ggml_tensor * t08 = ggml_mul_mat      (ctx, wk, t04);                                 set_name(t08, "t08");     assert_shape_2d(t08, n_embd_gqa, N*n_batch);
-        struct ggml_tensor * t09 = ggml_reshape_4d   (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09");     assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch);
-        struct ggml_tensor * t10 = rope              (t09);                                          set_name(t10, "t10");     assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch);
-
-        struct ggml_tensor * t11;
-        if (ggml_is_quantized(wv->type)) {
-            struct ggml_tensor * t11_1 = ggml_mul_mat  (ctx, wv, t04);                               set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch);
-            struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1);                                 set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa);
-                                 t11   = ggml_cont     (ctx, t11_2);                                 set_name(t11, "t11");     assert_shape_2d(t11, N*n_batch, n_embd_gqa);
-        } else {
-                                 t11   = ggml_mul_mat  (ctx, t04, wv);                               set_name(t11, "t11");     assert_shape_2d(t11, N*n_batch, n_embd_gqa);
-        }
-
-        struct ggml_tensor * t12 = ggml_reshape_4d   (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12");     assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv);
-        struct ggml_tensor * t13 = ggml_permute      (ctx, t07, 0, 2, 1, 3);                         set_name(t13, "t13");     assert_shape_4d(t13, n_embd_head, N, n_head, n_batch);
-        struct ggml_tensor * t14 = ggml_permute      (ctx, t10, 0, 2, 1, 3);                         set_name(t14, "t14");     assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch);
-        struct ggml_tensor * t15 = ggml_permute      (ctx, t12, 0, 3, 1, 2);                         set_name(t15, "t15");     assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
-        struct ggml_tensor * t16;
-        if (enable_flash_attn) {
-            GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
-            //t16 = ggml_flash_attn(ctx, t13, t14, t15, true);                                         set_name(t16, "t16");     assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
-        } else {
-            struct ggml_tensor * t16_0 = ggml_mul_mat              (ctx, t14, t13);                  set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
-            struct ggml_tensor * t16_1 = ggml_scale_inplace        (ctx, t16_0, kv_scale);           set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
-            struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past);             set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
-            struct ggml_tensor * t16_3 = ggml_soft_max_inplace     (ctx, t16_2);                     set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
-            t16 = ggml_mul_mat(ctx, t15, t16_3);                                                     set_name(t16, "t16");     assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
-        }
-        struct ggml_tensor * t17 = ggml_permute      (ctx, t16, 0, 2, 1, 3);                         set_name(t17, "t17");     assert_shape_4d(t17, n_embd_head, n_head, N, n_batch);
-        struct ggml_tensor * t18 = ggml_cont         (ctx, t17);                                     set_name(t18, "t18");     assert_shape_4d(t18, n_embd_head, n_head, N, n_batch);
-        struct ggml_tensor * t19 = ggml_reshape_2d   (ctx, t18, n_embd, N*n_batch);                  set_name(t19, "t19");     assert_shape_2d(t19, n_embd, N*n_batch);
-        struct ggml_tensor * t20 = ggml_mul_mat      (ctx, wo, t19);                                 set_name(t20, "t20");     assert_shape_2d(t20, n_embd, N*n_batch);
-        struct ggml_tensor * t21 = ggml_add          (ctx, t20, cur);                                set_name(t21, "t21");     assert_shape_2d(t21, n_embd, N*n_batch);
-        struct ggml_tensor * t22 = ggml_rms_norm     (ctx, t21, rms_norm_eps);                       set_name(t22, "t22");     assert_shape_2d(t22, n_embd, N*n_batch);
-        struct ggml_tensor * t23 = ggml_repeat       (ctx, ffn_norm, t22);                           set_name(t23, "t23");     assert_shape_2d(t23, n_embd, N*n_batch);
-        struct ggml_tensor * t24 = ggml_mul          (ctx, t23, t22);                                set_name(t24, "t24");     assert_shape_2d(t24, n_embd, N*n_batch);
-        struct ggml_tensor * t25 = ggml_mul_mat      (ctx, ffn_up, t24);                             set_name(t25, "t25");     assert_shape_2d(t25, n_ff, N*n_batch);
-        struct ggml_tensor * t26 = ggml_mul_mat      (ctx, ffn_gate, t24);                           set_name(t26, "t26");     assert_shape_2d(t26, n_ff, N*n_batch);
-        struct ggml_tensor * t27 = ggml_silu         (ctx, t26);                                     set_name(t27, "t27");     assert_shape_2d(t27, n_ff, N*n_batch);
-        struct ggml_tensor * t28 = ggml_mul          (ctx, t27, t25);                                set_name(t28, "t28");     assert_shape_2d(t28, n_ff, N*n_batch);
-        struct ggml_tensor * t29 = ggml_mul_mat      (ctx, ffn_down, t28);                           set_name(t29, "t29");     assert_shape_2d(t29, n_embd, N*n_batch);
-        struct ggml_tensor * t30 = ggml_add          (ctx, t29, t21);                                set_name(t30, "t30");     assert_shape_2d(t30, n_embd, N*n_batch);
-        cur = t30;
-        if (enable_checkpointing) {
-            checkpoints.push_back(cur);
-        }
-    }
-    struct ggml_tensor * t31   = ggml_rms_norm          (ctx, cur, rms_norm_eps);                    set_name(t31, "t31");     assert_shape_2d(t31, n_embd, N*n_batch);
-    struct ggml_tensor * t32   = ggml_repeat            (ctx, norm, t31);                            set_name(t32, "t32");     assert_shape_2d(t32, n_embd, N*n_batch);
-    struct ggml_tensor * t33   = ggml_mul               (ctx, t32, t31);                             set_name(t33, "t33");     assert_shape_2d(t33, n_embd, N*n_batch);
-    struct ggml_tensor * t34   = ggml_mul_mat           (ctx, output, t33);                          set_name(t34, "t34");     assert_shape_2d(t34, n_vocab, N*n_batch);
-    struct ggml_tensor * t35   = ggml_reshape_3d        (ctx, t34, n_vocab, N, n_batch);             set_name(t35, "t35");     assert_shape_3d(t35, n_vocab, N, n_batch);
-    struct ggml_tensor * t36   = ggml_cross_entropy_loss(ctx, t35, targets);                         set_name(t36, "t36");     assert_shape_1d(t36, 1);
-
-    if (enable_checkpointing) {
-        checkpoints.push_back(t31);
-        checkpoints.push_back(t32);
-        checkpoints.push_back(t33);
-        checkpoints.push_back(t34);
-        checkpoints.push_back(t35);
-        checkpoints.push_back(t36);
-    }
-
-    ggml_build_forward_expand(gf, t36);
-
-    if (enable_checkpointing) {
-        ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
-    } else {
-        ggml_graph_cpy(gf, gb);
-        ggml_build_backward_expand(ctx, gf, gb, true);
-    }
-
-    GGML_ASSERT(alloc != NULL);
-
-    // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
-    int n_leafs_before = gb->n_leafs;
-    int n_nodes_before = gb->n_nodes;
-
-    // output tensors
-    ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
-    ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
-    // input gradient
-    ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
-    GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
-    ggml_set_input(t36->grad);
-    // KQ_pos
-    ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
-
-    // make sure base model tensors data cannot be used in viewable operations
-    ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f));
-    ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f));
-    ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f));
-    for (int il = 0; il < n_layer; ++il) {
-        struct my_llama_layer & layer = model->layers[il];
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_gate, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_down, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_up, 1.0f));
-    }
-
-    // allocating checkpoints in one block to reduce memory fragmentation
-    // note: they will be freed in reverse order
-    for (unsigned int i = 0; i < checkpoints.size(); ++i) {
-        if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
-            ggml_set_input(checkpoints[i]);
-        }
-    }
-
-    if (measure_only) {
-        ggml_gallocr_reserve(alloc, gb);
-    } else {
-        ggml_gallocr_alloc_graph(alloc, gb);
-
-        // set KQ_pos
-        {
-            int * data = (int *) KQ_pos->data;
-            for (int i = 0; i < N; ++i) {
-                data[i] = n_past + i;
-            }
-        }
-    }
-
-    // remove the additional nodes and leafs
-    for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
-        gb->leafs[i] = NULL;
-    }
-    for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
-        gb->nodes[i] = NULL;
-    }
-    gb->n_leafs = n_leafs_before;
-    gb->n_nodes = n_nodes_before;
-
-    *logits = t35;
-    return t36;
-}
-
-static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) {
-    // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
-
-    std::string arch;
-
-    std::vector<char> keybuf;
-    keybuf.resize(512);
-
-    GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
-    GGML_ASSERT(arch == "llama");
-
-    uint32_t ftype_u;
-    GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
-    GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
-
-    struct my_llama_hparams hparams;
-    load_model_hparams_gguf(fctx, &hparams, arch.c_str());
-
-    // parameters that define tensor shapes must match
-    GGML_ASSERT(hparams.n_embd    == model->hparams.n_embd);
-    GGML_ASSERT(hparams.n_ff      == model->hparams.n_ff);
-    GGML_ASSERT(hparams.n_head    == model->hparams.n_head);
-    GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv);
-    GGML_ASSERT(hparams.n_layer   == model->hparams.n_layer);
-
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm,           gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_output,         gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq,             gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk,             gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv,             gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo,             gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm,       gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_gate,       gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_down,       gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN);
-    GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_up,         gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP);
-
-    init_lora(model, lora);
-
-    copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a));
-    copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b));
-    copy_tensor_by_name(lora->norm_a,           f_ggml_ctx, ggml_get_name(lora->norm_a));
-    copy_tensor_by_name(lora->norm_b,           f_ggml_ctx, ggml_get_name(lora->norm_b));
-    copy_tensor_by_name(lora->output_a,         f_ggml_ctx, ggml_get_name(lora->output_a));
-    copy_tensor_by_name(lora->output_b,         f_ggml_ctx, ggml_get_name(lora->output_b));
-
-    for (uint32_t i = 0; i < lora->layers.size(); ++i) {
-        auto & layer = lora->layers[i];
-        copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a));
-        copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b));
-        copy_tensor_by_name(layer.wq_a,             f_ggml_ctx, ggml_get_name(layer.wq_a));
-        copy_tensor_by_name(layer.wq_b,             f_ggml_ctx, ggml_get_name(layer.wq_b));
-        copy_tensor_by_name(layer.wk_a,             f_ggml_ctx, ggml_get_name(layer.wk_a));
-        copy_tensor_by_name(layer.wk_b,             f_ggml_ctx, ggml_get_name(layer.wk_b));
-        copy_tensor_by_name(layer.wv_a,             f_ggml_ctx, ggml_get_name(layer.wv_a));
-        copy_tensor_by_name(layer.wv_b,             f_ggml_ctx, ggml_get_name(layer.wv_b));
-        copy_tensor_by_name(layer.wo_a,             f_ggml_ctx, ggml_get_name(layer.wo_a));
-        copy_tensor_by_name(layer.wo_b,             f_ggml_ctx, ggml_get_name(layer.wo_b));
-        copy_tensor_by_name(layer.ffn_norm_a,       f_ggml_ctx, ggml_get_name(layer.ffn_norm_a));
-        copy_tensor_by_name(layer.ffn_norm_b,       f_ggml_ctx, ggml_get_name(layer.ffn_norm_b));
-        copy_tensor_by_name(layer.ffn_gate_a,       f_ggml_ctx, ggml_get_name(layer.ffn_gate_a));
-        copy_tensor_by_name(layer.ffn_gate_b,       f_ggml_ctx, ggml_get_name(layer.ffn_gate_b));
-        copy_tensor_by_name(layer.ffn_down_a,       f_ggml_ctx, ggml_get_name(layer.ffn_down_a));
-        copy_tensor_by_name(layer.ffn_down_b,       f_ggml_ctx, ggml_get_name(layer.ffn_down_b));
-        copy_tensor_by_name(layer.ffn_up_a,         f_ggml_ctx, ggml_get_name(layer.ffn_up_a));
-        copy_tensor_by_name(layer.ffn_up_b,         f_ggml_ctx, ggml_get_name(layer.ffn_up_b));
-    }
-}
-
-static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) {
-    const char * arch = "llama";
-    enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
-
-    std::vector<char> keybuf;
-    keybuf.resize(512);
-    auto kv = [arch, &keybuf](const char * key) -> const char * {
-        snprintf(keybuf.data(), keybuf.size(), key, arch);
-        return keybuf.data();
-    };
-
-    gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
-    gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
-
-    gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH),              model->hparams.n_ctx);
-    gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH),            model->hparams.n_embd);
-    gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH),         model->hparams.n_ff);
-    gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT),        model->hparams.n_head);
-    gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV),     model->hparams.n_head_kv);
-    gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT),                 model->hparams.n_layer);
-    gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT),        model->hparams.n_embd_head());
-    gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps);
-    gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE),              model->hparams.rope_freq_base);
-    gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR),           model->hparams.rope_freq_scale);
-
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD,   lora->hparams.n_rank_tok_embeddings);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM,  lora->hparams.n_rank_norm);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT,       lora->hparams.n_rank_output);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM,    lora->hparams.n_rank_attention_norm);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q,       lora->hparams.n_rank_wq);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K,       lora->hparams.n_rank_wk);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V,       lora->hparams.n_rank_wv);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT,     lora->hparams.n_rank_wo);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM,     lora->hparams.n_rank_ffn_norm);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE,     lora->hparams.n_rank_ffn_gate);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN,     lora->hparams.n_rank_ffn_down);
-    gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP,       lora->hparams.n_rank_ffn_up);
-
-    gguf_add_tensor(fctx, lora->tok_embeddings_a);
-    gguf_add_tensor(fctx, lora->tok_embeddings_b);
-    gguf_add_tensor(fctx, lora->norm_a);
-    gguf_add_tensor(fctx, lora->norm_b);
-    gguf_add_tensor(fctx, lora->output_a);
-    gguf_add_tensor(fctx, lora->output_b);
-
-    for (uint32_t i = 0; i < lora->layers.size(); ++i) {
-        auto & layer = lora->layers[i];
-
-        gguf_add_tensor(fctx, layer.attention_norm_a);
-        gguf_add_tensor(fctx, layer.attention_norm_b);
-        gguf_add_tensor(fctx, layer.wq_a);
-        gguf_add_tensor(fctx, layer.wq_b);
-        gguf_add_tensor(fctx, layer.wk_a);
-        gguf_add_tensor(fctx, layer.wk_b);
-        gguf_add_tensor(fctx, layer.wv_a);
-        gguf_add_tensor(fctx, layer.wv_b);
-        gguf_add_tensor(fctx, layer.wo_a);
-        gguf_add_tensor(fctx, layer.wo_b);
-        gguf_add_tensor(fctx, layer.ffn_norm_a);
-        gguf_add_tensor(fctx, layer.ffn_norm_b);
-        gguf_add_tensor(fctx, layer.ffn_gate_a);
-        gguf_add_tensor(fctx, layer.ffn_gate_b);
-        gguf_add_tensor(fctx, layer.ffn_down_a);
-        gguf_add_tensor(fctx, layer.ffn_down_b);
-        gguf_add_tensor(fctx, layer.ffn_up_a);
-        gguf_add_tensor(fctx, layer.ffn_up_b);
-    }
-}
-
-static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
-    std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA;
-    GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
-    GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
-
-    load_train_state_gguf(fctx, f_ggml_ctx, train);
-    load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora);
-}
-
-static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
-    gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
-    save_llama_lora_gguf(fctx, model, lora);
-    save_train_state_gguf(fctx, train);
-}
-
-static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
-    struct ggml_context * f_ggml_ctx;
-    struct gguf_init_params params;
-    params.no_alloc = false;
-    params.ctx = &f_ggml_ctx;
-    struct gguf_context * fctx = gguf_init_from_file(filename, params);
-    if (fctx == NULL) {
-        return false;
-    }
-
-    load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train);
-
-    gguf_free(fctx);
-    return true;
-}
-
-static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
-    printf("%s: saving to %s\n", __func__, filename);
-    struct gguf_context * fctx = gguf_init_empty();
-
-    save_checkpoint_lora_gguf(fctx, model, lora, train);
-
-    // write file
-    const bool only_meta = false;
-    gguf_write_to_file(fctx, filename, only_meta);
-    gguf_free(fctx);
-}
-
-struct llama_file {
-    // use FILE * so we don't have to re-open the file to mmap
-    FILE * fp;
-    size_t size;
-
-    llama_file(const char * fname, const char * mode) {
-        fp = std::fopen(fname, mode);
-        if (fp == NULL) {
-            size = 0;
-        } else {
-            seek(0, SEEK_END);
-            size = tell();
-            seek(0, SEEK_SET);
-        }
-    }
-
-    size_t tell() const {
-#ifdef _WIN32
-        __int64 ret = _ftelli64(fp);
-#else
-        long ret = std::ftell(fp);
-#endif
-        GGML_ASSERT(ret != -1); // this really shouldn't fail
-        return (size_t) ret;
-    }
-
-    void seek(size_t offset, int whence) {
-#ifdef _WIN32
-        int ret = _fseeki64(fp, (__int64) offset, whence);
-#else
-        int ret = std::fseek(fp, (long) offset, whence);
-#endif
-        GGML_ASSERT(ret == 0); // same
-    }
-
-    void read_raw(void * ptr, size_t size) {
-        if (size == 0) {
-            return;
-        }
-        errno = 0;
-        std::size_t ret = std::fread(ptr, size, 1, fp);
-        if (ferror(fp)) {
-            die_fmt("read error: %s", strerror(errno));
-        }
-        if (ret != 1) {
-            die("unexpectedly reached end of file");
-        }
-    }
-
-    std::uint32_t read_u32() {
-        std::uint32_t ret;
-        read_raw(&ret, sizeof(ret));
-        return ret;
-    }
-
-    std::string read_string(std::uint32_t len) {
-        std::vector<char> chars(len);
-        read_raw(chars.data(), len);
-        return std::string(chars.data(), len);
-    }
-
-    void write_raw(const void * ptr, size_t size) {
-        if (size == 0) {
-            return;
-        }
-        errno = 0;
-        size_t ret = std::fwrite(ptr, size, 1, fp);
-        if (ret != 1) {
-            die_fmt("write error: %s", strerror(errno));
-        }
-    }
-
-    void write_u32(std::uint32_t val) {
-        write_raw(&val, sizeof(val));
-    }
-
-    ~llama_file() {
-        if (fp) {
-            std::fclose(fp);
-        }
-    }
-};
-
-static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) {
-    if (tensor == NULL) {
-        file->write_u32(0);
-        file->write_u32(0);
-        file->write_u32(GGML_TYPE_F32);
-        file->seek((0-file->tell()) & 31, SEEK_CUR);
-        return;
-    }
-    if (name == NULL) {
-        name = ggml_get_name(tensor);
-    }
-    uint32_t name_len = strlen(name);
-    uint32_t nd = ggml_n_dims(tensor);
-    uint32_t ne[4] = { (uint32_t)tensor->ne[0],
-                       (uint32_t)tensor->ne[1],
-                       (uint32_t)tensor->ne[2],
-                       (uint32_t)tensor->ne[3] };
-    file->write_u32(nd);
-    file->write_u32(name_len);
-    file->write_u32(tensor->type);
-    file->write_raw(ne, sizeof(ne[0]) * nd);
-    file->write_raw(name, name_len);
-    file->seek((0-file->tell()) & 31, SEEK_CUR);
-    file->write_raw(tensor->data, ggml_nbytes(tensor));
-}
-
-static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) {
-    printf("%s: saving to %s\n", __func__, filename);
-    struct llama_file file(filename, "wb");
-    if (file.fp == NULL) {
-        return;
-    }
-
-    std::vector<char> tn_buf;
-    tn_buf.resize(GGML_MAX_NAME);
-
-    auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
-        return tn_buf.data();
-    };
-
-    auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), key, bid);
-        std::string s = tn_buf.data();
-        snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
-        return tn_buf.data();
-    };
-
-    // write_magic
-    file.write_u32(LLAMA_FILE_MAGIC_GGLA);   // magic
-    file.write_u32(1); // version
-    // write_hparams
-    file.write_u32(lora->hparams.lora_r);
-    file.write_u32(lora->hparams.lora_alpha);
-    // write tensors
-    write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD,  ".weight.loraA"));
-    write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD,  ".weight.loraB"));
-    write_tensor(&file, lora->norm_a,           tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA"));
-    write_tensor(&file, lora->norm_b,           tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB"));
-    write_tensor(&file, lora->output_a,         tn(LLM_TENSOR_OUTPUT,      ".weight.loraA"));
-    write_tensor(&file, lora->output_b,         tn(LLM_TENSOR_OUTPUT,      ".weight.loraB"));
-    for (uint32_t i = 0; i < lora->layers.size(); ++i) {
-        auto & layer = lora->layers[i];
-        write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA"));
-        write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB"));
-        write_tensor(&file, layer.wq_a,             tni(LLM_TENSOR_ATTN_Q,    i, ".weight.loraA"));
-        write_tensor(&file, layer.wq_b,             tni(LLM_TENSOR_ATTN_Q,    i, ".weight.loraB"));
-        write_tensor(&file, layer.wk_a,             tni(LLM_TENSOR_ATTN_K,    i, ".weight.loraA"));
-        write_tensor(&file, layer.wk_b,             tni(LLM_TENSOR_ATTN_K,    i, ".weight.loraB"));
-        write_tensor(&file, layer.wv_a,             tni(LLM_TENSOR_ATTN_V,    i, ".weight.loraA"));
-        write_tensor(&file, layer.wv_b,             tni(LLM_TENSOR_ATTN_V,    i, ".weight.loraB"));
-        write_tensor(&file, layer.wo_a,             tni(LLM_TENSOR_ATTN_OUT,  i, ".weight.loraA"));
-        write_tensor(&file, layer.wo_b,             tni(LLM_TENSOR_ATTN_OUT,  i, ".weight.loraB"));
-        write_tensor(&file, layer.ffn_norm_a,       tni(LLM_TENSOR_FFN_NORM,  i, ".weight.loraA"));
-        write_tensor(&file, layer.ffn_norm_b,       tni(LLM_TENSOR_FFN_NORM,  i, ".weight.loraB"));
-        write_tensor(&file, layer.ffn_gate_a,       tni(LLM_TENSOR_FFN_GATE,  i, ".weight.loraA"));
-        write_tensor(&file, layer.ffn_gate_b,       tni(LLM_TENSOR_FFN_GATE,  i, ".weight.loraB"));
-        write_tensor(&file, layer.ffn_down_a,       tni(LLM_TENSOR_FFN_DOWN,  i, ".weight.loraA"));
-        write_tensor(&file, layer.ffn_down_b,       tni(LLM_TENSOR_FFN_DOWN,  i, ".weight.loraB"));
-        write_tensor(&file, layer.ffn_up_a,         tni(LLM_TENSOR_FFN_UP,    i, ".weight.loraA"));
-        write_tensor(&file, layer.ffn_up_b,         tni(LLM_TENSOR_FFN_UP,    i, ".weight.loraB"));
-    }
-}
-
-struct train_params {
-    struct train_params_common common;
-
-    const char * fn_model_base;
-    const char * fn_lora_out;
-
-    bool only_write_lora;
-
-    float f_norm_rms_eps;
-    float rope_freq_base;
-    float rope_freq_scale;
-
-    bool custom_f_norm_rms_eps;
-    bool custom_rope_freq_base;
-    bool custom_rope_freq_scale;
-
-    int32_t lora_r;
-    int32_t lora_alpha;
-    bool custom_lora_alpha;
-
-    uint32_t n_rank_attention_norm;
-    uint32_t n_rank_wq;
-    uint32_t n_rank_wk;
-    uint32_t n_rank_wv;
-    uint32_t n_rank_wo;
-    uint32_t n_rank_ffn_norm;
-    uint32_t n_rank_ffn_gate;
-    uint32_t n_rank_ffn_down;
-    uint32_t n_rank_ffn_up;
-    uint32_t n_rank_tok_embeddings;
-    uint32_t n_rank_norm;
-    uint32_t n_rank_output;
-
-    bool custom_n_rank_attention_norm;
-    bool custom_n_rank_wq;
-    bool custom_n_rank_wk;
-    bool custom_n_rank_wv;
-    bool custom_n_rank_wo;
-    bool custom_n_rank_ffn_norm;
-    bool custom_n_rank_ffn_gate;
-    bool custom_n_rank_ffn_down;
-    bool custom_n_rank_ffn_up;
-    bool custom_n_rank_tok_embeddings;
-    bool custom_n_rank_norm;
-    bool custom_n_rank_output;
-};
-
-static struct train_params get_default_train_params() {
-    struct train_params params;
-    params.common = get_default_train_params_common();
-    params.fn_model_base     = "";
-    params.fn_lora_out       = "ggml-lora-ITERATION-f32.gguf";
-
-    params.only_write_lora = false;
-
-    params.f_norm_rms_eps  = 1e-5f;
-    params.rope_freq_base  = 10000.0f;
-    params.rope_freq_scale = 1.0f;
-
-    params.custom_f_norm_rms_eps  = false;
-    params.custom_rope_freq_base  = false;
-    params.custom_rope_freq_scale = false;
-
-    params.lora_r      = 4;
-    params.lora_alpha  = 4;
-    params.custom_lora_alpha = false;
-
-    params.n_rank_attention_norm = 1;
-    params.n_rank_wq             = 4;
-    params.n_rank_wk             = 4;
-    params.n_rank_wv             = 4;
-    params.n_rank_wo             = 4;
-    params.n_rank_ffn_norm       = 1;
-    params.n_rank_ffn_gate       = 4;
-    params.n_rank_ffn_down       = 4;
-    params.n_rank_ffn_up         = 4;
-    params.n_rank_tok_embeddings = 4;
-    params.n_rank_norm           = 1;
-    params.n_rank_output         = 4;
-
-    params.custom_n_rank_attention_norm = false;
-    params.custom_n_rank_wq             = false;
-    params.custom_n_rank_wk             = false;
-    params.custom_n_rank_wv             = false;
-    params.custom_n_rank_wo             = false;
-    params.custom_n_rank_ffn_norm       = false;
-    params.custom_n_rank_ffn_gate       = false;
-    params.custom_n_rank_ffn_down       = false;
-    params.custom_n_rank_ffn_up         = false;
-    params.custom_n_rank_tok_embeddings = false;
-    params.custom_n_rank_norm           = false;
-    params.custom_n_rank_output         = false;
-
-    return params;
-}
-
-static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
-    fprintf(stderr, "usage: %s [options]\n", argv[0]);
-    fprintf(stderr, "\n");
-    fprintf(stderr, "options:\n");
-    fprintf(stderr, "  -h, --help                 show this help message and exit\n");
-
-    fprintf(stderr, "  --model-base FNAME         model path from which to load base model (default '%s')\n", params->fn_model_base);
-    fprintf(stderr, "  --lora-out FNAME           path to save llama lora (default '%s')\n", params->fn_lora_out);
-    fprintf(stderr, "  --only-write-lora          only save llama lora, don't do any training.  use this if you only want to convert a checkpoint to a lora adapter.\n");
-    fprintf(stderr, "  --norm-rms-eps F           RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
-    fprintf(stderr, "  --rope-freq-base F         Frequency base for ROPE (default %f)\n", params->rope_freq_base);
-    fprintf(stderr, "  --rope-freq-scale F        Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
-    fprintf(stderr, "  --lora-alpha N             LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha);
-    fprintf(stderr, "  --lora-r N                 LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r);
-    fprintf(stderr, "  --rank-att-norm N          LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
-    fprintf(stderr, "  --rank-ffn-norm N          LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
-    fprintf(stderr, "  --rank-out-norm N          LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
-    fprintf(stderr, "  --rank-tok-embd N          LORA rank for token embeddings tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-out N               LORA rank for output tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-wq N                LORA rank for wq tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-wk N                LORA rank for wk tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-wv N                LORA rank for wv tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-wo N                LORA rank for wo tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-ffn_gate N          LORA rank for ffn_gate tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-ffn_down N          LORA rank for ffn_down tensor, overrides default rank.\n");
-    fprintf(stderr, "  --rank-ffn_up N            LORA rank for ffn_up tensor, overrides default rank.\n");
-
-    print_common_train_usage(argc, argv, &params->common);
-}
-
-static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
-    bool invalid_param = false;
-    std::string arg;
-    struct train_params default_params = get_default_train_params();
-    const std::string arg_prefix = "--";
-
-    for (int i = 1; i < argc; i++) {
-        arg = argv[i];
-        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
-            std::replace(arg.begin(), arg.end(), '_', '-');
-        }
-
-        if (consume_common_train_arg(argc, argv, &i, &params->common, &invalid_param)) {
-            if (invalid_param) {
-                break;
-            } else if (params->common.print_usage) {
-                train_print_usage(argc, argv, &default_params);
-                exit(0);
-            }
-        } else if (arg == "--model-base") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->fn_model_base = argv[i];
-        } else if (arg == "--lora-out") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->fn_lora_out = argv[i];
-        } else if (arg == "--only-write-lora") {
-            params->only_write_lora = true;
-        } else if (arg == "--norm-rms-eps") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->f_norm_rms_eps = std::stof(argv[i]);
-            params->custom_f_norm_rms_eps = true;
-        } else if (arg == "--rope-freq-base") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->rope_freq_base = std::stof(argv[i]);
-            params->custom_rope_freq_base = true;
-        } else if (arg == "--rope-freq-scale") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->rope_freq_scale = std::stof(argv[i]);
-            params->custom_rope_freq_scale = true;
-        } else if (arg == "--lora-alpha") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->lora_alpha = std::stoi(argv[i]);
-            params->custom_lora_alpha = true;
-        } else if (arg == "--lora-r") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->lora_r = std::stoi(argv[i]);
-        } else if (arg == "--rank-att-norm") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_attention_norm = std::stoi(argv[i]);
-            params->custom_n_rank_attention_norm = true;
-        } else if (arg == "--rank-ffn-norm") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_ffn_norm = std::stoi(argv[i]);
-            params->custom_n_rank_ffn_norm = true;
-        } else if (arg == "--rank-out-norm") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_norm = std::stoi(argv[i]);
-            params->custom_n_rank_norm = true;
-        } else if (arg == "--rank-tok-embd") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_tok_embeddings = std::stoi(argv[i]);
-            params->custom_n_rank_tok_embeddings = true;
-        } else if (arg == "--rank-out") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_output = std::stoi(argv[i]);
-            params->custom_n_rank_output = true;
-        } else if (arg == "--rank-wq") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_wq = std::stoi(argv[i]);
-            params->custom_n_rank_wq = true;
-        } else if (arg == "--rank-wk") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_wk = std::stoi(argv[i]);
-            params->custom_n_rank_wk = true;
-        } else if (arg == "--rank-wv") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_wv = std::stoi(argv[i]);
-            params->custom_n_rank_wv = true;
-        } else if (arg == "--rank-wo") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_wo = std::stoi(argv[i]);
-            params->custom_n_rank_wo = true;
-        } else if (arg == "--rank-ffn_gate") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_ffn_gate = std::stoi(argv[i]);
-            params->custom_n_rank_ffn_gate = true;
-        } else if (arg == "--rank-ffn_down") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_ffn_down = std::stoi(argv[i]);
-            params->custom_n_rank_ffn_down = true;
-        } else if (arg == "--rank-ffn_up") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_rank_ffn_up = std::stoi(argv[i]);
-            params->custom_n_rank_ffn_up = true;
-        } else {
-            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
-            train_print_usage(argc, argv, &default_params);
-            exit(1);
-        }
-    }
-    if (invalid_param) {
-        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
-        train_print_usage(argc, argv, &default_params);
-        exit(1);
-    }
-    finish_processing_train_args(&params->common);
-    return true;
-}
-
-struct save_train_files_data {
-    const char            * fn_checkpoint_out;
-    const char            * fn_lora_out;
-    const char            * pattern_fn_it;
-    const char            * fn_latest;
-    struct my_llama_model * model;
-    struct my_llama_lora  * lora;
-};
-
-static void save_train_files(void * vdata, struct train_state * train) {
-    struct save_train_files_data * data   = (struct save_train_files_data *) vdata;
-
-    int64_t iter = train->opt->iter;
-
-    if (strlen(data->fn_checkpoint_out) > 0) {
-        save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train);
-        save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1  ).c_str(), data->model, data->lora, train);
-    }
-    if (strlen(data->fn_lora_out) > 0) {
-        save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora);
-        save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1  ).c_str(), data->lora);
-    }
-}
-
-static int64_t get_parameter_count(struct my_llama_lora* lora) {
-    int64_t nx = 0;
-    nx += ggml_nelements(lora->tok_embeddings_a);
-    nx += ggml_nelements(lora->tok_embeddings_b);
-    nx += ggml_nelements(lora->norm_a);
-    nx += ggml_nelements(lora->norm_b);
-    nx += ggml_nelements(lora->output_a);
-    nx += ggml_nelements(lora->output_b);
-
-    for (uint32_t i = 0; i < lora->layers.size(); ++i) {
-        auto & layer = lora->layers[i];
-        nx += ggml_nelements(layer.attention_norm_a);
-        nx += ggml_nelements(layer.attention_norm_b);
-        nx += ggml_nelements(layer.wq_a);
-        nx += ggml_nelements(layer.wq_b);
-        nx += ggml_nelements(layer.wk_a);
-        nx += ggml_nelements(layer.wk_b);
-        nx += ggml_nelements(layer.wv_a);
-        nx += ggml_nelements(layer.wv_b);
-        nx += ggml_nelements(layer.wo_a);
-        nx += ggml_nelements(layer.wo_b);
-        nx += ggml_nelements(layer.ffn_norm_a);
-        nx += ggml_nelements(layer.ffn_norm_b);
-        nx += ggml_nelements(layer.ffn_gate_a);
-        nx += ggml_nelements(layer.ffn_gate_b);
-        nx += ggml_nelements(layer.ffn_down_a);
-        nx += ggml_nelements(layer.ffn_down_b);
-        nx += ggml_nelements(layer.ffn_up_a);
-        nx += ggml_nelements(layer.ffn_up_b);
-    }
-    return nx;
-}
-
-int main(int argc, char ** argv) {
-    struct train_params params = get_default_train_params();
-
-    if (!train_params_parse(argc, argv, &params)) {
-        return 1;
-    }
-
-    if (params.common.seed == LLAMA_DEFAULT_SEED) {
-        params.common.seed = time(NULL);
-    }
-    printf("%s: seed: %u\n", __func__, params.common.seed);
-    srand(params.common.seed);
-
-    struct llama_model_params llama_mparams = llama_model_default_params();
-    llama_mparams.n_gpu_layers = params.common.n_gpu_layers;
-    llama_mparams.vocab_only = false;
-
-    printf("%s: model base = '%s'\n", __func__, params.fn_model_base);
-    struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams);
-
-    struct llama_context_params llama_cparams = llama_context_default_params();
-    struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams);
-
-    struct my_llama_model model;
-    init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx);
-
-    struct my_llama_lora lora;
-
-    struct train_state      * train = init_train_state();
-    struct ggml_opt_context * opt   = train->opt;
-
-    // set params from command line
-    if (params.custom_f_norm_rms_eps) {
-        model.hparams.f_norm_rms_eps  = params.f_norm_rms_eps;
-    }
-    if (params.custom_rope_freq_base) {
-        model.hparams.rope_freq_base  = params.rope_freq_base;
-    }
-    if (params.custom_rope_freq_scale) {
-        model.hparams.rope_freq_scale = params.rope_freq_scale;
-    }
-    lora.hparams.lora_r                = params.lora_r;
-    lora.hparams.lora_alpha            = params.custom_lora_alpha            ? params.lora_alpha            : params.lora_r;
-    uint32_t n_rank_attention_norm     = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1;
-    uint32_t n_rank_wq                 = params.custom_n_rank_wq             ? params.n_rank_wq             : params.lora_r;
-    uint32_t n_rank_wk                 = params.custom_n_rank_wk             ? params.n_rank_wk             : params.lora_r;
-    uint32_t n_rank_wv                 = params.custom_n_rank_wv             ? params.n_rank_wv             : params.lora_r;
-    uint32_t n_rank_wo                 = params.custom_n_rank_wo             ? params.n_rank_wo             : params.lora_r;
-    uint32_t n_rank_ffn_norm           = params.custom_n_rank_ffn_norm       ? params.n_rank_ffn_norm       : 1;
-    uint32_t n_rank_ffn_gate           = params.custom_n_rank_ffn_gate       ? params.n_rank_ffn_gate       : params.lora_r;
-    uint32_t n_rank_ffn_down           = params.custom_n_rank_ffn_down       ? params.n_rank_ffn_down       : params.lora_r;
-    uint32_t n_rank_ffn_up             = params.custom_n_rank_ffn_up         ? params.n_rank_ffn_up         : params.lora_r;
-    uint32_t n_rank_tok_embeddings     = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r;
-    uint32_t n_rank_norm               = params.custom_n_rank_norm           ? params.n_rank_norm           : 1;
-    uint32_t n_rank_output             = params.custom_n_rank_output         ? params.n_rank_output         : params.lora_r;
-    lora.hparams.n_rank_attention_norm = n_rank_attention_norm;
-    lora.hparams.n_rank_wq             = n_rank_wq;
-    lora.hparams.n_rank_wk             = n_rank_wk;
-    lora.hparams.n_rank_wv             = n_rank_wv;
-    lora.hparams.n_rank_wo             = n_rank_wo;
-    lora.hparams.n_rank_ffn_norm       = n_rank_ffn_norm;
-    lora.hparams.n_rank_ffn_gate       = n_rank_ffn_gate;
-    lora.hparams.n_rank_ffn_down       = n_rank_ffn_down;
-    lora.hparams.n_rank_ffn_up         = n_rank_ffn_up;
-    lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings;
-    lora.hparams.n_rank_norm           = n_rank_norm;
-    lora.hparams.n_rank_output         = n_rank_output;
-
-    // set opt params from command line
-    opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
-    opt->params.print_forward_graph     = false;
-    opt->params.print_backward_graph    = false;
-    opt->params.graph_size              = LLAMA_TRAIN_MAX_NODES;
-    opt->params.n_threads               = params.common.n_threads;
-    opt->params.past                    = params.common.opt_past;
-    opt->params.delta                   = params.common.opt_delta;
-    opt->params.max_no_improvement      = params.common.opt_max_no_improvement;
-    opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
-    opt->params.adam.n_iter             = params.common.adam_n_iter;
-    opt->params.adam.sched              = 1.0f;
-    opt->params.adam.alpha              = params.common.adam_alpha;
-    opt->params.adam.decay              = params.common.adam_decay;
-    opt->params.adam.decay_min_ndim     = params.common.adam_decay_min_ndim;
-    opt->params.adam.beta1              = params.common.adam_beta1;
-    opt->params.adam.beta2              = params.common.adam_beta2;
-    opt->params.adam.gclip              = params.common.adam_gclip;
-    opt->params.adam.eps_f              = params.common.adam_eps_f;
-
-    printf("%s: init model\n", __func__);
-    bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train);
-
-    if (existed) {
-        // overwrite last n_ctx with user provided n_ctx
-        if (params.common.custom_n_ctx) {
-            model.hparams.n_ctx = params.common.n_ctx;
-        }
-
-        const bool opt_param_count_changed = (
-           (lora.hparams.n_rank_attention_norm != n_rank_attention_norm)
-        || (lora.hparams.n_rank_wq             != n_rank_wq)
-        || (lora.hparams.n_rank_wk             != n_rank_wk)
-        || (lora.hparams.n_rank_wv             != n_rank_wv)
-        || (lora.hparams.n_rank_wo             != n_rank_wo)
-        || (lora.hparams.n_rank_ffn_norm       != n_rank_ffn_norm)
-        || (lora.hparams.n_rank_ffn_gate       != n_rank_ffn_gate)
-        || (lora.hparams.n_rank_ffn_down       != n_rank_ffn_down)
-        || (lora.hparams.n_rank_ffn_up         != n_rank_ffn_up)
-        || (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings)
-        || (lora.hparams.n_rank_norm           != n_rank_norm)
-        || (lora.hparams.n_rank_output         != n_rank_output)
-        );
-
-        const bool opt_past_changed = opt->params.past != params.common.opt_past;
-
-        if (opt_param_count_changed) {
-            print_lora_params(&lora.hparams);
-            die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting.");
-            // need to discard previous optimizer gradient statistics and opt_init with new shapes
-            // TODO
-        }
-        if (opt_past_changed) {
-            die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
-            // need to discard previous optimizer past function value statistics and opt_init with new shapes
-            // TODO
-        }
-    } else { // existed == false
-        init_lora(&model, &lora);
-        randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
-        if (!params.only_write_lora) {
-            ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora));
-        }
-    }
-    opt->iter = train->train_its;
-
-    print_params(&model.hparams);
-    print_lora_params(&lora.hparams);
-    printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
-    printf("%s: seen train_samples     %llu\n", __func__, (long long unsigned) train->train_samples);
-    printf("%s: seen train_tokens      %llu\n", __func__, (long long unsigned) train->train_tokens);
-    printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
-    printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f));
-
-    if (params.only_write_lora) {
-        save_train_files_data save_data;
-        save_data.fn_checkpoint_out = "";
-        save_data.fn_lora_out       = params.fn_lora_out;
-        save_data.pattern_fn_it     = params.common.pattern_fn_it;
-        save_data.fn_latest         = params.common.fn_latest;
-        save_data.model             = &model;
-        save_data.lora              = &lora;
-
-        save_train_files(&save_data, train);
-
-        free_train_state(train);
-        ggml_free(lora.ctx);
-        llama_free(lctx);
-        llama_free_model(lmodel);
-        return 0;
-    }
-
-    printf("%s: opt_size  = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
-    printf("%s: opt iter %d\n", __func__, opt->iter);
-
-    int n_tokens = model.hparams.n_ctx;
-    int n_vocab  = model.hparams.n_vocab;
-    int n_batch  = params.common.n_batch;
-
-    // context for input tensors without their data
-    struct ggml_init_params ctx_input_params = {
-        ggml_tensor_overhead() * 2, // mem_size
-        NULL,                       // mem_buffer
-        true,                       // no_alloc
-    };
-    struct ggml_context * ctx_input = ggml_init(ctx_input_params);
-
-    // the input tensors
-    struct ggml_tensor * tokens_input  = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
-    struct ggml_tensor * target_probs  = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
-
-    // allocate input tensors
-    // measure required memory for input tensors
-    ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
-    size_t max_input_size = ggml_backend_buffer_get_size(input_data);
-    printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
-
-    // context for compute tensors without their data
-    const size_t estimated_compute_size_wo_data = (
-            2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
-            (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
-    );
-    struct ggml_init_params ctx_compute_params = {
-        estimated_compute_size_wo_data, // mem_size
-        NULL,                           // mem_buffer
-        true,                           // no_alloc
-    };
-    struct ggml_context * ctx_compute = NULL;
-
-    struct ggml_tensor * loss   = NULL;
-    struct ggml_tensor * logits = NULL;
-
-    struct ggml_cgraph * gf     = NULL;
-    struct ggml_cgraph * gb     = NULL;
-    struct ggml_cgraph * gb_tmp = NULL;
-
-    // measure required memory for compute tensors
-    size_t best_compute_size = SIZE_MAX;
-    enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
-    // find best evaluation order
-    for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
-        ctx_compute = ggml_init(ctx_compute_params);
-        ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
-        gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-        gf->order = (enum ggml_cgraph_eval_order) order;
-        gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-        gb_tmp = params.common.use_checkpointing
-            ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
-            : NULL;
-        loss = llama_build_lora_finetune_graphs(
-            &model, &lora, alloc, ctx_compute,
-            gf, gb, gb_tmp,
-            &logits, tokens_input, target_probs,
-            n_tokens, n_batch,
-            params.common.use_flash,
-            params.common.use_checkpointing,
-            true
-        );
-        size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
-        if (max_compute_size < best_compute_size) {
-            best_compute_size = max_compute_size;
-            best_order = gf->order;
-        }
-        ggml_gallocr_free(alloc);
-        ggml_free(ctx_compute);
-    }
-    size_t max_compute_size = best_compute_size;
-    printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
-    printf("%s: evaluation order = %s\n", __func__,
-        (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
-        (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
-        "invalid");
-
-    // allocate compute tensors
-    ctx_compute = ggml_init(ctx_compute_params);
-    ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
-    gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-    gf->order = best_order;
-    gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-    gb_tmp = params.common.use_checkpointing
-        ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
-        : NULL;
-    loss = llama_build_lora_finetune_graphs(
-        &model, &lora, alloc, ctx_compute,
-        gf, gb, gb_tmp,
-        &logits, tokens_input, target_probs,
-        n_tokens, n_batch,
-        params.common.use_flash,
-        params.common.use_checkpointing,
-        false
-    );
-
-    // tokenize data
-    std::vector<llama_token> train_tokens;
-    std::vector<size_t> train_samples_begin;
-    std::vector<size_t> train_samples_size;
-    printf("%s: tokenize training data from %s\n", __func__, params.common.fn_train_data);
-    printf("%s: sample-start: %s\n", __func__, params.common.sample_start.c_str());
-    printf("%s: include-sample-start: %s\n", __func__, params.common.include_sample_start ? "true" : "false");
-    tokenize_file(lctx,
-            params.common.fn_train_data,
-            params.common.sample_start,
-            params.common.include_sample_start,
-            params.common.overlapping_samples,
-            n_tokens,
-            train_tokens,
-            train_samples_begin,
-            train_samples_size);
-    GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
-
-    printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
-
-    std::vector<size_t> token_noccurs;
-    token_noccurs.resize(model.hparams.n_vocab, 0);
-    for (unsigned int i = 0; i < train_tokens.size(); ++i) {
-        ++token_noccurs[train_tokens[i]];
-    }
-    int n_unique_tokens = 0;
-    for (unsigned int i = 0; i < token_noccurs.size(); ++i) {
-        if (token_noccurs[i] == 0) continue;
-        ++n_unique_tokens;
-    }
-    printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);
-
-    size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
-    const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
-    if (changed_train_data) {
-        printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
-    }
-    if (params.common.force_reshuffle) {
-        printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
-    }
-    if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
-        train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
-        train->shuffle_sample_count = train_samples_size.size();
-        train->shuffle_next_sample = 0;
-        train->shuffle_samples_hash = shuffle_samples_hash;
-    }
-    std::vector<size_t> train_shuffled_samples_offs;
-    std::vector<size_t> train_shuffled_samples_begin;
-    std::vector<size_t> train_shuffled_samples_size;
-    train_shuffled_samples_offs.resize(train_samples_begin.size());
-    train_shuffled_samples_begin.resize(train_samples_begin.size());
-    train_shuffled_samples_size.resize(train_samples_size.size());
-    train->shuffle_rng_state_next = shuffle_samples(
-        train->shuffle_rng_state_current,
-        train_shuffled_samples_offs.data(),
-        train_shuffled_samples_begin.data(),
-        train_shuffled_samples_size.data(),
-        train_samples_begin.data(),
-        train_samples_size.data(),
-        train_samples_size.size());
-
-    printf("%s: begin training\n", __func__);
-
-    save_train_files_data save_data;
-    save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
-    save_data.fn_lora_out       = params.fn_lora_out;
-    save_data.pattern_fn_it     = params.common.pattern_fn_it;
-    save_data.fn_latest         = params.common.fn_latest;
-    save_data.model             = &model;
-    save_data.lora              = &lora;
-
-    struct train_opt_callback_data opt_cb_data;
-    opt_cb_data.params                 = &params.common;
-    opt_cb_data.train                  = train;
-    opt_cb_data.save_cb                = &save_train_files;
-    opt_cb_data.save_data              = &save_data;
-    opt_cb_data.lctx                   = lctx;
-    opt_cb_data.last_save_iter         = opt->iter;
-    opt_cb_data.tokens_data            = train_tokens.data();
-    opt_cb_data.tokens_size            = train_tokens.size();
-    opt_cb_data.samples_begin          = train_samples_begin.data();
-    opt_cb_data.samples_size           = train_samples_size.data();
-    opt_cb_data.shuffled_samples_offs  = train_shuffled_samples_offs.data();
-    opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
-    opt_cb_data.shuffled_samples_size  = train_shuffled_samples_size.data();
-    opt_cb_data.samples_count          = train_samples_size.size();
-    opt_cb_data.tokens_input           = tokens_input;
-    opt_cb_data.target_probs           = target_probs;
-    opt_cb_data.first_iter             = opt->iter;
-    opt_cb_data.first_epoch            = train->train_epochs;
-    opt_cb_data.iter_at_last_epoch     = -1;
-    opt_cb_data.last_time              = ggml_time_ms();
-    opt_cb_data.millis_per_iter        = 0.0;
-
-    // measure required memory for work buffer
-    size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
-    printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
-
-    // context for work buffer
-    struct ggml_init_params ctx_work_params = {
-        max_work_size, // mem_size
-        NULL,          // mem_buffer
-        false,         // no_alloc
-    };
-    struct ggml_context * ctx_work = ggml_init(ctx_work_params);
-
-    int64_t t0 = ggml_time_ms();
-
-    ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
-
-    ggml_free(ctx_work);
-    ggml_free(ctx_compute);
-    ggml_free(ctx_input);
-    ggml_gallocr_free(alloc);
-
-
-    int64_t t1 = ggml_time_ms();
-    printf("%s: total training time: ", __func__);
-    print_duration((double) (t1 - t0));
-    printf("\n");
-
-    int new_iters = opt->iter - opt_cb_data.last_save_iter;
-    if (new_iters > 0) {
-        train->train_its     += new_iters;
-        train->train_tokens  += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
-
-        save_train_files(&save_data, train);
-        opt_cb_data.last_save_iter = opt->iter;
-    }
-
-    ggml_free(opt->ctx);
-    free_train_state(train);
-    ggml_free(lora.ctx);
-    llama_free(lctx);
-    llama_free_model(lmodel);
-    return 0;
-}
diff --git a/examples/finetune/finetune.sh b/examples/finetune/finetune.sh
deleted file mode 100644 (file)
index e3cc7f2..0000000
+++ /dev/null
@@ -1,34 +0,0 @@
-#!/bin/bash
-cd `dirname $0`
-cd ../..
-
-EXE="./llama-finetune"
-
-if [[ ! $LLAMA_MODEL_DIR ]]; then LLAMA_MODEL_DIR="./models"; fi
-if [[ ! $LLAMA_TRAINING_DIR ]]; then LLAMA_TRAINING_DIR="."; fi
-
-# MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2-q8_0.gguf" # This is the model the readme uses.
-MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2.gguf" # An f16 model. Note in this case with "-g", you get an f32-format .BIN file that isn't yet supported if you use it with "llama-cli --lora" with GPU inferencing.
-
-while getopts "dg" opt; do
-  case $opt in
-    d)
-      DEBUGGER="gdb --args"
-      ;;
-    g)
-      EXE="./build/bin/Release/finetune"
-      GPUARG="--gpu-layers 25"
-      ;;
-  esac
-done
-
-$DEBUGGER $EXE \
-        --model-base $MODEL \
-        $GPUARG \
-        --checkpoint-in  chk-ol3b-shakespeare-LATEST.gguf \
-        --checkpoint-out chk-ol3b-shakespeare-ITERATION.gguf \
-        --lora-out lora-ol3b-shakespeare-ITERATION.bin \
-        --train-data "$LLAMA_TRAINING_DIR\shakespeare.txt" \
-        --save-every 10 \
-        --threads 10 --adam-iter 30 --batch 4 --ctx 64 \
-        --use-checkpointing
diff --git a/examples/train-text-from-scratch/CMakeLists.txt b/examples/train-text-from-scratch/CMakeLists.txt
deleted file mode 100644 (file)
index 9a1d2a3..0000000
+++ /dev/null
@@ -1,5 +0,0 @@
-set(TARGET llama-train-text-from-scratch)
-add_executable(${TARGET} train-text-from-scratch.cpp)
-install(TARGETS ${TARGET} RUNTIME)
-target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
-target_compile_features(${TARGET} PRIVATE cxx_std_11)
diff --git a/examples/train-text-from-scratch/README.md b/examples/train-text-from-scratch/README.md
deleted file mode 100644 (file)
index 3abae23..0000000
+++ /dev/null
@@ -1,27 +0,0 @@
-# train-text-from-scratch
-
-Basic usage instructions:
-
-```bash
-# get training data
-wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
-
-# train
-./bin/llama-train-text-from-scratch \
-        --vocab-model ../models/ggml-vocab-llama.gguf \
-        --ctx 64 --embd 256 --head 8 --layer 16 \
-        --checkpoint-in  chk-shakespeare-256x16-LATEST.gguf \
-        --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
-        --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
-        --train-data "shakespeare.txt" \
-        -t 6 -b 16 --seed 1 --adam-iter 256 \
-        --no-checkpointing
-
-# predict
-./bin/llama-cli -m ggml-shakespeare-256x16-f32.gguf
-```
-
-Output files will be saved every N iterations (config with `--save-every N`).
-The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
-
-To train GGUF models just pass them to `--checkpoint-in FN`.
diff --git a/examples/train-text-from-scratch/convert_train_checkpoint_to_gguf.py b/examples/train-text-from-scratch/convert_train_checkpoint_to_gguf.py
deleted file mode 100644 (file)
index e045beb..0000000
+++ /dev/null
@@ -1,499 +0,0 @@
-#!/usr/bin/env python3
-# train-text-from-scratch checkpoint --> gguf conversion
-
-import argparse
-import os
-import struct
-import sys
-import numpy as np
-from pathlib import Path
-
-if 'NO_LOCAL_GGUF' not in os.environ:
-    sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
-import gguf
-
-# gguf constants
-LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
-LLM_KV_OPTIMIZER_TYPE_ADAM  = "adam"
-LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
-LLM_KV_OPTIMIZER_FILE_VERSION               = "optimizer.file_version"
-LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT     = "optimizer.convergence_past_count"
-LLM_KV_OPTIMIZER_PARAMETER_COUNT            = "optimizer.parameter_count"
-LLM_KV_OPTIMIZER_ITERATION_COUNT            = "optimizer.iteration_count"
-LLM_KV_OPTIMIZER_JUST_INITIALIZED           = "optimizer.just_initialized"
-LLM_KV_OPTIMIZER_ADAM_BEST_LOSS             = "optimizer.adam.best_loss"
-LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS         = "optimizer.adam.previous_loss"
-LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT  = "optimizer.adam.no_improvement_count"
-LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
-LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS            = "optimizer.lbfgs.best_loss"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP     = "optimizer.lbfgs.line_search_step"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J        = "optimizer.lbfgs.line_search_j"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K        = "optimizer.lbfgs.line_search_k"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END      = "optimizer.lbfgs.line_search_end"
-LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
-
-LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS    = "optimizer.adam.first_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS   = "optimizer.adam.second_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
-
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS  = "optimizer.lbfgs.current_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS   = "optimizer.lbfgs.current_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS  = "optimizer.lbfgs.previous_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION    = "optimizer.lbfgs.search_direction"
-LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES    = "optimizer.lbfgs.past_loss_values"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA        = "optimizer.lbfgs.memory_alpha"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS           = "optimizer.lbfgs.memory_ys"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S            = "optimizer.lbfgs.memory_s"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y            = "optimizer.lbfgs.memory_y"
-
-LLM_KV_TRAINING_TYPE_TRAIN_MODEL   = "train_model"
-LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
-LLM_KV_TRAINING_TYPE               = "training.type"
-LLM_KV_TRAINING_FILE_VERSION       = "training.file_version"
-LLM_KV_TRAINING_ITERATION_COUNT    = "training.iteration_count"
-LLM_KV_TRAINING_SAMPLE_COUNT       = "training.sample_count"
-LLM_KV_TRAINING_TOKEN_COUNT        = "training.token_count"
-
-class Tensor:
-    def __init__(self, dtype='f', ne=None):
-        if ne is None:
-            ne = []
-        self.dtype = dtype
-        self.ne = ne
-        self.nbytes = 0
-        if self.dtype == 'f':
-            if len(self.ne) == 0:
-                self.nbytes = 0
-            else:
-                self.nbytes = int(np.prod(self.ne)) * 4
-        else:
-            raise ValueError(f"Unhandled data type '{self.dtype}'")
-
-    def load(self, data, offset):
-        nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
-        assert(nd == len(self.ne))
-        ne = []
-        for d in range(nd):
-            n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-            ne.append(n)
-
-        assert(tuple(ne) == tuple(self.ne))
-
-        if self.dtype == 'f':
-            assert(dtype == 0)
-        else:
-            raise ValueError(f"Unhandled data type '{self.dtype}'")
-
-        self.name = bytes(data[offset:offset+namelen]); offset += namelen
-        # 32-byte alignment
-        offset += (0 - offset) & 31
-        self.data = data[offset:offset+self.nbytes]
-        offset += self.nbytes
-        return offset
-
-    def max_storage_size(self):
-        result = 0
-        result += 4 # nd
-        result += 4 # namelen
-        result += 4 # dtype
-        result += len(self.ne)*8 # ne
-        result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
-        result += 31 # 32-byte alignment
-        result += self.nbytes
-        return result
-
-    def save_gguf(self, gguf_writer, name):
-        gguf_writer.add_tensor(
-            name=name,
-            tensor=self.data,
-            raw_shape=np.array(list(reversed(self.ne))),
-            raw_dtype=gguf.GGMLQuantizationType.F32)
-
-class OptimizationParamsV0:
-    def __init__(self):
-        pass
-
-    def load(self, data, offset):
-        self.type                 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_threads            = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.past                 = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.delta                = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.print_forward_graph  = struct.unpack('<?', bytes(data[offset:offset + 1]))[0];  offset += 4 # 32bit-aligned
-        self.print_backward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0];  offset += 4 # 32bit-aligned
-        self.adam_n_iter          = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_sched           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_decay           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_alpha           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_beta1           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_beta2           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_eps             = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_eps_f           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.adam_eps_g           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_m              = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_n_iter         = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_max_linesearch = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_eps            = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_ftol           = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_wolfe          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_min_step       = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_max_step       = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.lbfgs_linesearch     = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        return offset
-
-class OptimizationContext:
-    def __init__(self):
-        pass
-
-    def load(self, data, offset):
-        self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
-        offset += 4
-
-        if self.version == 0:
-            params = OptimizationParamsV0()
-            offset = params.load(data, offset)
-            self.past = params.past
-            self.lbfgs_m = params.lbfgs_m
-            self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0];  offset += 8
-            self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]);  offset += 4
-            self.type = params.type
-
-            self.adam_m  = Tensor('f', [self.nx])
-            self.adam_v  = Tensor('f', [self.nx])
-            self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
-            self.lbfgs_x    = Tensor('f', [self.nx])
-            self.lbfgs_xp   = Tensor('f', [self.nx])
-            self.lbfgs_g    = Tensor('f', [self.nx])
-            self.lbfgs_gp   = Tensor('f', [self.nx])
-            self.lbfgs_d    = Tensor('f', [self.nx])
-            self.lbfgs_pf   = Tensor('f', [self.past] if self.past > 0 else [])
-            self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
-            self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
-            self.lbfgs_lms  = Tensor('f', [self.nx, self.lbfgs_m])
-            self.lbfgs_lmy  = Tensor('f', [self.nx, self.lbfgs_m])
-
-            if self.type == 0:
-                # these tensors are stored, but we don't need their data
-                x  = Tensor('f', [self.nx])
-                g  = Tensor('f', [self.nx])
-                g2 = Tensor('f', [self.nx])
-                mh = Tensor('f', [self.nx])
-                vh = Tensor('f', [self.nx])
-
-                offset = x.load(data, offset)
-                offset = g.load(data, offset)
-                offset = g2.load(data, offset)
-                offset = self.adam_m.load(data, offset)
-                offset = self.adam_v.load(data, offset)
-                offset = mh.load(data, offset)
-                offset = vh.load(data, offset)
-                offset = self.adam_pf.load(data, offset)
-
-                self.adam_fx_best          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.adam_fx_prev          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-
-            elif self.type == 1:
-                offset = self.lbfgs_x.load(data, offset)
-                offset = self.lbfgs_xp.load(data, offset)
-                offset = self.lbfgs_g.load(data, offset)
-                offset = self.lbfgs_gp.load(data, offset)
-                offset = self.lbfgs_d.load(data, offset)
-                offset = self.lbfgs_pf.load(data, offset)
-                offset = self.lbfgs_lmal.load(data, offset)
-                offset = self.lbfgs_lmys.load(data, offset)
-                offset = self.lbfgs_lms.load(data, offset)
-                offset = self.lbfgs_lmy.load(data, offset)
-
-                self.lbfgs_fx_best          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_step             = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_j                = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_k                = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_end              = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-
-            else:
-                raise ValueError('Unknown optimizer type')
-
-
-        elif self.version == 1:
-            self.past    = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.nx      = struct.unpack('N',  bytes(data[offset:offset + 8]))[0];  offset += 8
-            self.iter    = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-            self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]);  offset += 4
-
-            self.adam_m  = Tensor('f', [self.nx])
-            self.adam_v  = Tensor('f', [self.nx])
-            self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
-            self.lbfgs_x    = Tensor('f', [self.nx])
-            self.lbfgs_xp   = Tensor('f', [self.nx])
-            self.lbfgs_g    = Tensor('f', [self.nx])
-            self.lbfgs_gp   = Tensor('f', [self.nx])
-            self.lbfgs_d    = Tensor('f', [self.nx])
-            self.lbfgs_pf   = Tensor('f', [self.past] if self.past > 0 else [])
-            self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
-            self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
-            self.lbfgs_lms  = Tensor('f', [self.nx, self.lbfgs_m])
-            self.lbfgs_lmy  = Tensor('f', [self.nx, self.lbfgs_m])
-
-            # forgot to save type in version 1:
-            # guess self.type from number of remaining bytes
-            size_type_0 = 12 + sum([t.max_storage_size() for t in
-                                    [self.adam_m, self.adam_v]
-                                    +([self.adam_pf] if (self.past > 0) else [])])
-            size_type_1 = 24 + sum([t.max_storage_size() for t in
-                                    [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
-                                     self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
-                                     self.lbfgs_lmal, self.lbfgs_lmys,
-                                     self.lbfgs_lms, self.lbfgs_lmy]
-                                     +([self.lbfgs_pf] if (self.past > 0) else [])])
-            # due to alignment padding the size might not by exact
-            # but the difference in size for both types is significant,
-            # so we can just use whichever is closest
-            remaining = len(data) - offset
-            if abs(remaining - size_type_0) < abs(remaining - size_type_1):
-                self.type = 0
-            else:
-                self.type = 1
-
-            if self.type == 0:
-                offset = self.adam_m.load(data, offset)
-                offset = self.adam_v.load(data, offset)
-                offset = self.adam_pf.load(data,offset)
-
-                self.adam_fx_best          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.adam_fx_prev          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-
-            elif self.type == 1:
-                offset = self.lbfgs_x.load(data, offset)
-                offset = self.lbfgs_xp.load(data, offset)
-                offset = self.lbfgs_g.load(data, offset)
-                offset = self.lbfgs_gp.load(data, offset)
-                offset = self.lbfgs_d.load(data, offset)
-                offset = self.lbfgs_pf.load(data, offset)
-                offset = self.lbfgs_lmal.load(data, offset)
-                offset = self.lbfgs_lmys.load(data, offset)
-                offset = self.lbfgs_lms.load(data, offset)
-                offset = self.lbfgs_lmy.load(data, offset)
-
-                self.lbfgs_fx_best          = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_step             = struct.unpack('<f', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_j                = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_k                = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_end              = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-                self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0];  offset += 4
-
-        else:
-            raise ValueError('Invalid version of checkpoint file')
-
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
-        gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
-        gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
-        gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
-        gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
-
-        if self.type == 0:
-            gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
-            gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
-
-            self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
-            self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
-            if self.past > 0:
-                self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
-
-        elif self.type == 1:
-            gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
-            gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
-            gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
-            gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
-            gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
-            gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
-            gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
-
-            self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
-            self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
-            self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
-            self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
-            self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
-            if self.past > 0:
-                self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
-            self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
-            self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
-            self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
-            self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
-        else:
-            raise ValueError('Unknown optimizer type')
-
-class ModelParams:
-    def __init__(self):
-        pass
-
-    def load(self, data, offset):
-        self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_embd  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_mult  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_head  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        self.n_rot   = struct.unpack('<I', bytes(data[offset:offset + 4]))[0];  offset += 4
-        return offset
-
-    def get_n_ff(self):
-        # struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
-        return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
-
-    def save_gguf(self, gguf_writer):
-        # self.n_vocab not saved
-        gguf_writer.add_embedding_length(self.n_embd)
-        gguf_writer.add_head_count(self.n_head)
-        gguf_writer.add_block_count(self.n_layer)
-        gguf_writer.add_rope_dimension_count(self.n_rot)
-        gguf_writer.add_feed_forward_length(self.get_n_ff())
-
-def tensor_name(key, bid=None):
-    return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
-
-class Layer:
-    def __init__(self, params, bid):
-        self.bid = bid
-        self.att_norm = Tensor('f', [params.n_embd])
-        self.wq       = Tensor('f', [params.n_embd, params.n_embd])
-        self.wk       = Tensor('f', [params.n_embd, params.n_embd])
-        self.wv       = Tensor('f', [params.n_embd, params.n_embd])
-        self.wo       = Tensor('f', [params.n_embd, params.n_embd])
-        self.ffn_norm = Tensor('f', [params.n_embd])
-        self.w1       = Tensor('f', [params.n_embd, params.get_n_ff()])
-        self.w2       = Tensor('f', [params.get_n_ff(), params.n_embd])
-        self.w3       = Tensor('f', [params.n_embd, params.get_n_ff()])
-
-    def load(self, data, offset):
-        offset = self.att_norm.load(data, offset)
-        offset = self.wq.load(data, offset)
-        offset = self.wk.load(data, offset)
-        offset = self.wv.load(data, offset)
-        offset = self.wo.load(data, offset)
-        offset = self.ffn_norm.load(data, offset)
-        offset = self.w1.load(data, offset)
-        offset = self.w2.load(data, offset)
-        offset = self.w3.load(data, offset)
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        self.att_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid))
-        self.wq.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q,    self.bid))
-        self.wk.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K,    self.bid))
-        self.wv.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V,    self.bid))
-        self.wo.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT,  self.bid))
-        self.ffn_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM,  self.bid))
-        self.w1.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE,  self.bid))
-        self.w2.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN,  self.bid))
-        self.w3.save_gguf      (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP,    self.bid))
-
-class Model:
-    def __init__(self):
-        self.params = ModelParams()
-        self.layers = []
-
-    def load(self, data, offset):
-        offset = self.params.load(data, offset)
-
-        self.tok_embd = Tensor('f', [self.params.n_embd, self.params.n_vocab])
-        self.norm     = Tensor('f', [self.params.n_embd])
-        self.output   = Tensor('f', [self.params.n_embd, self.params.n_vocab])
-
-        offset = self.tok_embd.load(data, offset)
-        offset = self.norm.load(data, offset)
-        offset = self.output.load(data, offset)
-
-        self.layers.clear()
-        for bid in range(self.params.n_layer):
-            layer = Layer(self.params, bid)
-            offset = layer.load(data, offset)
-            self.layers.append(layer)
-
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        self.params.save_gguf(gguf_writer)
-
-        self.tok_embd.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD))
-        self.norm.save_gguf    (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM))
-        self.output.save_gguf  (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT))
-
-        for layer in self.layers:
-            layer.save_gguf(gguf_writer)
-
-class Checkpoint:
-    def __init__(self):
-        self.model = Model()
-        self.opt_ctx = OptimizationContext()
-
-    def load(self, data, offset):
-        magic   = bytes(reversed(data[offset:offset + 4])); offset += 4
-        if magic != b'ggcp':
-            raise ValueError(f"File header magic indicates, that this is no checkpoint file. Expected 'ggcp', Got '{str(magic)}'")
-
-        self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        if self.version != 0:
-            raise ValueError('Invalid version of checkpoint file')
-
-        self.train_its     = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-        self.train_tokens  = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
-        offset = self.model.load(data, offset)
-        offset = self.opt_ctx.load(data, offset)
-
-        return offset
-
-    def save_gguf(self, gguf_writer):
-        gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
-        gguf_writer.add_layer_norm_rms_eps(1e-5)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION,    0)
-        gguf_writer.add_string(LLM_KV_TRAINING_TYPE,            LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT,    self.train_samples)
-        gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT,     self.train_tokens)
-        self.model.save_gguf(gguf_writer)
-        self.opt_ctx.save_gguf(gguf_writer)
-
-def handle_args():
-    parser = argparse.ArgumentParser(description = 'Convert train-text-from-scratch checkpoints to GGUF')
-    parser.add_argument('--input',  '-i', type = Path, help = 'Input train checkpoint filename', required=True)
-    parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename', required=True)
-    return parser.parse_args()
-
-def main():
-    cfg = handle_args()
-    data = np.memmap(cfg.input, mode = 'r')
-    chk = Checkpoint()
-    offset = 0
-    offset = chk.load(data, offset)
-    # we should have read all available data
-    assert(offset == len(data))
-
-    gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
-    chk.save_gguf(gguf_writer)
-    print("    gguf: write header")
-    gguf_writer.write_header_to_file()
-    print("    gguf: write metadata")
-    gguf_writer.write_kv_data_to_file()
-    print("    gguf: write tensors")
-    gguf_writer.write_tensors_to_file()
-    gguf_writer.close()
-
-if __name__ == '__main__':
-    main()
diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp
deleted file mode 100644 (file)
index b779f6b..0000000
+++ /dev/null
@@ -1,1253 +0,0 @@
-#include "ggml.h"
-#include "ggml-alloc.h"
-#include "ggml-backend.h"
-#include "common.h"
-#include "train.h"
-#include "llama.h"
-#include <unordered_map>
-#include <vector>
-#include <cassert>
-#include <climits>
-#include <cstring>
-#include <cstdarg>
-#include <ctime>
-#include <random>
-#include <stdexcept>
-#include <algorithm>
-#include <string>
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-struct my_llama_hparams {
-    uint32_t n_vocab = 32000;
-    uint32_t n_ctx   = 512;
-    uint32_t n_embd  = 4096;
-    uint32_t n_head  = 32;
-    uint32_t n_layer = 32;
-    uint32_t n_rot   = 64;
-    uint32_t n_ff    = 11008;
-
-    // float f_norm_eps     = 1e-5f; // falcon
-    float f_norm_rms_eps = 1e-5f; // llama
-
-    float rope_freq_base  = 10000.0f;
-    float rope_freq_scale = 1.0f;
-};
-
-struct my_llama_layer {
-    // normalization
-    struct ggml_tensor * attention_norm;
-
-    // attention
-    struct ggml_tensor * wq;
-    struct ggml_tensor * wk;
-    struct ggml_tensor * wv;
-    struct ggml_tensor * wo;
-
-    // normalization
-    struct ggml_tensor * ffn_norm;
-
-    // ff
-    struct ggml_tensor * ffn_gate; // w1
-    struct ggml_tensor * ffn_down; // w2
-    struct ggml_tensor * ffn_up;   // w3
-};
-
-struct my_llama_model {
-    struct ggml_context * ctx = NULL;
-    ggml_backend_buffer_t data = NULL;
-
-    my_llama_hparams hparams;
-
-    struct ggml_tensor * tok_embeddings;
-
-    struct ggml_tensor * norm;
-    struct ggml_tensor * output;
-
-    std::vector<my_llama_layer> layers;
-};
-
-// gguf constants (sync with gguf.py)
-static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL     = "train_model";
-static const char * LLM_KV_TRAINING_TYPE                 = "training.type";
-
-static const char * LLM_KV_GENERAL_NAME                = "general.name";
-static const char * LLM_KV_GENERAL_ARCHITECTURE        = "general.architecture";
-static const char * LLM_KV_GENERAL_FILE_TYPE           = "general.file_type";
-
-static const char * LLM_KV_CONTEXT_LENGTH              = "%s.context_length";
-static const char * LLM_KV_EMBEDDING_LENGTH            = "%s.embedding_length";
-static const char * LLM_KV_BLOCK_COUNT                 = "%s.block_count";
-static const char * LLM_KV_FEED_FORWARD_LENGTH         = "%s.feed_forward_length";
-static const char * LLM_KV_ATTENTION_HEAD_COUNT        = "%s.attention.head_count";
-static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
-static const char * LLM_KV_ROPE_DIMENSION_COUNT        = "%s.rope.dimension_count";
-static const char * LLM_KV_ROPE_FREQ_BASE              = "%s.rope.freq_base"; // TODO load in llama.cpp
-static const char * LLM_KV_ROPE_SCALE_LINEAR           = "%s.rope.scale_linear";
-
-static const char * LLM_KV_TOKENIZER_MODEL             = "tokenizer.ggml.model";
-static const char * LLM_KV_TOKENIZER_LIST              = "tokenizer.ggml.tokens";
-static const char * LLM_KV_TOKENIZER_TOKEN_TYPE        = "tokenizer.ggml.token_type";
-static const char * LLM_KV_TOKENIZER_SCORES            = "tokenizer.ggml.scores";
-static const char * LLM_KV_TOKENIZER_MERGES            = "tokenizer.ggml.merges";
-static const char * LLM_KV_TOKENIZER_BOS_ID            = "tokenizer.ggml.bos_token_id";
-static const char * LLM_KV_TOKENIZER_EOS_ID            = "tokenizer.ggml.eos_token_id";
-static const char * LLM_KV_TOKENIZER_UNK_ID            = "tokenizer.ggml.unknown_token_id";
-static const char * LLM_KV_TOKENIZER_SEP_ID            = "tokenizer.ggml.seperator_token_id";
-static const char * LLM_KV_TOKENIZER_PAD_ID            = "tokenizer.ggml.padding_token_id";
-
-static const char * LLM_TENSOR_TOKEN_EMBD    = "token_embd";
-static const char * LLM_TENSOR_OUTPUT_NORM   = "output_norm";
-static const char * LLM_TENSOR_OUTPUT        = "output";
-static const char * LLM_TENSOR_ATTN_NORM     = "blk.%d.attn_norm";
-static const char * LLM_TENSOR_ATTN_Q        = "blk.%d.attn_q";
-static const char * LLM_TENSOR_ATTN_K        = "blk.%d.attn_k";
-static const char * LLM_TENSOR_ATTN_V        = "blk.%d.attn_v";
-static const char * LLM_TENSOR_ATTN_OUT      = "blk.%d.attn_output";
-static const char * LLM_TENSOR_FFN_NORM      = "blk.%d.ffn_norm";
-static const char * LLM_TENSOR_FFN_GATE      = "blk.%d.ffn_gate";
-static const char * LLM_TENSOR_FFN_DOWN      = "blk.%d.ffn_down";
-static const char * LLM_TENSOR_FFN_UP        = "blk.%d.ffn_up";
-
-static void print_params(struct my_llama_hparams * params) {
-    printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
-    printf("%s: n_ctx:   %u\n", __func__, params->n_ctx);
-    printf("%s: n_embd:  %u\n", __func__, params->n_embd);
-    printf("%s: n_head:  %u\n", __func__, params->n_head);
-    printf("%s: n_ff:    %u\n", __func__, params->n_ff);
-    printf("%s: n_layer: %u\n", __func__, params->n_layer);
-    printf("%s: n_rot:   %u\n", __func__, params->n_rot);
-}
-
-static void set_param_model(struct my_llama_model * model) {
-    const auto& hparams = model->hparams;
-
-    const uint32_t n_layer = hparams.n_layer;
-
-    struct ggml_context* ctx = model->ctx;
-
-    ggml_set_param(ctx, model->tok_embeddings);
-    ggml_set_param(ctx, model->norm);
-    ggml_set_param(ctx, model->output);
-
-    for (uint32_t i = 0; i < n_layer; ++i) {
-        auto & layer = model->layers[i];
-
-        ggml_set_param(ctx, layer.attention_norm);
-        ggml_set_param(ctx, layer.wq);
-        ggml_set_param(ctx, layer.wk);
-        ggml_set_param(ctx, layer.wv);
-        ggml_set_param(ctx, layer.wo);
-        ggml_set_param(ctx, layer.ffn_norm);
-        ggml_set_param(ctx, layer.ffn_gate);
-        ggml_set_param(ctx, layer.ffn_down);
-        ggml_set_param(ctx, layer.ffn_up);
-    }
-}
-
-static void init_model(struct my_llama_model * model) {
-    const auto & hparams = model->hparams;
-
-    const uint32_t n_embd  = hparams.n_embd;
-    const uint32_t n_layer = hparams.n_layer;
-    const uint32_t n_vocab = hparams.n_vocab;
-    const uint32_t n_ff    = hparams.n_ff;
-
-
-    std::vector<char> tn_buf;
-    tn_buf.resize(GGML_MAX_NAME);
-    auto tn = [&tn_buf](const char * key) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
-        return tn_buf.data();
-    };
-    auto tni = [&tn_buf](const char * key, int bid) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), key, bid);
-        std::string s = tn_buf.data();
-        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
-        return tn_buf.data();
-    };
-
-    // context for model tensors without their data
-    struct ggml_init_params ctx_model_params;
-    ctx_model_params.mem_size   = ggml_tensor_overhead()*2*(6 + n_layer*18);
-    ctx_model_params.mem_buffer = NULL;
-    ctx_model_params.no_alloc   = true;
-
-    struct ggml_context * ctx = ggml_init(ctx_model_params);
-    model->ctx = ctx;
-
-    model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
-    model->norm           = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-    model->output         = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
-
-    ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
-    ggml_set_name(model->norm,           tn(LLM_TENSOR_OUTPUT_NORM));
-    ggml_set_name(model->output,         tn(LLM_TENSOR_OUTPUT));
-
-    model->layers.resize(n_layer);
-    for (uint32_t i = 0; i < n_layer; ++i) {
-        auto & layer = model->layers[i];
-
-        layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
-        layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
-        layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
-        layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
-        layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
-
-        layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
-        layer.ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);
-        layer.ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_F32,   n_ff, n_embd);
-        layer.ffn_up   = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd,   n_ff);
-
-        ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
-
-        ggml_set_name(layer.wq,             tni(LLM_TENSOR_ATTN_Q, i));
-        ggml_set_name(layer.wk,             tni(LLM_TENSOR_ATTN_K, i));
-        ggml_set_name(layer.wv,             tni(LLM_TENSOR_ATTN_V, i));
-        ggml_set_name(layer.wo,             tni(LLM_TENSOR_ATTN_OUT, i));
-
-        ggml_set_name(layer.ffn_norm,       tni(LLM_TENSOR_FFN_NORM, i));
-
-        ggml_set_name(layer.ffn_gate,       tni(LLM_TENSOR_FFN_GATE, i));
-        ggml_set_name(layer.ffn_down,       tni(LLM_TENSOR_FFN_DOWN, i));
-        ggml_set_name(layer.ffn_up,         tni(LLM_TENSOR_FFN_UP, i));
-    }
-
-    set_param_model(model);
-
-    // allocate data
-    model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
-}
-
-static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
-    const auto & hparams = model->hparams;
-
-    const uint32_t n_layer = hparams.n_layer;
-
-    struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
-
-    randomize_tensor_normal(model->tok_embeddings, rnd);
-    randomize_tensor_normal(model->norm,           rnd);
-    randomize_tensor_normal(model->output,         rnd);
-
-    for (uint32_t i = 0; i < n_layer; ++i) {
-        auto & layer = model->layers[i];
-        randomize_tensor_normal(layer.attention_norm, rnd);
-
-        randomize_tensor_normal(layer.wq, rnd);
-        randomize_tensor_normal(layer.wk, rnd);
-        randomize_tensor_normal(layer.wv, rnd);
-        randomize_tensor_normal(layer.wo, rnd);
-
-        randomize_tensor_normal(layer.ffn_norm, rnd);
-
-        randomize_tensor_normal(layer.ffn_gate, rnd);
-        randomize_tensor_normal(layer.ffn_down, rnd);
-        randomize_tensor_normal(layer.ffn_up,   rnd);
-    }
-
-    free_random_normal_distribution(rnd);
-}
-
-static struct ggml_tensor * llama_build_train_graphs(
-        struct my_llama_model * model,
-        ggml_gallocr_t          alloc,
-        struct ggml_context   * ctx,
-        struct ggml_cgraph    * gf,
-        struct ggml_cgraph    * gb,
-        struct ggml_cgraph    * gb_tmp,
-        struct ggml_tensor  * * logits,
-        struct ggml_tensor    * tokens_input,
-        struct ggml_tensor    * targets,
-        const  int              n_tokens,
-        const  int              n_batch,
-        const  bool             enable_flash_attn,
-        const  bool             enable_checkpointing,
-        const  bool             measure_only) {
-
-    ggml_set_scratch(ctx, { 0, 0, nullptr, });
-    const int n_past = 0;
-    const int N = n_tokens;
-    const auto & hparams = model->hparams;
-    const int n_ctx      = hparams.n_ctx;
-    const int n_vocab    = hparams.n_vocab;
-    const int n_embd     = hparams.n_embd;
-    const int n_layer    = hparams.n_layer;
-    const int n_head     = hparams.n_head;
-    const int n_rot      = hparams.n_rot;
-    const int n_ff       = hparams.n_ff;
-    const float f_norm_rms_eps  = hparams.f_norm_rms_eps;
-    const float rope_freq_base  = hparams.rope_freq_base;
-    const float rope_freq_scale = hparams.rope_freq_scale;
-
-    auto set_name = [](struct ggml_tensor * t, const char * n) {
-        ggml_set_name(t, n);
-        if (t->grad) {
-            ggml_format_name(t->grad, "%s->grad", n);
-        }
-    };
-
-    // KQ_pos - contains the positions
-    struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
-    ggml_set_input(KQ_pos);
-
-    // rope has so much parameters that we make a custom function for it
-    auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
-                (struct ggml_tensor * t) -> struct ggml_tensor * {
-        // not capturing these, to silcence warnings
-        const int rope_mode = 0;
-
-        return ggml_rope_ext(
-            ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
-        );
-    };
-
-    set_name(tokens_input, "tokens_input");
-    set_name(targets,      "targets");
-
-    GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
-    struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch);  set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
-    struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
-
-    struct ggml_tensor * cur = t01;
-
-    std::vector<struct ggml_tensor *> checkpoints;
-    checkpoints.push_back(tokens_input);
-    checkpoints.push_back(targets);
-    checkpoints.push_back(t00);
-    checkpoints.push_back(t01);
-
-    const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
-
-    for (int il = 0; il < n_layer; ++il) {
-        struct my_llama_layer & layer = model->layers[il];
-        struct ggml_tensor * t02 = ggml_rms_norm     (ctx, cur, f_norm_rms_eps);                    set_name(t02, "t02");     assert_shape_2d(t02, n_embd, N*n_batch);
-        struct ggml_tensor * t03 = ggml_repeat       (ctx, layer.attention_norm, t02);              set_name(t03, "t03");     assert_shape_2d(t03, n_embd, N*n_batch);
-        struct ggml_tensor * t04 = ggml_mul          (ctx, t03, t02);                               set_name(t04, "t04");     assert_shape_2d(t04, n_embd, N*n_batch);
-        struct ggml_tensor * t05 = ggml_mul_mat      (ctx, layer.wq, t04);                          set_name(t05, "t05");     assert_shape_2d(t05, n_embd, N*n_batch);
-        struct ggml_tensor * t06 = ggml_reshape_4d   (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06");     assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
-        struct ggml_tensor * t07 = rope              (t06);                                         set_name(t07, "t07");     assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
-        struct ggml_tensor * t08 = ggml_mul_mat      (ctx, layer.wk, t04);                          set_name(t08, "t08");     assert_shape_2d(t08, n_embd, N*n_batch);
-        struct ggml_tensor * t09 = ggml_reshape_4d   (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09");     assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
-        struct ggml_tensor * t10 = rope              (t09);                                         set_name(t10, "t10");     assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
-        struct ggml_tensor * t11 = ggml_mul_mat      (ctx, t04, layer.wv);                          set_name(t11, "t11");     assert_shape_2d(t11, N*n_batch, n_embd);
-        struct ggml_tensor * t12 = ggml_reshape_4d   (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12");     assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
-        struct ggml_tensor * t13 = ggml_permute      (ctx, t07, 0, 2, 1, 3);                        set_name(t13, "t13");     assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
-        struct ggml_tensor * t14 = ggml_permute      (ctx, t10, 0, 2, 1, 3);                        set_name(t14, "t14");     assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
-        struct ggml_tensor * t15 = ggml_permute      (ctx, t12, 0, 3, 1, 2);                        set_name(t15, "t15");     assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
-        struct ggml_tensor * t16;
-        if (enable_flash_attn) {
-            GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
-            //t16 = ggml_flash_attn(ctx, t13, t14, t15, true);                                        set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
-        } else {
-            struct ggml_tensor * t16_0 = ggml_mul_mat              (ctx, t14, t13);                 set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
-            struct ggml_tensor * t16_1 = ggml_scale_inplace        (ctx, t16_0, kv_scale);          set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
-            struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past);            set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
-            struct ggml_tensor * t16_3 = ggml_soft_max_inplace     (ctx, t16_2);                    set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
-            t16 = ggml_mul_mat(ctx, t15, t16_3);                                                    set_name(t16, "t16");     assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
-        }
-        struct ggml_tensor * t17 = ggml_permute      (ctx, t16, 0, 2, 1, 3);                        set_name(t17, "t17");     assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
-        struct ggml_tensor * t18 = ggml_cont         (ctx, t17);                                    set_name(t18, "t18");     assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
-        struct ggml_tensor * t19 = ggml_reshape_2d   (ctx, t18, n_embd, N*n_batch);                 set_name(t19, "t19");     assert_shape_2d(t19, n_embd, N*n_batch);
-        struct ggml_tensor * t20 = ggml_mul_mat      (ctx, layer.wo, t19);                          set_name(t20, "t20");     assert_shape_2d(t20, n_embd, N*n_batch);
-        struct ggml_tensor * t21 = ggml_add          (ctx, t20, cur);                               set_name(t21, "t21");     assert_shape_2d(t21, n_embd, N*n_batch);
-        struct ggml_tensor * t22 = ggml_rms_norm     (ctx, t21, f_norm_rms_eps);                    set_name(t22, "t22");     assert_shape_2d(t22, n_embd, N*n_batch);
-        struct ggml_tensor * t23 = ggml_repeat       (ctx, layer.ffn_norm, t22);                    set_name(t23, "t23");     assert_shape_2d(t23, n_embd, N*n_batch);
-        struct ggml_tensor * t24 = ggml_mul          (ctx, t23, t22);                               set_name(t24, "t24");     assert_shape_2d(t24, n_embd, N*n_batch);
-        struct ggml_tensor * t25 = ggml_mul_mat      (ctx, layer.ffn_up, t24);                      set_name(t25, "t25");     assert_shape_2d(t25, n_ff, N*n_batch);
-        struct ggml_tensor * t26 = ggml_mul_mat      (ctx, layer.ffn_gate, t24);                    set_name(t26, "t26");     assert_shape_2d(t26, n_ff, N*n_batch);
-        struct ggml_tensor * t27 = ggml_silu         (ctx, t26);                                    set_name(t27, "t27");     assert_shape_2d(t27, n_ff, N*n_batch);
-        struct ggml_tensor * t28 = ggml_mul          (ctx, t27, t25);                               set_name(t28, "t28");     assert_shape_2d(t28, n_ff, N*n_batch);
-        struct ggml_tensor * t29 = ggml_mul_mat      (ctx, layer.ffn_down, t28);                    set_name(t29, "t29");     assert_shape_2d(t29, n_embd, N*n_batch);
-        struct ggml_tensor * t30 = ggml_add          (ctx, t29, t21);                               set_name(t30, "t30");     assert_shape_2d(t30, n_embd, N*n_batch);
-        cur = t30;
-        checkpoints.push_back(cur);
-    }
-    struct ggml_tensor * t31   = ggml_rms_norm          (ctx, cur, f_norm_rms_eps);                 set_name(t31, "t31");     assert_shape_2d(t31, n_embd, N*n_batch);
-    struct ggml_tensor * t32   = ggml_repeat            (ctx, model->norm, t31);                    set_name(t32, "t32");     assert_shape_2d(t32, n_embd, N*n_batch);
-    struct ggml_tensor * t33   = ggml_mul               (ctx, t32, t31);                            set_name(t33, "t33");     assert_shape_2d(t33, n_embd, N*n_batch);
-    struct ggml_tensor * t34   = ggml_mul_mat           (ctx, model->output, t33);                  set_name(t34, "t34");     assert_shape_2d(t34, n_vocab, N*n_batch);
-    struct ggml_tensor * t35   = ggml_reshape_3d        (ctx, t34, n_vocab, N, n_batch);            set_name(t35, "t35");     assert_shape_3d(t35, n_vocab, N, n_batch);
-    struct ggml_tensor * t36   = ggml_cross_entropy_loss(ctx, t35, targets);                        set_name(t36, "t36");     assert_shape_1d(t36, 1);
-
-    checkpoints.push_back(t31);
-    checkpoints.push_back(t32);
-    checkpoints.push_back(t33);
-    checkpoints.push_back(t34);
-    checkpoints.push_back(t35);
-    checkpoints.push_back(t36);
-
-    ggml_build_forward_expand(gf, t36);
-
-    if (enable_checkpointing) {
-        ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
-    } else {
-        ggml_graph_cpy(gf, gb);
-        ggml_build_backward_expand(ctx, gf, gb, true);
-    }
-
-    if (alloc) {
-        // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
-        int n_leafs_before = gb->n_leafs;
-        int n_nodes_before = gb->n_nodes;
-        // output tensors
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
-        // input gradient
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
-        // KQ_pos
-        ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
-        GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
-        ggml_set_input(t36->grad);
-
-        // allocating checkpoints in one block to reduce memory fragmentation
-        // note: they will be freed in reverse order
-        for (int i = 0; i < (int) checkpoints.size(); ++i) {
-            if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
-                ggml_set_input(checkpoints[i]);
-            }
-        }
-
-        //int n_leafs_after = gb->n_leafs;
-        //int n_nodes_after = gb->n_nodes;
-        if (measure_only) {
-            // FIXME: will still allocate
-            ggml_gallocr_reserve(alloc, gb);
-        } else {
-            ggml_gallocr_alloc_graph(alloc, gb);
-
-            if (!measure_only) {
-                int * data = (int *) KQ_pos->data;
-                for (int i = 0; i < N; ++i) {
-                    data[i] = n_past + i;
-                }
-            }
-        }
-
-        // remove the additional nodes and leafs
-        for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
-            gb->leafs[i] = NULL;
-        }
-        for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
-            gb->nodes[i] = NULL;
-        }
-        gb->n_leafs = n_leafs_before;
-        gb->n_nodes = n_nodes_before;
-    }
-
-    *logits = t35;
-    return t36;
-}
-
-#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
-do { \
-    const std::string skey(key); \
-    const int kid = gguf_find_key(ctx, skey.c_str()); \
-    if (kid >= 0) { \
-        enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
-        if (ktype != (type)) { \
-            die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
-        } \
-        (dst) = func(ctx, kid); \
-    } else if (req) { \
-        die_fmt("key not found in model: %s", skey.c_str()); \
-    } \
-} while (0)
-
-static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
-    // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
-    std::string arch;
-
-    std::vector<char> keybuf;
-    keybuf.resize(512);
-    auto kv = [&arch, &keybuf](const char * key) -> const char * {
-        snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
-        return keybuf.data();
-    };
-
-    std::vector<char> tn_buf;
-    tn_buf.resize(GGML_MAX_NAME);
-    auto tn = [&tn_buf](const char * key) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
-        return tn_buf.data();
-    };
-    auto tni = [&tn_buf](const char * key, int bid) -> const char * {
-        snprintf(tn_buf.data(), tn_buf.size(), key, bid);
-        std::string s = tn_buf.data();
-        snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
-        return tn_buf.data();
-    };
-
-    GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
-    GGML_ASSERT(arch == "llama");
-
-    uint32_t ftype_u;
-    GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
-    GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
-
-    // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
-    GGUF_GET_KEY(fctx, model->hparams.n_ctx,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
-
-    GGUF_GET_KEY(fctx, model->hparams.n_embd,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
-    GGUF_GET_KEY(fctx, model->hparams.n_ff,    gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
-    GGUF_GET_KEY(fctx, model->hparams.n_head,  gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
-    GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
-
-    model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
-    GGUF_GET_KEY(fctx, model->hparams.n_rot,   gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
-
-    float rope_freq_scale = 1.0f;
-    GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
-    GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
-    GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
-    if (rope_freq_scale != 1.0f) {
-        model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
-    }
-
-    init_model(model);
-
-    copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
-    copy_tensor_by_name(model->norm,           f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
-    copy_tensor_by_name(model->output,         f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
-
-    for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
-        auto & layer = model->layers[i];
-
-        copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
-        copy_tensor_by_name(layer.wq,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
-        copy_tensor_by_name(layer.wk,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
-        copy_tensor_by_name(layer.wv,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
-        copy_tensor_by_name(layer.wo,             f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
-        copy_tensor_by_name(layer.ffn_norm,       f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
-        copy_tensor_by_name(layer.ffn_gate,       f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
-        copy_tensor_by_name(layer.ffn_down,       f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
-        copy_tensor_by_name(layer.ffn_up,         f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
-    }
-}
-
-static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
-    const char * arch = "llama";
-
-    enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
-
-    std::vector<char> keybuf;
-    keybuf.resize(512);
-    auto kv = [arch, &keybuf](const char * key) -> const char * {
-        snprintf(keybuf.data(), keybuf.size(), key, arch);
-        return keybuf.data();
-    };
-
-    // set arch
-    gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
-    gguf_set_val_str(fctx, LLM_KV_GENERAL_NAME, arch);
-    gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
-
-    // set hparams
-    gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH),              model->hparams.n_ctx                  );
-    gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH),            model->hparams.n_embd                 );
-    gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH),         model->hparams.n_ff                   );
-    gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT),        model->hparams.n_head                 );
-    gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT),                 model->hparams.n_layer                );
-    gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT),        model->hparams.n_rot                  );
-
-    gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps         );
-    gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE),              model->hparams.rope_freq_base         ); // TODO load in llama.cpp
-    gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR),           1.0f / model->hparams.rope_freq_scale );
-
-    // set vocab by copying from vocab_model gguf file
-    {
-        struct gguf_init_params params = {
-            /*.no_alloc = */ false,
-            /*.ctx      = */ NULL,
-        };
-        struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
-
-        const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
-        if (token_idx == -1) {
-            die("cannot find tokenizer vocab in model file");
-        }
-        const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
-
-        const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
-        if (score_idx == -1) {
-            die("cannot find tokenizer scores in model file");
-        }
-
-        const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
-
-        const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
-        if (toktype_idx == -1) {
-            die("cannot find token type list in GGUF file");
-        }
-
-        const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
-
-        std::string tokenizer_name;
-        GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
-
-        gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
-        gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
-        gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
-
-        int32_t special_bos_id = 1;
-        int32_t special_eos_id = 2;
-        int32_t special_unk_id = 0;
-        int32_t special_sep_id = -1;
-        int32_t special_pad_id = -1;
-        if (tokenizer_name == "llama") {
-            // default special tokens
-            special_bos_id = 1;
-            special_eos_id = 2;
-            special_unk_id = 0;
-            special_sep_id = -1;
-            special_pad_id = -1;
-        } else if (tokenizer_name == "gpt2") {
-            // read and copy bpe merges
-            const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
-            if (merges_keyidx == -1) {
-                die("cannot find tokenizer merges in model file");
-            }
-
-            const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
-
-            std::vector<const char*> merges;
-            merges.resize(n_merges);
-            for (int i = 0; i < n_merges; i++) {
-                merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
-            }
-            gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
-
-            // default special tokens
-            special_bos_id = 11;
-            special_eos_id = 11;
-            special_unk_id = -1;
-            special_sep_id = -1;
-            special_pad_id = -1;
-        } else {
-            fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
-            fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
-        }
-
-        std::vector<const char*> tokens;
-        tokens.resize(n_vocab);
-        for (uint32_t i = 0; i < n_vocab; i++) {
-            tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
-        }
-        gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
-
-        GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
-        GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
-        GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
-        GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
-        GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
-
-        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
-        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
-        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
-        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
-        gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
-
-        gguf_free(vctx);
-    }
-
-    // add tensors
-    gguf_add_tensor(fctx, model->tok_embeddings);
-    gguf_add_tensor(fctx, model->norm);
-    gguf_add_tensor(fctx, model->output);
-    for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
-        auto & layer = model->layers[i];
-
-
-        gguf_add_tensor(fctx, layer.attention_norm);
-        gguf_add_tensor(fctx, layer.wq);
-        gguf_add_tensor(fctx, layer.wk);
-        gguf_add_tensor(fctx, layer.wv);
-        gguf_add_tensor(fctx, layer.wo);
-        gguf_add_tensor(fctx, layer.ffn_norm);
-        gguf_add_tensor(fctx, layer.ffn_gate);
-        gguf_add_tensor(fctx, layer.ffn_down);
-        gguf_add_tensor(fctx, layer.ffn_up);
-    }
-}
-
-static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
-    printf("%s: saving to %s\n", __func__, filename);
-    struct gguf_context * fctx = gguf_init_empty();
-
-    save_llama_model_gguf(fctx, fn_vocab_model, model);
-
-    // write file
-    const bool only_meta = false;
-    gguf_write_to_file(fctx, filename, only_meta);
-    gguf_free(fctx);
-}
-
-static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
-    load_llama_model_gguf(fctx, f_ggml_ctx, model);
-    if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
-        std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
-        GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
-        GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
-    } else {
-        printf("%s: loaded llama model as checkpoint\n", __func__);
-    }
-}
-
-static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
-    gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
-    save_llama_model_gguf(fctx, fn_vocab_model, model);
-    save_train_state_gguf(fctx, train);
-}
-
-static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
-    struct ggml_context * f_ggml_ctx;
-    struct gguf_init_params params;
-    params.no_alloc = false;
-    params.ctx = &f_ggml_ctx;
-    struct gguf_context * fctx = gguf_init_from_file(filename, params);
-    if (fctx == NULL) {
-        return false;
-    }
-
-    load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
-
-    gguf_free(fctx);
-    return true;
-}
-
-static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
-    printf("%s: saving to %s\n", __func__, filename);
-    struct gguf_context * fctx = gguf_init_empty();
-
-    save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
-
-    // write file
-    const bool only_meta = false;
-    gguf_write_to_file(fctx, filename, only_meta);
-    gguf_free(fctx);
-}
-
-struct train_params {
-    struct train_params_common common;
-
-    const char * fn_vocab_model;
-    const char * fn_model_out;
-
-    bool only_write_model;
-
-    int n_ctx;
-    int n_embd;
-    int n_head;
-    int n_layer;
-    int n_ff;
-
-    float f_norm_rms_eps;
-    float rope_freq_base;
-    float rope_freq_scale;
-};
-
-static struct train_params get_default_train_params() {
-    struct train_params params;
-    params.common = get_default_train_params_common();
-    params.fn_vocab_model    = "ggml-vic7b-uncensored-q4_0.bin";
-    params.fn_model_out      = "ggml-checkpoint-f32.bin";
-
-    params.only_write_model = false;
-
-    params.n_ctx      =  128;
-    params.n_embd     =  256;
-    params.n_head     =    8;
-    params.n_layer    =   16;
-    params.n_ff       =  768;
-
-    params.f_norm_rms_eps  = 1e-5f;
-    params.rope_freq_base  = 10000.0f;
-    params.rope_freq_scale = 1.0f;
-
-    return params;
-}
-
-static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
-    fprintf(stderr, "usage: %s [options]\n", argv[0]);
-    fprintf(stderr, "\n");
-    fprintf(stderr, "options:\n");
-    fprintf(stderr, "  -h, --help                 show this help message and exit\n");
-
-    fprintf(stderr, "  --vocab-model FNAME        model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
-    fprintf(stderr, "  --model-out FNAME          path to save ggml model (default '%s')\n", params->fn_model_out);
-    fprintf(stderr, "  --only-write-model         only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
-    fprintf(stderr, "  --embd N                   Embedding size used for new models (default %d)\n", params->n_embd);
-    fprintf(stderr, "  --ff N                     Feedforward size used for new models. (default %d)\n", params->n_ff);
-    fprintf(stderr, "  --head N                   Number of heads for new models (default %d)\n", params->n_head);
-    fprintf(stderr, "  --layer N                  Number of layers for new models (default %d)\n", params->n_layer);
-    fprintf(stderr, "  --norm-rms-eps F           RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
-    fprintf(stderr, "  --rope-freq-base F         Frequency base for ROPE (default %f)\n", params->rope_freq_base);
-    fprintf(stderr, "  --rope-freq-scale F        Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
-
-    print_common_train_usage(argc, argv, &params->common);
-}
-
-static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
-    bool invalid_param = false;
-    std::string arg;
-    struct train_params default_params = get_default_train_params();
-    const std::string arg_prefix = "--";
-
-    for (int i = 1; i < argc; i++) {
-        arg = argv[i];
-        if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
-            std::replace(arg.begin(), arg.end(), '_', '-');
-        }
-
-        if (consume_common_train_arg(argc, argv, &i, &params->common, &invalid_param)) {
-            if (invalid_param) {
-                break;
-            } else if (params->common.print_usage) {
-                train_print_usage(argc, argv, &default_params);
-                exit(0);
-            }
-        } else if (arg == "--vocab-model") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->fn_vocab_model = argv[i];
-        } else if (arg == "--model-out") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->fn_model_out = argv[i];
-        } else if (arg == "--only-write-model") {
-            params->only_write_model = true;
-        } else if (arg == "--embd") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_embd = std::stoi(argv[i]);
-        } else if (arg == "--ff") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_ff = std::stoi(argv[i]);
-        } else if (arg == "--head") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_head = std::stoi(argv[i]);
-        } else if (arg == "--layer") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->n_layer = std::stoi(argv[i]);
-        } else if (arg == "--norm-rms-eps") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->f_norm_rms_eps = std::stof(argv[i]);
-        } else if (arg == "--rope-freq-base") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->rope_freq_base = std::stof(argv[i]);
-        } else if (arg == "--rope-freq-scale") {
-            if (++i >= argc) {
-                invalid_param = true;
-                break;
-            }
-            params->rope_freq_scale = std::stof(argv[i]);
-        } else {
-            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
-            train_print_usage(argc, argv, &default_params);
-            exit(1);
-        }
-    }
-    if (invalid_param) {
-        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
-        train_print_usage(argc, argv, &default_params);
-        exit(1);
-    }
-    finish_processing_train_args(&params->common);
-
-    return true;
-}
-
-struct save_train_files_data {
-    const char            * fn_checkpoint_out;
-    const char            * fn_model_out;
-    const char            * fn_vocab_model;
-    const char            * pattern_fn_it;
-    const char            * fn_latest;
-    struct my_llama_model * model;
-};
-
-static void save_train_files(void * vdata, struct train_state * train) {
-    struct save_train_files_data * data   = (struct save_train_files_data *) vdata;
-    int64_t iter = train->opt->iter;
-
-    if (strlen(data->fn_checkpoint_out) > 0) {
-        save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
-        save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1  ).c_str(), data->fn_vocab_model, data->model, train);
-
-    }
-    if (strlen(data->fn_model_out) > 0) {
-        save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
-        save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1  ).c_str(), data->fn_vocab_model, data->model);
-    }
-}
-
-static int64_t get_parameter_count(struct my_llama_model* model) {
-    int64_t nx = 0;
-    nx += ggml_nelements(model->tok_embeddings);
-    nx += ggml_nelements(model->norm);
-    nx += ggml_nelements(model->output);
-
-    for (uint32_t i = 0; i < model->layers.size(); ++i) {
-        auto & layer = model->layers[i];
-        nx += ggml_nelements(layer.attention_norm);
-        nx += ggml_nelements(layer.wq);
-        nx += ggml_nelements(layer.wk);
-        nx += ggml_nelements(layer.wv);
-        nx += ggml_nelements(layer.wo);
-        nx += ggml_nelements(layer.ffn_norm);
-        nx += ggml_nelements(layer.ffn_gate);
-        nx += ggml_nelements(layer.ffn_down);
-        nx += ggml_nelements(layer.ffn_up);
-    }
-    return nx;
-}
-
-int main(int argc, char ** argv) {
-    struct train_params params = get_default_train_params();
-
-    if (!train_params_parse(argc, argv, &params)) {
-        return 1;
-    }
-
-    if (params.common.seed == LLAMA_DEFAULT_SEED) {
-        params.common.seed = time(NULL);
-    }
-    printf("%s: seed: %u\n", __func__, params.common.seed);
-    srand(params.common.seed);
-
-    struct llama_model_params mparams = llama_model_default_params();
-    mparams.vocab_only = true;
-
-    struct llama_context_params cparams = llama_context_default_params();
-
-    struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams);
-    struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams);
-
-    struct my_llama_model model;
-    model.hparams.n_vocab = llama_n_vocab(lmodel);
-    model.hparams.n_ctx   = params.common.n_ctx;
-    model.hparams.n_embd  = params.n_embd;
-    model.hparams.n_head  = params.n_head;
-    model.hparams.n_layer = params.n_layer;
-    model.hparams.n_ff    = params.n_ff;
-    // llama.cpp requires n_rot to be exactly n_embd / n_head
-    model.hparams.n_rot   = model.hparams.n_embd / model.hparams.n_head;
-    model.hparams.f_norm_rms_eps  = params.f_norm_rms_eps;
-    model.hparams.rope_freq_base  = params.rope_freq_base;
-    model.hparams.rope_freq_scale = params.rope_freq_scale;
-
-    struct train_state      * train = init_train_state();
-    struct ggml_opt_context * opt   = train->opt;
-
-    // set opt params from command line
-    opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
-    opt->params.print_forward_graph     = false;
-    opt->params.print_backward_graph    = false;
-    opt->params.graph_size              = LLAMA_TRAIN_MAX_NODES;
-    opt->params.n_threads               = params.common.n_threads;
-    opt->params.past                    = params.common.opt_past;
-    opt->params.delta                   = params.common.opt_delta;
-    opt->params.max_no_improvement      = params.common.opt_max_no_improvement;
-    opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
-    opt->params.adam.n_iter             = params.common.adam_n_iter;
-    opt->params.adam.sched              = 1.0f;
-    opt->params.adam.alpha              = params.common.adam_alpha;
-    opt->params.adam.decay              = params.common.adam_decay;
-    opt->params.adam.decay_min_ndim     = params.common.adam_decay_min_ndim;
-    opt->params.adam.beta1              = params.common.adam_beta1;
-    opt->params.adam.beta2              = params.common.adam_beta2;
-    opt->params.adam.gclip              = params.common.adam_gclip;
-    opt->params.adam.eps_f              = params.common.adam_eps_f;
-
-    printf("%s: init model\n", __func__);
-    bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
-    if (existed) {
-        // overwrite last n_ctx with user provided n_ctx
-        if (params.common.custom_n_ctx) {
-            model.hparams.n_ctx = params.common.n_ctx;
-        }
-
-        const bool opt_past_changed = opt->params.past != params.common.opt_past;
-
-        if (opt_past_changed) {
-            die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
-            // need to discard previous optimizer past function value statistics and opt_init with new shapes
-            // TODO
-        }
-    } else {
-        init_model(&model);
-        randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
-        if (!params.only_write_model) {
-            ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
-        }
-    }
-    opt->iter = train->train_its;
-
-    print_params(&model.hparams);
-    printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
-    printf("%s: seen train_samples     %llu\n", __func__, (long long unsigned) train->train_samples);
-    printf("%s: seen train_tokens      %llu\n", __func__, (long long unsigned) train->train_tokens);
-    printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
-    printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
-
-    if (params.only_write_model) {
-        save_train_files_data save_data;
-        save_data.fn_checkpoint_out = "";
-        save_data.fn_model_out      = params.fn_model_out;
-        save_data.fn_vocab_model    = params.fn_vocab_model;
-        save_data.pattern_fn_it     = params.common.pattern_fn_it;
-        save_data.fn_latest         = params.common.fn_latest;
-        save_data.model             = &model;
-
-        save_train_files(&save_data, train);
-
-        free_train_state(train);
-        ggml_free(model.ctx);
-        llama_free(lctx);
-        llama_free_model(lmodel);
-        return 0;
-    }
-
-    printf("%s: opt_size  = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
-    printf("%s: opt iter %d\n", __func__, opt->iter);
-
-    int n_tokens = model.hparams.n_ctx;
-    int n_vocab  = model.hparams.n_vocab;
-    int n_batch  = params.common.n_batch;
-
-    // context for input tensors without their data
-    struct ggml_init_params ctx_input_params = {
-        ggml_tensor_overhead() * 2, // mem_size
-        NULL,                       // mem_buffer
-        true,                       // no_alloc
-    };
-    struct ggml_context * ctx_input = ggml_init(ctx_input_params);
-
-    // the input tensors
-    struct ggml_tensor * tokens_input  = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
-    struct ggml_tensor * target_probs  = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab,  n_tokens, n_batch);
-
-    // measure required memory for input tensors
-    // allocate input tensors
-    ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
-    size_t max_input_size = ggml_backend_buffer_get_size(input_data);
-    printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
-
-    // context for compute tensors without their data
-    const size_t estimated_compute_size_wo_data = (
-            2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
-            (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
-    );
-    struct ggml_init_params ctx_compute_params = {
-        estimated_compute_size_wo_data, // mem_size
-        NULL,                           // mem_buffer
-        true,                           // no_alloc
-    };
-    struct ggml_context * ctx_compute = NULL;
-
-    struct ggml_tensor * loss   = NULL;
-    struct ggml_tensor * logits = NULL;
-
-    struct ggml_cgraph * gf     = NULL;
-    struct ggml_cgraph * gb     = NULL;
-    struct ggml_cgraph * gb_tmp = NULL;
-
-    // measure required memory for compute tensors
-    size_t best_compute_size = SIZE_MAX;
-    enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
-    // find best evaluation order
-    for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
-        ctx_compute = ggml_init(ctx_compute_params);
-        ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
-        gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-        gf->order = (enum ggml_cgraph_eval_order) order;
-        gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-        gb_tmp = params.common.use_checkpointing
-            ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
-            : NULL;
-        loss = llama_build_train_graphs(
-            &model, alloc, ctx_compute,
-            gf, gb, gb_tmp,
-            &logits, tokens_input, target_probs,
-            n_tokens, n_batch,
-            params.common.use_flash,
-            params.common.use_checkpointing,
-            true
-        );
-        size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
-        if (max_compute_size < best_compute_size) {
-            best_compute_size = max_compute_size;
-            best_order = gf->order;
-        }
-        ggml_free(ctx_compute);
-    }
-    size_t max_compute_size = best_compute_size;
-    printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
-    printf("%s: evaluation order = %s\n", __func__,
-        (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
-        (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
-        "invalid");
-
-    // allocate compute tensors
-    ctx_compute = ggml_init(ctx_compute_params);
-    ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
-    gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-    gf->order = best_order;
-    gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
-    gb_tmp = params.common.use_checkpointing
-        ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
-        : NULL;
-    loss = llama_build_train_graphs(
-        &model, alloc, ctx_compute,
-        gf, gb, gb_tmp,
-        &logits, tokens_input, target_probs,
-        n_tokens, n_batch,
-        params.common.use_flash,
-        params.common.use_checkpointing,
-        false
-    );
-
-    std::vector<llama_token> train_tokens;
-    std::vector<size_t> train_samples_begin;
-    std::vector<size_t> train_samples_size;
-    printf("%s: tokenize training data\n", __func__);
-    tokenize_file(lctx,
-            params.common.fn_train_data,
-            params.common.sample_start,
-            params.common.include_sample_start,
-            params.common.overlapping_samples,
-            n_tokens,
-            train_tokens,
-            train_samples_begin,
-            train_samples_size);
-    GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
-
-    printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
-
-    size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
-    const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
-    if (changed_train_data) {
-        printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
-    }
-    if (params.common.force_reshuffle) {
-        printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
-    }
-    if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
-        train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
-        train->shuffle_sample_count = train_samples_size.size();
-        train->shuffle_next_sample = 0;
-        train->shuffle_samples_hash = shuffle_samples_hash;
-    }
-    std::vector<size_t> train_shuffled_samples_offs;
-    std::vector<size_t> train_shuffled_samples_begin;
-    std::vector<size_t> train_shuffled_samples_size;
-    train_shuffled_samples_offs.resize(train_samples_begin.size());
-    train_shuffled_samples_begin.resize(train_samples_begin.size());
-    train_shuffled_samples_size.resize(train_samples_size.size());
-    train->shuffle_rng_state_next = shuffle_samples(
-        train->shuffle_rng_state_current,
-        train_shuffled_samples_offs.data(),
-        train_shuffled_samples_begin.data(),
-        train_shuffled_samples_size.data(),
-        train_samples_begin.data(),
-        train_samples_size.data(),
-        train_samples_size.size());
-    printf("%s: begin training\n", __func__);
-
-    save_train_files_data save_data;
-    save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
-    save_data.fn_model_out      = params.fn_model_out;
-    save_data.fn_vocab_model    = params.fn_vocab_model;
-    save_data.pattern_fn_it     = params.common.pattern_fn_it;
-    save_data.fn_latest         = params.common.fn_latest;
-    save_data.model             = &model;
-
-    struct train_opt_callback_data opt_cb_data;
-    opt_cb_data.params                 = &params.common;
-    opt_cb_data.train                  = train;
-    opt_cb_data.save_cb                = &save_train_files;
-    opt_cb_data.save_data              = &save_data;
-    opt_cb_data.lctx                   = lctx;
-    opt_cb_data.last_save_iter         = opt->iter;
-    opt_cb_data.tokens_data            = train_tokens.data();
-    opt_cb_data.tokens_size            = train_tokens.size();
-    opt_cb_data.samples_begin          = train_samples_begin.data();
-    opt_cb_data.samples_size           = train_samples_size.data();
-    opt_cb_data.shuffled_samples_offs  = train_shuffled_samples_offs.data();
-    opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
-    opt_cb_data.shuffled_samples_size  = train_shuffled_samples_size.data();
-    opt_cb_data.samples_count          = train_samples_size.size();
-    opt_cb_data.tokens_input           = tokens_input;
-    opt_cb_data.target_probs           = target_probs;
-    opt_cb_data.first_iter             = opt->iter;
-    opt_cb_data.first_epoch            = train->train_epochs;
-    opt_cb_data.iter_at_last_epoch     = -1;
-    opt_cb_data.last_time              = ggml_time_ms();
-    opt_cb_data.millis_per_iter        = 0.0;
-
-    // measure required memory for work buffer
-    size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
-    printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
-
-    // context for work buffer
-    struct ggml_init_params ctx_work_params = {
-        max_work_size, // mem_size
-        NULL,          // mem_buffer
-        false,         // no_alloc
-    };
-    struct ggml_context * ctx_work = ggml_init(ctx_work_params);
-
-    int64_t t0 = ggml_time_ms();
-
-    ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
-
-    ggml_free(ctx_work);
-    ggml_free(ctx_compute);
-    ggml_free(ctx_input);
-
-    int64_t t1 = ggml_time_ms();
-    printf("%s: total training time: ", __func__);
-    print_duration((double) (t1 - t0));
-    printf("\n");
-
-    int new_iters = opt->iter - opt_cb_data.last_save_iter;
-    if (new_iters > 0) {
-        train->train_its     += new_iters;
-        train->train_tokens  += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
-
-        save_train_files(&save_data, train);
-        opt_cb_data.last_save_iter = opt->iter;
-    }
-
-    ggml_free(opt->ctx);
-    free_train_state(train);
-    ggml_free(model.ctx);
-    llama_free(lctx);
-    llama_free_model(lmodel);
-    return 0;
-}