"llama-embedding"
"llama-server"
"llama-quantize"
- "llama-train-text-from-scratch"
];
mkApp = name: {
type = "app";
./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./llama-cli "$@"
-elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
- ./llama-finetune "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml"
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
- echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
- echo " See documentation for finetune for command-line parameters"
echo " --all-in-one (-a): Execute --convert & --quantize"
echo " ex: \"/models/\" 7B"
echo " --server (-s): Run a model on the server"
llama-embedding \
llama-eval-callback \
llama-export-lora \
- llama-finetune \
llama-gbnf-validator \
llama-gguf \
llama-gguf-hash \
llama-simple \
llama-speculative \
llama-tokenize \
- llama-train-text-from-scratch \
llama-vdot \
llama-cvector-generator \
tests/test-c.o
tests/test-tokenizer-1-spm
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
-LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
+LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
- retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm
+ retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
# We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
-LEGACY_TARGETS_BUILD = main quantize perplexity embedding server finetune
+LEGACY_TARGETS_BUILD = main quantize perplexity embedding server
# Deprecation aliases
ifdef LLAMA_CUBLAS
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-llama-train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp \
- $(OBJ_ALL)
- $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
- $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-
llama-convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp \
$(OBJ_GGML) $(OBJ_LLAMA)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-llama-finetune: examples/finetune/finetune.cpp \
- $(OBJ_ALL)
- $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
- $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
-
llama-export-lora: examples/export-lora/export-lora.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
# Deprecated binaries that we want to keep around long enough for people to migrate to the new filenames, then these can be removed.
#
# Mark legacy binary targets as .PHONY so that they are always checked.
-.PHONY: main quantize perplexity embedding server finetune
+.PHONY: main quantize perplexity embedding server
# NOTE: We currently will always build the deprecation-warning `main` and `server` binaries to help users migrate.
# Eventually we will want to remove these target from building all the time.
@echo " Remove the 'embedding' binary to remove this warning."
@echo "#########"
endif
-
-finetune: examples/deprecation-warning/deprecation-warning.cpp
-ifneq (,$(wildcard finetune))
- $(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
- $(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
- @echo "#########"
- @echo "WARNING: The 'finetune' binary is deprecated. Please use 'llama-finetune' instead."
- @echo " Remove the 'finetune' binary to remove this warning."
- @echo "#########"
-endif
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(export-lora)
- add_subdirectory(finetune)
add_subdirectory(gbnf-validator)
add_subdirectory(gguf-hash)
add_subdirectory(gguf-split)
add_subdirectory(simple)
add_subdirectory(speculative)
add_subdirectory(tokenize)
- add_subdirectory(train-text-from-scratch)
endif()
| server | llama-server |
| llama-bench | llama-bench |
| embedding | llama-embedding |
-| finetune | llama-finetune |
| quantize | llama-quantize |
| tokenize | llama-tokenize |
| export-lora | llama-export-lora |
| save-load-state | llama-save-load-state |
| simple | llama-simple |
| speculative | llama-speculative |
-| train-text-from-scratch | llama-train-text-from-scratch |
| vdot | llama-vdot |
| tests/test-c.o | tests/test-c.o |
./bin/llama-export-lora \
-m open-llama-3b-v2-q8_0.gguf \
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
- --lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin
+ --lora lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.gguf
```
-Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters.
+Multiple LORA adapters can be applied by passing multiple `--lora FNAME` or `--lora-scaled FNAME S` command line parameters:
+
+```bash
+./bin/llama-export-lora \
+ -m your_base_model.gguf \
+ -o your_merged_model.gguf \
+ --lora-scaled lora_task_A.gguf 0.5 \
+ --lora-scaled lora_task_B.gguf 0.5
+```
+++ /dev/null
-set(TARGET llama-finetune)
-add_executable(${TARGET} finetune.cpp)
-install(TARGETS ${TARGET} RUNTIME)
-target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
-target_compile_features(${TARGET} PRIVATE cxx_std_11)
+++ /dev/null
-# finetune
-
-Basic usage instructions:
-
-```bash
-# get training data
-wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
-
-# finetune LORA adapter
-./bin/llama-finetune \
- --model-base open-llama-3b-v2-q8_0.gguf \
- --checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
- --checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
- --lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
- --train-data "shakespeare.txt" \
- --save-every 10 \
- --threads 6 --adam-iter 30 --batch 4 --ctx 64 \
- --use-checkpointing
-
-# predict
-./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
-```
-
-**Only llama based models are supported!** The output files will be saved every N iterations (config with `--save-every N`).
-The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
-So in above example after 10 iterations these files will be written:
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
-- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
-- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
-
-After 10 more iterations:
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
-- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
-- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
-- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
-
-Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
-
-llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
-These LORA adapters can then be used by `llama-cli` together with the base model, like in the 'predict' example command above.
-
-In `llama-cli` you can also load multiple LORA adapters, which will then be mixed together.
-
-For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
-
-```bash
-./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
- --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
- --lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
-```
-
-You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
-
-For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
-
-```bash
-./bin/llama-cli -m open-llama-3b-v2-q8_0.gguf \
- --lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
- --lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
- --lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
-```
-
-The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values too big will sometimes result in worse output. Play around to find good values.
-
-Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
-If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
-
-The default LORA rank can be specified with `--lora-r N`.
-The LORA rank can be configured for each model tensor type separately with these command line options:
-
-```bash
- --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
- --rank-att-norm N LORA rank for attention norm tensor (default 1)
- --rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
- --rank-out-norm N LORA rank for output norm tensor (default 1)
- --rank-tok-embd N LORA rank for token embeddings tensor (default 4)
- --rank-out N LORA rank for output tensor (default 4)
- --rank-wq N LORA rank for wq tensor (default 4)
- --rank-wk N LORA rank for wk tensor (default 4)
- --rank-wv N LORA rank for wv tensor (default 4)
- --rank-wo N LORA rank for wo tensor (default 4)
- --rank-ffn_gate N LORA rank for ffn_gate tensor (default 4)
- --rank-ffn_down N LORA rank for ffn_down tensor (default 4)
- --rank-ffn_up N LORA rank for ffn_up tensor (default 4)
-```
-
-The LORA rank of 'norm' tensors should always be 1.
-
-To see all available options use `llama-finetune --help`.
+++ /dev/null
-#!/usr/bin/env python3
-# finetune checkpoint --> gguf conversion
-
-import argparse
-import gguf
-import struct
-import numpy as np
-from pathlib import Path
-
-# gguf constants
-LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
-LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
-LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
-LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
-LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
-LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
-LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
-LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
-LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
-LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
-LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
-LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
-LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
-LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
-
-LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
-
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
-LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
-
-LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
-LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
-LLM_KV_TRAINING_TYPE = "training.type"
-LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
-LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
-LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
-LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
-
-LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"
-LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
-LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"
-LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"
-LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"
-LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"
-LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"
-LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"
-LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"
-LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"
-LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"
-LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"
-
-class Tensor:
- def __init__(self, dtype='f', ne=None):
- if ne is None:
- ne = []
- self.dtype = dtype
- self.ne = ne
- self.nbytes = 0
- if self.dtype == 'f':
- if len(self.ne) == 0:
- self.nbytes = 0
- else:
- self.nbytes = int(np.prod(self.ne)) * 4
- else:
- raise ValueError(f"Unhandled data type '{self.dtype}'")
-
- def load(self, data, offset):
- nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- assert(nd == len(self.ne))
- ne = []
- for d in range(nd):
- n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- ne.append(n)
-
- if tuple(ne) != tuple(self.ne):
- raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
-
- if self.dtype == 'f':
- assert(dtype == 0)
- else:
- raise ValueError(f"Unhandled data type '{self.dtype}'")
-
- self.name = bytes(data[offset:offset+namelen]); offset += namelen
- # 32-byte alignment
- offset += (0 - offset) & 31
- self.data = data[offset:offset+self.nbytes]
- offset += self.nbytes
- return offset
-
- def max_storage_size(self):
- result = 0
- result += 4 # nd
- result += 4 # namelen
- result += 4 # dtype
- result += len(self.ne)*8 # ne
- result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
- result += 31 # 32-byte alignment
- result += self.nbytes
- return result
-
- def save_gguf(self, gguf_writer, name):
- gguf_writer.add_tensor(
- name=name,
- tensor=self.data,
- raw_shape=np.array(list(reversed(self.ne))),
- raw_dtype=gguf.GGMLQuantizationType.F32)
-
-class OptimizationContext:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
- offset += 4
-
- if self.version != 1:
- raise ValueError('Invalid version of optimization context in checkpoint file')
-
- self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
- self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
-
- self.adam_m = Tensor('f', [self.nx])
- self.adam_v = Tensor('f', [self.nx])
- self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
- self.lbfgs_x = Tensor('f', [self.nx])
- self.lbfgs_xp = Tensor('f', [self.nx])
- self.lbfgs_g = Tensor('f', [self.nx])
- self.lbfgs_gp = Tensor('f', [self.nx])
- self.lbfgs_d = Tensor('f', [self.nx])
- self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
- self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
- self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
-
- # forgot to save type in version 1:
- # guess self.type from number of remaining bytes
- size_type_0 = 12 + sum([t.max_storage_size() for t in
- [self.adam_m, self.adam_v]
- +([self.adam_pf] if (self.past > 0) else [])])
- size_type_1 = 24 + sum([t.max_storage_size() for t in
- [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
- self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
- self.lbfgs_lmal, self.lbfgs_lmys,
- self.lbfgs_lms, self.lbfgs_lmy]
- +([self.lbfgs_pf] if (self.past > 0) else [])])
- # due to alignment padding the size might not by exact
- # but the difference in size for both types is significant,
- # so we can just use whichever is closest
- remaining = len(data) - offset
- if abs(remaining - size_type_0) < abs(remaining - size_type_1):
- self.type = 0
- else:
- self.type = 1
-
- if self.type == 0:
- offset = self.adam_m.load(data, offset)
- offset = self.adam_v.load(data, offset)
- offset = self.adam_pf.load(data,offset)
-
- self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- elif self.type == 1:
- offset = self.lbfgs_x.load(data, offset)
- offset = self.lbfgs_xp.load(data, offset)
- offset = self.lbfgs_g.load(data, offset)
- offset = self.lbfgs_gp.load(data, offset)
- offset = self.lbfgs_d.load(data, offset)
- offset = self.lbfgs_pf.load(data, offset)
- offset = self.lbfgs_lmal.load(data, offset)
- offset = self.lbfgs_lmys.load(data, offset)
- offset = self.lbfgs_lms.load(data, offset)
- offset = self.lbfgs_lmy.load(data, offset)
-
- self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- else:
- raise ValueError(f"Invalid optimizer type '{self.type}'")
-
- return offset
-
- def save_gguf(self, gguf_writer):
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
- gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
- gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
-
- if self.type == 0:
- gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
-
- self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
- self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
- if self.past > 0:
- self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
-
- elif self.type == 1:
- gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
-
- self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
- self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
- self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
- self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
- self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
- if self.past > 0:
- self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
- self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
- self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
- self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
- self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
- else:
- raise ValueError('Unknown optimizer type')
-
-class LoraParams:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- return offset
-
- def save_gguf(self, gguf_writer):
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2)
- gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3)
-
-class ModelParams:
- def __init__(self, n_ff = None):
- self.n_ff = n_ff
-
- def load(self, data, offset):
- self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- return offset
-
- def get_n_ff(self):
- if self.n_ff is None:
- # struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
- return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
- else:
- return self.n_ff
-
- def save_gguf(self, gguf_writer):
- # self.n_vocab not saved
- gguf_writer.add_embedding_length(self.n_embd)
- gguf_writer.add_head_count(self.n_head)
- gguf_writer.add_block_count(self.n_layer)
- gguf_writer.add_rope_dimension_count(self.n_rot)
- gguf_writer.add_feed_forward_length(self.get_n_ff())
-
-def tensor_name(key, bid=None, suffix=".weight"):
- return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
-
-class Layer:
- def __init__(self, params, lora_params, bid):
- self.bid = bid
- self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
- self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
- self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
- self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
- self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
- self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
- self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
- self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
- self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
- self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
- self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
- self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
- self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
- self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
- self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
- self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
- self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
- self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
-
- def load(self, data, offset):
- offset = self.att_norm_a.load(data, offset)
- offset = self.att_norm_b.load(data, offset)
- offset = self.wq_a.load(data, offset)
- offset = self.wq_b.load(data, offset)
- offset = self.wk_a.load(data, offset)
- offset = self.wk_b.load(data, offset)
- offset = self.wv_a.load(data, offset)
- offset = self.wv_b.load(data, offset)
- offset = self.wo_a.load(data, offset)
- offset = self.wo_b.load(data, offset)
- offset = self.ffn_norm_a.load(data, offset)
- offset = self.ffn_norm_b.load(data, offset)
- offset = self.w1_a.load(data, offset)
- offset = self.w1_b.load(data, offset)
- offset = self.w2_a.load(data, offset)
- offset = self.w2_b.load(data, offset)
- offset = self.w3_a.load(data, offset)
- offset = self.w3_b.load(data, offset)
- return offset
-
- def save_gguf(self, gguf_writer):
- self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
- self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
- self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a"))
- self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b"))
- self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a"))
- self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b"))
- self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a"))
- self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b"))
- self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a"))
- self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b"))
- self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a"))
- self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b"))
- self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a"))
- self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b"))
- self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a"))
- self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b"))
- self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a"))
- self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b"))
-
-class LoraModel:
- def __init__(self, n_ff = None):
- self.params = ModelParams(n_ff = n_ff)
- self.lora_params = LoraParams()
- self.layers = []
-
- def load(self, data, offset):
- offset = self.params.load(data, offset)
- offset = self.lora_params.load(data, offset)
-
- self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
- self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
- self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
- self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1])
- self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
- self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
-
- offset = self.tok_embd_a.load(data, offset)
- offset = self.tok_embd_b.load(data, offset)
- offset = self.norm_a.load(data, offset)
- offset = self.norm_b.load(data, offset)
- offset = self.output_a.load(data, offset)
- offset = self.output_b.load(data, offset)
-
- self.layers.clear()
- for bid in range(self.params.n_layer):
- layer = Layer(self.params, self.lora_params, bid)
- offset = layer.load(data, offset)
- self.layers.append(layer)
-
- return offset
-
- def save_gguf(self, gguf_writer):
- self.params.save_gguf(gguf_writer)
- self.lora_params.save_gguf(gguf_writer)
-
- self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a"))
- self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b"))
- self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
- self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
- self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a"))
- self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b"))
-
- for layer in self.layers:
- layer.save_gguf(gguf_writer)
-
-class LoraCheckpoint:
- def __init__(self, n_ff = None):
- self.model = LoraModel(n_ff = n_ff)
- self.opt_ctx = OptimizationContext()
-
- def load(self, data, offset):
- magic = bytes(reversed(data[offset:offset + 4])); offset += 4
- if magic != b'ggcl':
- raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
-
- self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- if self.version != 0:
- raise ValueError('Invalid version of checkpoint file')
-
- self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- offset = self.model.load(data, offset)
- offset = self.opt_ctx.load(data, offset)
-
- return offset
-
- def save_gguf(self, gguf_writer):
- gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
- gguf_writer.add_layer_norm_rms_eps(1e-5)
- gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
- gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
- gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
- gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
- gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
- self.model.save_gguf(gguf_writer)
- self.opt_ctx.save_gguf(gguf_writer)
-
-def handle_args():
- parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
- parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
- parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
- parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
- return parser.parse_args()
-
-def main():
- cfg = handle_args()
- print(cfg)
- data = np.memmap(cfg.input, mode = 'r')
- chk = LoraCheckpoint(n_ff = cfg.ff)
- offset = 0
- offset = chk.load(data, offset)
- # we should have read all available data
- assert(offset == len(data))
-
- gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
- chk.save_gguf(gguf_writer)
- print(" gguf: write header")
- gguf_writer.write_header_to_file()
- print(" gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- print(" gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
-
-if __name__ == '__main__':
- main()
+++ /dev/null
-#include "ggml.h"
-#include "ggml-alloc.h"
-#include "ggml-backend.h"
-#include "llama.h"
-#include "common.h"
-#include "train.h"
-#include <vector>
-#include <cstring>
-#include <ctime>
-#include <algorithm>
-#include <string>
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-struct my_llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512;
- uint32_t n_embd = 4096;
- uint32_t n_ff = 11008;
- uint32_t n_head = 32;
- uint32_t n_head_kv = 32;
- uint32_t n_layer = 32;
-
- // float f_norm_eps = 1e-5f; // falcon
- float f_norm_rms_eps = 1e-5f; // llama
-
- float rope_freq_base = 10000.0f;
- float rope_freq_scale = 1.0f;
-
- uint32_t n_gqa() const {
- return n_head/n_head_kv;
- }
-
- uint32_t n_embd_head() const {
- return n_embd/n_head;
- }
-
- uint32_t n_embd_gqa() const {
- return n_embd/n_gqa();
- }
-
- bool operator!=(const my_llama_hparams& other) const {
- return memcmp(this, &other, sizeof(other));
- }
-};
-
-struct my_llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
-
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
-
- // normalization
- struct ggml_tensor * ffn_norm;
-
- // ff
- struct ggml_tensor * ffn_gate; // w1
- struct ggml_tensor * ffn_down; // w2
- struct ggml_tensor * ffn_up; // w3
-};
-
-struct my_llama_model {
- struct my_llama_hparams hparams;
-
- struct ggml_tensor * tok_embeddings;
-
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
-
- std::vector<my_llama_layer> layers;
-};
-
-struct my_llama_lora_hparams {
- uint32_t lora_r = 1;
- uint32_t lora_alpha = 1;
- uint32_t n_rank_attention_norm = 1;
- uint32_t n_rank_wq = 4;
- uint32_t n_rank_wk = 4;
- uint32_t n_rank_wv = 4;
- uint32_t n_rank_wo = 4;
- uint32_t n_rank_ffn_norm = 1;
- uint32_t n_rank_ffn_gate = 4;
- uint32_t n_rank_ffn_down = 4;
- uint32_t n_rank_ffn_up = 4;
- uint32_t n_rank_tok_embeddings = 4;
- uint32_t n_rank_norm = 1;
- uint32_t n_rank_output = 4;
-
- bool operator!=(const my_llama_lora_hparams& other) const {
- return memcmp(this, &other, sizeof(other));
- }
-};
-
-struct my_llama_lora_layer {
- // normalization
- struct ggml_tensor * attention_norm_a;
- struct ggml_tensor * attention_norm_b;
-
- // attention
- struct ggml_tensor * wq_a;
- struct ggml_tensor * wq_b;
- struct ggml_tensor * wk_a;
- struct ggml_tensor * wk_b;
- struct ggml_tensor * wv_a;
- struct ggml_tensor * wv_b;
- struct ggml_tensor * wo_a;
- struct ggml_tensor * wo_b;
-
- // normalization
- struct ggml_tensor * ffn_norm_a;
- struct ggml_tensor * ffn_norm_b;
-
- // ff
- struct ggml_tensor * ffn_gate_a;
- struct ggml_tensor * ffn_gate_b;
- struct ggml_tensor * ffn_down_a;
- struct ggml_tensor * ffn_down_b;
- struct ggml_tensor * ffn_up_a;
- struct ggml_tensor * ffn_up_b;
-};
-
-struct my_llama_lora {
- struct ggml_context * ctx = NULL;
- ggml_backend_buffer_t data;
-
- my_llama_lora_hparams hparams;
-
- struct ggml_tensor * tok_embeddings_a;
- struct ggml_tensor * tok_embeddings_b;
-
- struct ggml_tensor * norm_a;
- struct ggml_tensor * norm_b;
- struct ggml_tensor * output_a;
- struct ggml_tensor * output_b;
-
- std::vector<my_llama_lora_layer> layers;
-};
-
-// gguf constants
-static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora";
-static const char * LLM_KV_TRAINING_TYPE = "training.type";
-
-static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd";
-static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm";
-static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v";
-static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down";
-static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up";
-
-// gguf constants (sync with gguf.py)
-
-static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
-static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
-
-static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
-static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
-static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
-static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
-static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
-static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV = "%s.attention.head_count_kv";
-static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
-static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
-static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
-static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
-
-static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
-static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
-static const char * LLM_TENSOR_OUTPUT = "output";
-static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
-static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
-static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
-static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
-static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
-static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
-static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
-static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
-static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
-
-static void print_params(struct my_llama_hparams * params) {
- printf("%s: n_vocab : %u\n", __func__, params->n_vocab);
- printf("%s: n_ctx : %u\n", __func__, params->n_ctx);
- printf("%s: n_embd : %u\n", __func__, params->n_embd);
- printf("%s: n_ff : %u\n", __func__, params->n_ff);
- printf("%s: n_head : %u\n", __func__, params->n_head);
- printf("%s: n_head_kv : %u\n", __func__, params->n_head_kv);
- printf("%s: n_layer : %u\n", __func__, params->n_layer);
- printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
- printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
- printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
-}
-
-static void print_lora_params(struct my_llama_lora_hparams * params) {
- printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm);
- printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq);
- printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk);
- printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv);
- printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo);
- printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm);
- printf("%s: n_rank_ffn_gate : %u\n", __func__, params->n_rank_ffn_gate);
- printf("%s: n_rank_ffn_down : %u\n", __func__, params->n_rank_ffn_down);
- printf("%s: n_rank_ffn_up : %u\n", __func__, params->n_rank_ffn_up);
- printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings);
- printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm);
- printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output);
-}
-
-#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
-{ \
- const std::string skey(key); \
- const int kid = gguf_find_key(ctx, skey.c_str()); \
- if (kid >= 0) { \
- enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
- if (ktype != (type)) { \
- die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
- } \
- (dst) = func(ctx, kid); \
- } else if (req) { \
- die_fmt("key not found in model: %s", skey.c_str()); \
- } \
-}
-
-static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) {
- std::string arch;
-
- GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
- if (expected_arch != NULL) {
- if (arch != expected_arch) {
- printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch);
- }
- GGML_ASSERT(arch == expected_arch);
- }
-
- std::vector<char> keybuf;
- keybuf.resize(512);
- auto kv = [&arch, &keybuf](const char * key) -> const char * {
- snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
- return keybuf.data();
- };
-
- GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
- GGUF_GET_KEY(ctx, hparams->n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
- GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
- GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
- GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
-
- // n_head_kv is optional, default to n_head
- hparams->n_head_kv = hparams->n_head;
- GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
-
- float rope_freq_scale = 1.0f;
- GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
- GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
- GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
- if (rope_freq_scale != 1.0f) {
- hparams->rope_freq_scale = 1.0f / rope_freq_scale;
- }
-}
-
-static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) {
- auto & hparams = model->hparams;
-
- std::vector<char> tn_buf;
- tn_buf.resize(GGML_MAX_NAME);
- auto tn = [&tn_buf](const char * key) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
- return tn_buf.data();
- };
- auto tni = [&tn_buf](const char * key, int bid) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), key, bid);
- std::string s = tn_buf.data();
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
- return tn_buf.data();
- };
-
-
- // get parameters directly from gguf file
- {
- struct gguf_init_params params = {
- /*.no_alloc = */ false,
- /*.ctx = */ NULL,
- };
- struct gguf_context * mctx = gguf_init_from_file(fn_model, params);
-
- load_model_hparams_gguf(mctx, &hparams, "llama");
-
- gguf_free(mctx);
- }
- hparams.n_vocab = llama_n_vocab(input);
- hparams.n_ctx = n_ctx;
-
- // get tensors from llama_model (possibly mmapped)
- model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD));
- model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM));
- model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT));
-
- assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab);
- assert_shape_1d(model->norm, hparams.n_embd);
- assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab);
-
- model->layers.resize(hparams.n_layer);
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
-
- layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i));
- layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i));
- layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i));
- layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i));
- layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i));
- layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i));
- layer.ffn_gate = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i));
- layer.ffn_down = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i));
- layer.ffn_up = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i));
-
- assert_shape_1d(layer.attention_norm, hparams.n_embd);
- assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
- assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd_gqa());
- assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd_gqa());
- assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
- assert_shape_1d(layer.ffn_norm, hparams.n_embd);
- assert_shape_2d(layer.ffn_gate, hparams.n_embd, hparams.n_ff);
- assert_shape_2d(layer.ffn_down, hparams.n_ff, hparams.n_embd);
- assert_shape_2d(layer.ffn_up, hparams.n_embd, hparams.n_ff);
- }
-}
-
-static void set_param_lora(struct my_llama_lora * lora) {
- const uint32_t n_layer = lora->layers.size();
-
- struct ggml_context* ctx = lora->ctx;
-
- ggml_set_param(ctx, lora->tok_embeddings_a);
- ggml_set_param(ctx, lora->tok_embeddings_b);
- ggml_set_param(ctx, lora->norm_a);
- ggml_set_param(ctx, lora->norm_b);
- ggml_set_param(ctx, lora->output_a);
- ggml_set_param(ctx, lora->output_b);
-
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = lora->layers[i];
-
- ggml_set_param(ctx, layer.attention_norm_a);
- ggml_set_param(ctx, layer.attention_norm_b);
- ggml_set_param(ctx, layer.wq_a);
- ggml_set_param(ctx, layer.wq_b);
- ggml_set_param(ctx, layer.wk_a);
- ggml_set_param(ctx, layer.wk_b);
- ggml_set_param(ctx, layer.wv_a);
- ggml_set_param(ctx, layer.wv_b);
- ggml_set_param(ctx, layer.wo_a);
- ggml_set_param(ctx, layer.wo_b);
- ggml_set_param(ctx, layer.ffn_norm_a);
- ggml_set_param(ctx, layer.ffn_norm_b);
- ggml_set_param(ctx, layer.ffn_gate_a);
- ggml_set_param(ctx, layer.ffn_gate_b);
- ggml_set_param(ctx, layer.ffn_down_a);
- ggml_set_param(ctx, layer.ffn_down_b);
- ggml_set_param(ctx, layer.ffn_up_a);
- ggml_set_param(ctx, layer.ffn_up_b);
- }
-}
-
-static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) {
- const auto & lparams = lora->hparams;
-
- const uint32_t n_embd = model->hparams.n_embd;
- const uint32_t n_embd_gqa = model->hparams.n_embd_gqa();
- const uint32_t n_layer = model->hparams.n_layer;
- const uint32_t n_vocab = model->hparams.n_vocab;
- const uint32_t n_ff = model->hparams.n_ff;
-
- std::vector<char> tn_buf;
- tn_buf.resize(GGML_MAX_NAME);
- auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
- return tn_buf.data();
- };
- auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), key, bid);
- std::string s = tn_buf.data();
- snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
- return tn_buf.data();
- };
-
- // context for lora tensors without their data
- struct ggml_init_params ctx_lora_params;
- ctx_lora_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
- ctx_lora_params.mem_buffer = NULL;
- ctx_lora_params.no_alloc = true;
-
- struct ggml_context * ctx = ggml_init(ctx_lora_params);
- lora->ctx = ctx;
-
- lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd);
- lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab);
- lora->norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd);
- lora->norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1);
- lora->output_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd);
- lora->output_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab);
-
- ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_a"));
- ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_b"));
- ggml_set_name(lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a"));
- ggml_set_name(lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b"));
- ggml_set_name(lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.lora_a"));
- ggml_set_name(lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.lora_b"));
-
- lora->layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = lora->layers[i];
-
- layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd);
- layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1);
-
- layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
- layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
- layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd);
- layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa);
- layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd);
- layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa);
- layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
- layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
-
- layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd);
- layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1);
-
- layer.ffn_gate_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_embd);
- layer.ffn_gate_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_gate, n_ff);
- layer.ffn_down_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_ff);
- layer.ffn_down_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_down, n_embd);
- layer.ffn_up_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up, n_embd);
- layer.ffn_up_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_up, n_ff);
-
- ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i));
- ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i));
- ggml_set_name(layer.wq_a, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_a", i));
- ggml_set_name(layer.wq_b, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_b", i));
- ggml_set_name(layer.wk_a, tni(LLM_TENSOR_ATTN_K, ".weight.lora_a", i));
- ggml_set_name(layer.wk_b, tni(LLM_TENSOR_ATTN_K, ".weight.lora_b", i));
- ggml_set_name(layer.wv_a, tni(LLM_TENSOR_ATTN_V, ".weight.lora_a", i));
- ggml_set_name(layer.wv_b, tni(LLM_TENSOR_ATTN_V, ".weight.lora_b", i));
- ggml_set_name(layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_a", i));
- ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i));
- ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i));
- ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i));
- ggml_set_name(layer.ffn_gate_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i));
- ggml_set_name(layer.ffn_gate_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i));
- ggml_set_name(layer.ffn_down_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i));
- ggml_set_name(layer.ffn_down_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i));
- ggml_set_name(layer.ffn_up_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i));
- ggml_set_name(layer.ffn_up_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i));
- }
-
- set_param_lora(lora);
-
- // allocate data for lora tensors
- lora->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
-}
-
-static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) {
- const uint32_t n_layer = lora->layers.size();
-
- struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
-
- randomize_tensor_normal(lora->tok_embeddings_a, rnd);
- ggml_set_zero(lora->tok_embeddings_b);
- randomize_tensor_normal(lora->norm_a, rnd);
- ggml_set_zero(lora->norm_b);
- randomize_tensor_normal(lora->output_a, rnd);
- ggml_set_zero(lora->output_b);
-
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = lora->layers[i];
- randomize_tensor_normal(layer.attention_norm_a, rnd);
- ggml_set_zero(layer.attention_norm_b);
-
- randomize_tensor_normal(layer.wq_a, rnd);
- ggml_set_zero(layer.wq_b);
- randomize_tensor_normal(layer.wk_a, rnd);
- ggml_set_zero(layer.wk_b);
- randomize_tensor_normal(layer.wv_a, rnd);
- ggml_set_zero(layer.wv_b);
- randomize_tensor_normal(layer.wo_a, rnd);
- ggml_set_zero(layer.wo_b);
-
- randomize_tensor_normal(layer.ffn_norm_a, rnd);
- ggml_set_zero(layer.ffn_norm_b);
-
- randomize_tensor_normal(layer.ffn_gate_a, rnd);
- ggml_set_zero(layer.ffn_gate_b);
- randomize_tensor_normal(layer.ffn_down_a, rnd);
- ggml_set_zero(layer.ffn_down_b);
- randomize_tensor_normal(layer.ffn_up_a, rnd);
- ggml_set_zero(layer.ffn_up_b);
- }
-
- free_random_normal_distribution(rnd);
-}
-
-static struct ggml_tensor * llama_build_lora_finetune_graphs(
- struct my_llama_model * model,
- struct my_llama_lora * lora,
- ggml_gallocr_t alloc,
- struct ggml_context * ctx,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_cgraph * gb_tmp,
- struct ggml_tensor * * logits,
- struct ggml_tensor * tokens_input,
- struct ggml_tensor * targets,
- const int n_tokens,
- const int n_batch,
- const bool enable_flash_attn,
- const bool enable_checkpointing,
- const bool measure_only) {
-
- ggml_set_scratch(ctx, { 0, 0, nullptr, });
- const int n_past = 0;
- const int N = n_tokens;
- const auto & hparams = model->hparams;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_head_kv = hparams.n_head_kv;
- const int n_ff = hparams.n_ff;
- const int n_rot = hparams.n_embd_head();
- const int n_embd_head = hparams.n_embd_head();
- const int n_embd_gqa = hparams.n_embd_gqa();
-
- const float rms_norm_eps = hparams.f_norm_rms_eps;
- const float rope_freq_base = hparams.rope_freq_base;
- const float rope_freq_scale = hparams.rope_freq_scale;
-
- GGML_ASSERT((size_t) n_layer == lora->layers.size());
-
- auto set_name = [](struct ggml_tensor * t, const char * n) {
- ggml_set_name(t, n);
- if (t->grad) {
- ggml_format_name(t->grad, "%s->grad", n);
- }
- };
-
- // KQ_pos - contains the positions
- struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
- ggml_set_input(KQ_pos);
-
- // rope has so much parameters that we make a custom function for it
- auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
- (struct ggml_tensor * t) -> struct ggml_tensor * {
- // not capturing these, to silcence warnings
- const int rope_mode = 0;
-
- return ggml_rope_ext(ctx,
- t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx,
- rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
- );
- };
-
- set_name(tokens_input, "tokens_input");
- set_name(targets, "targets");
-
- GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
-
- auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
- if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16 || a->type == GGML_TYPE_BF16) {
- return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
- } else if (a->type == GGML_TYPE_F32) {
- return ggml_add(ctx, a, b);
- } else {
- die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n",
- __func__, ggml_type_name(a->type));
- }
- };
-
- struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b));
- struct ggml_tensor * norm = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b));
- struct ggml_tensor * output = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b));
-
- struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
- struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
-
- struct ggml_tensor * cur = t01;
-
- std::vector<struct ggml_tensor *> checkpoints;
- if (enable_checkpointing) {
- checkpoints.push_back(tokens_input);
- checkpoints.push_back(targets);
- checkpoints.push_back(t00);
- checkpoints.push_back(t01);
- }
-
- const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
-
- for (int il = 0; il < n_layer; ++il) {
- struct my_llama_layer & layer = model->layers[il];
- struct my_llama_lora_layer & llayer = lora->layers[il];
-
- struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b));
- struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b));
- struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b));
- struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b));
- struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b));
- struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b));
- struct ggml_tensor * ffn_gate = add_to_f32(ctx, layer.ffn_gate, ggml_mul_mat(ctx, llayer.ffn_gate_a, llayer.ffn_gate_b));
- struct ggml_tensor * ffn_down = add_to_f32(ctx, layer.ffn_down, ggml_mul_mat(ctx, llayer.ffn_down_a, llayer.ffn_down_b));
- struct ggml_tensor * ffn_up = add_to_f32(ctx, layer.ffn_up, ggml_mul_mat(ctx, llayer.ffn_up_a, llayer.ffn_up_b));
-
- struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
- struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
- struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
- struct ggml_tensor * t05 = ggml_mul_mat (ctx, wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
- struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd_head, n_head, N, n_batch);
- struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd_head, n_head, N, n_batch);
- struct ggml_tensor * t08 = ggml_mul_mat (ctx, wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd_gqa, N*n_batch);
- struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch);
- struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch);
-
- struct ggml_tensor * t11;
- if (ggml_is_quantized(wv->type)) {
- struct ggml_tensor * t11_1 = ggml_mul_mat (ctx, wv, t04); set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch);
- struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1); set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa);
- t11 = ggml_cont (ctx, t11_2); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa);
- } else {
- t11 = ggml_mul_mat (ctx, t04, wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa);
- }
-
- struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv);
- struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd_head, N, n_head, n_batch);
- struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch);
- struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
- struct ggml_tensor * t16;
- if (enable_flash_attn) {
- GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
- //t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
- } else {
- struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
- struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
- struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
- struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
- t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
- }
- struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd_head, n_head, N, n_batch);
- struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd_head, n_head, N, n_batch);
- struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
- struct ggml_tensor * t20 = ggml_mul_mat (ctx, wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
- struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
- struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
- struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
- struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
- struct ggml_tensor * t25 = ggml_mul_mat (ctx, ffn_up, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
- struct ggml_tensor * t26 = ggml_mul_mat (ctx, ffn_gate, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
- struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
- struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
- struct ggml_tensor * t29 = ggml_mul_mat (ctx, ffn_down, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
- struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
- cur = t30;
- if (enable_checkpointing) {
- checkpoints.push_back(cur);
- }
- }
- struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
- struct ggml_tensor * t32 = ggml_repeat (ctx, norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
- struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
- struct ggml_tensor * t34 = ggml_mul_mat (ctx, output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
- struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
- struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
-
- if (enable_checkpointing) {
- checkpoints.push_back(t31);
- checkpoints.push_back(t32);
- checkpoints.push_back(t33);
- checkpoints.push_back(t34);
- checkpoints.push_back(t35);
- checkpoints.push_back(t36);
- }
-
- ggml_build_forward_expand(gf, t36);
-
- if (enable_checkpointing) {
- ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
- } else {
- ggml_graph_cpy(gf, gb);
- ggml_build_backward_expand(ctx, gf, gb, true);
- }
-
- GGML_ASSERT(alloc != NULL);
-
- // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
- int n_leafs_before = gb->n_leafs;
- int n_nodes_before = gb->n_nodes;
-
- // output tensors
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
- // input gradient
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
- GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
- ggml_set_input(t36->grad);
- // KQ_pos
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
-
- // make sure base model tensors data cannot be used in viewable operations
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f));
- for (int il = 0; il < n_layer; ++il) {
- struct my_llama_layer & layer = model->layers[il];
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_gate, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_down, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_up, 1.0f));
- }
-
- // allocating checkpoints in one block to reduce memory fragmentation
- // note: they will be freed in reverse order
- for (unsigned int i = 0; i < checkpoints.size(); ++i) {
- if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
- ggml_set_input(checkpoints[i]);
- }
- }
-
- if (measure_only) {
- ggml_gallocr_reserve(alloc, gb);
- } else {
- ggml_gallocr_alloc_graph(alloc, gb);
-
- // set KQ_pos
- {
- int * data = (int *) KQ_pos->data;
- for (int i = 0; i < N; ++i) {
- data[i] = n_past + i;
- }
- }
- }
-
- // remove the additional nodes and leafs
- for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
- gb->leafs[i] = NULL;
- }
- for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
- gb->nodes[i] = NULL;
- }
- gb->n_leafs = n_leafs_before;
- gb->n_nodes = n_nodes_before;
-
- *logits = t35;
- return t36;
-}
-
-static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) {
- // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
-
- std::string arch;
-
- std::vector<char> keybuf;
- keybuf.resize(512);
-
- GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
- GGML_ASSERT(arch == "llama");
-
- uint32_t ftype_u;
- GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
- GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
-
- struct my_llama_hparams hparams;
- load_model_hparams_gguf(fctx, &hparams, arch.c_str());
-
- // parameters that define tensor shapes must match
- GGML_ASSERT(hparams.n_embd == model->hparams.n_embd);
- GGML_ASSERT(hparams.n_ff == model->hparams.n_ff);
- GGML_ASSERT(hparams.n_head == model->hparams.n_head);
- GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv);
- GGML_ASSERT(hparams.n_layer == model->hparams.n_layer);
-
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_output, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_gate, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_down, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN);
- GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_up, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP);
-
- init_lora(model, lora);
-
- copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a));
- copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b));
- copy_tensor_by_name(lora->norm_a, f_ggml_ctx, ggml_get_name(lora->norm_a));
- copy_tensor_by_name(lora->norm_b, f_ggml_ctx, ggml_get_name(lora->norm_b));
- copy_tensor_by_name(lora->output_a, f_ggml_ctx, ggml_get_name(lora->output_a));
- copy_tensor_by_name(lora->output_b, f_ggml_ctx, ggml_get_name(lora->output_b));
-
- for (uint32_t i = 0; i < lora->layers.size(); ++i) {
- auto & layer = lora->layers[i];
- copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a));
- copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b));
- copy_tensor_by_name(layer.wq_a, f_ggml_ctx, ggml_get_name(layer.wq_a));
- copy_tensor_by_name(layer.wq_b, f_ggml_ctx, ggml_get_name(layer.wq_b));
- copy_tensor_by_name(layer.wk_a, f_ggml_ctx, ggml_get_name(layer.wk_a));
- copy_tensor_by_name(layer.wk_b, f_ggml_ctx, ggml_get_name(layer.wk_b));
- copy_tensor_by_name(layer.wv_a, f_ggml_ctx, ggml_get_name(layer.wv_a));
- copy_tensor_by_name(layer.wv_b, f_ggml_ctx, ggml_get_name(layer.wv_b));
- copy_tensor_by_name(layer.wo_a, f_ggml_ctx, ggml_get_name(layer.wo_a));
- copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b));
- copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a));
- copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b));
- copy_tensor_by_name(layer.ffn_gate_a, f_ggml_ctx, ggml_get_name(layer.ffn_gate_a));
- copy_tensor_by_name(layer.ffn_gate_b, f_ggml_ctx, ggml_get_name(layer.ffn_gate_b));
- copy_tensor_by_name(layer.ffn_down_a, f_ggml_ctx, ggml_get_name(layer.ffn_down_a));
- copy_tensor_by_name(layer.ffn_down_b, f_ggml_ctx, ggml_get_name(layer.ffn_down_b));
- copy_tensor_by_name(layer.ffn_up_a, f_ggml_ctx, ggml_get_name(layer.ffn_up_a));
- copy_tensor_by_name(layer.ffn_up_b, f_ggml_ctx, ggml_get_name(layer.ffn_up_b));
- }
-}
-
-static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) {
- const char * arch = "llama";
- enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
-
- std::vector<char> keybuf;
- keybuf.resize(512);
- auto kv = [arch, &keybuf](const char * key) -> const char * {
- snprintf(keybuf.data(), keybuf.size(), key, arch);
- return keybuf.data();
- };
-
- gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
- gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
-
- gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx);
- gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd);
- gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff);
- gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head);
- gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv);
- gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer);
- gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head());
- gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps);
- gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base);
- gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), model->hparams.rope_freq_scale);
-
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, lora->hparams.n_rank_tok_embeddings);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, lora->hparams.n_rank_norm);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT, lora->hparams.n_rank_output);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, lora->hparams.n_rank_attention_norm);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q, lora->hparams.n_rank_wq);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K, lora->hparams.n_rank_wk);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_ffn_gate);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_ffn_down);
- gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_ffn_up);
-
- gguf_add_tensor(fctx, lora->tok_embeddings_a);
- gguf_add_tensor(fctx, lora->tok_embeddings_b);
- gguf_add_tensor(fctx, lora->norm_a);
- gguf_add_tensor(fctx, lora->norm_b);
- gguf_add_tensor(fctx, lora->output_a);
- gguf_add_tensor(fctx, lora->output_b);
-
- for (uint32_t i = 0; i < lora->layers.size(); ++i) {
- auto & layer = lora->layers[i];
-
- gguf_add_tensor(fctx, layer.attention_norm_a);
- gguf_add_tensor(fctx, layer.attention_norm_b);
- gguf_add_tensor(fctx, layer.wq_a);
- gguf_add_tensor(fctx, layer.wq_b);
- gguf_add_tensor(fctx, layer.wk_a);
- gguf_add_tensor(fctx, layer.wk_b);
- gguf_add_tensor(fctx, layer.wv_a);
- gguf_add_tensor(fctx, layer.wv_b);
- gguf_add_tensor(fctx, layer.wo_a);
- gguf_add_tensor(fctx, layer.wo_b);
- gguf_add_tensor(fctx, layer.ffn_norm_a);
- gguf_add_tensor(fctx, layer.ffn_norm_b);
- gguf_add_tensor(fctx, layer.ffn_gate_a);
- gguf_add_tensor(fctx, layer.ffn_gate_b);
- gguf_add_tensor(fctx, layer.ffn_down_a);
- gguf_add_tensor(fctx, layer.ffn_down_b);
- gguf_add_tensor(fctx, layer.ffn_up_a);
- gguf_add_tensor(fctx, layer.ffn_up_b);
- }
-}
-
-static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
- std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA;
- GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
- GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
-
- load_train_state_gguf(fctx, f_ggml_ctx, train);
- load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora);
-}
-
-static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
- gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
- save_llama_lora_gguf(fctx, model, lora);
- save_train_state_gguf(fctx, train);
-}
-
-static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
- struct ggml_context * f_ggml_ctx;
- struct gguf_init_params params;
- params.no_alloc = false;
- params.ctx = &f_ggml_ctx;
- struct gguf_context * fctx = gguf_init_from_file(filename, params);
- if (fctx == NULL) {
- return false;
- }
-
- load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train);
-
- gguf_free(fctx);
- return true;
-}
-
-static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
- printf("%s: saving to %s\n", __func__, filename);
- struct gguf_context * fctx = gguf_init_empty();
-
- save_checkpoint_lora_gguf(fctx, model, lora, train);
-
- // write file
- const bool only_meta = false;
- gguf_write_to_file(fctx, filename, only_meta);
- gguf_free(fctx);
-}
-
-struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
-
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- size = 0;
- } else {
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- }
-
- size_t tell() const {
-#ifdef _WIN32
- __int64 ret = _ftelli64(fp);
-#else
- long ret = std::ftell(fp);
-#endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
-
- void seek(size_t offset, int whence) {
-#ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
-#else
- int ret = std::fseek(fp, (long) offset, whence);
-#endif
- GGML_ASSERT(ret == 0); // same
- }
-
- void read_raw(void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, size, 1, fp);
- if (ferror(fp)) {
- die_fmt("read error: %s", strerror(errno));
- }
- if (ret != 1) {
- die("unexpectedly reached end of file");
- }
- }
-
- std::uint32_t read_u32() {
- std::uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
-
- std::string read_string(std::uint32_t len) {
- std::vector<char> chars(len);
- read_raw(chars.data(), len);
- return std::string(chars.data(), len);
- }
-
- void write_raw(const void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- size_t ret = std::fwrite(ptr, size, 1, fp);
- if (ret != 1) {
- die_fmt("write error: %s", strerror(errno));
- }
- }
-
- void write_u32(std::uint32_t val) {
- write_raw(&val, sizeof(val));
- }
-
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
-};
-
-static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) {
- if (tensor == NULL) {
- file->write_u32(0);
- file->write_u32(0);
- file->write_u32(GGML_TYPE_F32);
- file->seek((0-file->tell()) & 31, SEEK_CUR);
- return;
- }
- if (name == NULL) {
- name = ggml_get_name(tensor);
- }
- uint32_t name_len = strlen(name);
- uint32_t nd = ggml_n_dims(tensor);
- uint32_t ne[4] = { (uint32_t)tensor->ne[0],
- (uint32_t)tensor->ne[1],
- (uint32_t)tensor->ne[2],
- (uint32_t)tensor->ne[3] };
- file->write_u32(nd);
- file->write_u32(name_len);
- file->write_u32(tensor->type);
- file->write_raw(ne, sizeof(ne[0]) * nd);
- file->write_raw(name, name_len);
- file->seek((0-file->tell()) & 31, SEEK_CUR);
- file->write_raw(tensor->data, ggml_nbytes(tensor));
-}
-
-static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) {
- printf("%s: saving to %s\n", __func__, filename);
- struct llama_file file(filename, "wb");
- if (file.fp == NULL) {
- return;
- }
-
- std::vector<char> tn_buf;
- tn_buf.resize(GGML_MAX_NAME);
-
- auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
- return tn_buf.data();
- };
-
- auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), key, bid);
- std::string s = tn_buf.data();
- snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
- return tn_buf.data();
- };
-
- // write_magic
- file.write_u32(LLAMA_FILE_MAGIC_GGLA); // magic
- file.write_u32(1); // version
- // write_hparams
- file.write_u32(lora->hparams.lora_r);
- file.write_u32(lora->hparams.lora_alpha);
- // write tensors
- write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraA"));
- write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraB"));
- write_tensor(&file, lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA"));
- write_tensor(&file, lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB"));
- write_tensor(&file, lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.loraA"));
- write_tensor(&file, lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.loraB"));
- for (uint32_t i = 0; i < lora->layers.size(); ++i) {
- auto & layer = lora->layers[i];
- write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA"));
- write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB"));
- write_tensor(&file, layer.wq_a, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraA"));
- write_tensor(&file, layer.wq_b, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraB"));
- write_tensor(&file, layer.wk_a, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraA"));
- write_tensor(&file, layer.wk_b, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraB"));
- write_tensor(&file, layer.wv_a, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraA"));
- write_tensor(&file, layer.wv_b, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraB"));
- write_tensor(&file, layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraA"));
- write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB"));
- write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA"));
- write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB"));
- write_tensor(&file, layer.ffn_gate_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA"));
- write_tensor(&file, layer.ffn_gate_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB"));
- write_tensor(&file, layer.ffn_down_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA"));
- write_tensor(&file, layer.ffn_down_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB"));
- write_tensor(&file, layer.ffn_up_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA"));
- write_tensor(&file, layer.ffn_up_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB"));
- }
-}
-
-struct train_params {
- struct train_params_common common;
-
- const char * fn_model_base;
- const char * fn_lora_out;
-
- bool only_write_lora;
-
- float f_norm_rms_eps;
- float rope_freq_base;
- float rope_freq_scale;
-
- bool custom_f_norm_rms_eps;
- bool custom_rope_freq_base;
- bool custom_rope_freq_scale;
-
- int32_t lora_r;
- int32_t lora_alpha;
- bool custom_lora_alpha;
-
- uint32_t n_rank_attention_norm;
- uint32_t n_rank_wq;
- uint32_t n_rank_wk;
- uint32_t n_rank_wv;
- uint32_t n_rank_wo;
- uint32_t n_rank_ffn_norm;
- uint32_t n_rank_ffn_gate;
- uint32_t n_rank_ffn_down;
- uint32_t n_rank_ffn_up;
- uint32_t n_rank_tok_embeddings;
- uint32_t n_rank_norm;
- uint32_t n_rank_output;
-
- bool custom_n_rank_attention_norm;
- bool custom_n_rank_wq;
- bool custom_n_rank_wk;
- bool custom_n_rank_wv;
- bool custom_n_rank_wo;
- bool custom_n_rank_ffn_norm;
- bool custom_n_rank_ffn_gate;
- bool custom_n_rank_ffn_down;
- bool custom_n_rank_ffn_up;
- bool custom_n_rank_tok_embeddings;
- bool custom_n_rank_norm;
- bool custom_n_rank_output;
-};
-
-static struct train_params get_default_train_params() {
- struct train_params params;
- params.common = get_default_train_params_common();
- params.fn_model_base = "";
- params.fn_lora_out = "ggml-lora-ITERATION-f32.gguf";
-
- params.only_write_lora = false;
-
- params.f_norm_rms_eps = 1e-5f;
- params.rope_freq_base = 10000.0f;
- params.rope_freq_scale = 1.0f;
-
- params.custom_f_norm_rms_eps = false;
- params.custom_rope_freq_base = false;
- params.custom_rope_freq_scale = false;
-
- params.lora_r = 4;
- params.lora_alpha = 4;
- params.custom_lora_alpha = false;
-
- params.n_rank_attention_norm = 1;
- params.n_rank_wq = 4;
- params.n_rank_wk = 4;
- params.n_rank_wv = 4;
- params.n_rank_wo = 4;
- params.n_rank_ffn_norm = 1;
- params.n_rank_ffn_gate = 4;
- params.n_rank_ffn_down = 4;
- params.n_rank_ffn_up = 4;
- params.n_rank_tok_embeddings = 4;
- params.n_rank_norm = 1;
- params.n_rank_output = 4;
-
- params.custom_n_rank_attention_norm = false;
- params.custom_n_rank_wq = false;
- params.custom_n_rank_wk = false;
- params.custom_n_rank_wv = false;
- params.custom_n_rank_wo = false;
- params.custom_n_rank_ffn_norm = false;
- params.custom_n_rank_ffn_gate = false;
- params.custom_n_rank_ffn_down = false;
- params.custom_n_rank_ffn_up = false;
- params.custom_n_rank_tok_embeddings = false;
- params.custom_n_rank_norm = false;
- params.custom_n_rank_output = false;
-
- return params;
-}
-
-static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
-
- fprintf(stderr, " --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base);
- fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out);
- fprintf(stderr, " --only-write-lora only save llama lora, don't do any training. use this if you only want to convert a checkpoint to a lora adapter.\n");
- fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
- fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
- fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
- fprintf(stderr, " --lora-alpha N LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha);
- fprintf(stderr, " --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r);
- fprintf(stderr, " --rank-att-norm N LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
- fprintf(stderr, " --rank-ffn-norm N LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
- fprintf(stderr, " --rank-out-norm N LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
- fprintf(stderr, " --rank-tok-embd N LORA rank for token embeddings tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-out N LORA rank for output tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-wq N LORA rank for wq tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-ffn_gate N LORA rank for ffn_gate tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-ffn_down N LORA rank for ffn_down tensor, overrides default rank.\n");
- fprintf(stderr, " --rank-ffn_up N LORA rank for ffn_up tensor, overrides default rank.\n");
-
- print_common_train_usage(argc, argv, ¶ms->common);
-}
-
-static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
- bool invalid_param = false;
- std::string arg;
- struct train_params default_params = get_default_train_params();
- const std::string arg_prefix = "--";
-
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
-
- if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) {
- if (invalid_param) {
- break;
- } else if (params->common.print_usage) {
- train_print_usage(argc, argv, &default_params);
- exit(0);
- }
- } else if (arg == "--model-base") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_model_base = argv[i];
- } else if (arg == "--lora-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_lora_out = argv[i];
- } else if (arg == "--only-write-lora") {
- params->only_write_lora = true;
- } else if (arg == "--norm-rms-eps") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->f_norm_rms_eps = std::stof(argv[i]);
- params->custom_f_norm_rms_eps = true;
- } else if (arg == "--rope-freq-base") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->rope_freq_base = std::stof(argv[i]);
- params->custom_rope_freq_base = true;
- } else if (arg == "--rope-freq-scale") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->rope_freq_scale = std::stof(argv[i]);
- params->custom_rope_freq_scale = true;
- } else if (arg == "--lora-alpha") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->lora_alpha = std::stoi(argv[i]);
- params->custom_lora_alpha = true;
- } else if (arg == "--lora-r") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->lora_r = std::stoi(argv[i]);
- } else if (arg == "--rank-att-norm") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_attention_norm = std::stoi(argv[i]);
- params->custom_n_rank_attention_norm = true;
- } else if (arg == "--rank-ffn-norm") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_ffn_norm = std::stoi(argv[i]);
- params->custom_n_rank_ffn_norm = true;
- } else if (arg == "--rank-out-norm") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_norm = std::stoi(argv[i]);
- params->custom_n_rank_norm = true;
- } else if (arg == "--rank-tok-embd") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_tok_embeddings = std::stoi(argv[i]);
- params->custom_n_rank_tok_embeddings = true;
- } else if (arg == "--rank-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_output = std::stoi(argv[i]);
- params->custom_n_rank_output = true;
- } else if (arg == "--rank-wq") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_wq = std::stoi(argv[i]);
- params->custom_n_rank_wq = true;
- } else if (arg == "--rank-wk") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_wk = std::stoi(argv[i]);
- params->custom_n_rank_wk = true;
- } else if (arg == "--rank-wv") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_wv = std::stoi(argv[i]);
- params->custom_n_rank_wv = true;
- } else if (arg == "--rank-wo") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_wo = std::stoi(argv[i]);
- params->custom_n_rank_wo = true;
- } else if (arg == "--rank-ffn_gate") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_ffn_gate = std::stoi(argv[i]);
- params->custom_n_rank_ffn_gate = true;
- } else if (arg == "--rank-ffn_down") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_ffn_down = std::stoi(argv[i]);
- params->custom_n_rank_ffn_down = true;
- } else if (arg == "--rank-ffn_up") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_rank_ffn_up = std::stoi(argv[i]);
- params->custom_n_rank_ffn_up = true;
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- finish_processing_train_args(¶ms->common);
- return true;
-}
-
-struct save_train_files_data {
- const char * fn_checkpoint_out;
- const char * fn_lora_out;
- const char * pattern_fn_it;
- const char * fn_latest;
- struct my_llama_model * model;
- struct my_llama_lora * lora;
-};
-
-static void save_train_files(void * vdata, struct train_state * train) {
- struct save_train_files_data * data = (struct save_train_files_data *) vdata;
-
- int64_t iter = train->opt->iter;
-
- if (strlen(data->fn_checkpoint_out) > 0) {
- save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train);
- save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->model, data->lora, train);
- }
- if (strlen(data->fn_lora_out) > 0) {
- save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora);
- save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->lora);
- }
-}
-
-static int64_t get_parameter_count(struct my_llama_lora* lora) {
- int64_t nx = 0;
- nx += ggml_nelements(lora->tok_embeddings_a);
- nx += ggml_nelements(lora->tok_embeddings_b);
- nx += ggml_nelements(lora->norm_a);
- nx += ggml_nelements(lora->norm_b);
- nx += ggml_nelements(lora->output_a);
- nx += ggml_nelements(lora->output_b);
-
- for (uint32_t i = 0; i < lora->layers.size(); ++i) {
- auto & layer = lora->layers[i];
- nx += ggml_nelements(layer.attention_norm_a);
- nx += ggml_nelements(layer.attention_norm_b);
- nx += ggml_nelements(layer.wq_a);
- nx += ggml_nelements(layer.wq_b);
- nx += ggml_nelements(layer.wk_a);
- nx += ggml_nelements(layer.wk_b);
- nx += ggml_nelements(layer.wv_a);
- nx += ggml_nelements(layer.wv_b);
- nx += ggml_nelements(layer.wo_a);
- nx += ggml_nelements(layer.wo_b);
- nx += ggml_nelements(layer.ffn_norm_a);
- nx += ggml_nelements(layer.ffn_norm_b);
- nx += ggml_nelements(layer.ffn_gate_a);
- nx += ggml_nelements(layer.ffn_gate_b);
- nx += ggml_nelements(layer.ffn_down_a);
- nx += ggml_nelements(layer.ffn_down_b);
- nx += ggml_nelements(layer.ffn_up_a);
- nx += ggml_nelements(layer.ffn_up_b);
- }
- return nx;
-}
-
-int main(int argc, char ** argv) {
- struct train_params params = get_default_train_params();
-
- if (!train_params_parse(argc, argv, ¶ms)) {
- return 1;
- }
-
- if (params.common.seed == LLAMA_DEFAULT_SEED) {
- params.common.seed = time(NULL);
- }
- printf("%s: seed: %u\n", __func__, params.common.seed);
- srand(params.common.seed);
-
- struct llama_model_params llama_mparams = llama_model_default_params();
- llama_mparams.n_gpu_layers = params.common.n_gpu_layers;
- llama_mparams.vocab_only = false;
-
- printf("%s: model base = '%s'\n", __func__, params.fn_model_base);
- struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams);
-
- struct llama_context_params llama_cparams = llama_context_default_params();
- struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams);
-
- struct my_llama_model model;
- init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx);
-
- struct my_llama_lora lora;
-
- struct train_state * train = init_train_state();
- struct ggml_opt_context * opt = train->opt;
-
- // set params from command line
- if (params.custom_f_norm_rms_eps) {
- model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
- }
- if (params.custom_rope_freq_base) {
- model.hparams.rope_freq_base = params.rope_freq_base;
- }
- if (params.custom_rope_freq_scale) {
- model.hparams.rope_freq_scale = params.rope_freq_scale;
- }
- lora.hparams.lora_r = params.lora_r;
- lora.hparams.lora_alpha = params.custom_lora_alpha ? params.lora_alpha : params.lora_r;
- uint32_t n_rank_attention_norm = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1;
- uint32_t n_rank_wq = params.custom_n_rank_wq ? params.n_rank_wq : params.lora_r;
- uint32_t n_rank_wk = params.custom_n_rank_wk ? params.n_rank_wk : params.lora_r;
- uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r;
- uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r;
- uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1;
- uint32_t n_rank_ffn_gate = params.custom_n_rank_ffn_gate ? params.n_rank_ffn_gate : params.lora_r;
- uint32_t n_rank_ffn_down = params.custom_n_rank_ffn_down ? params.n_rank_ffn_down : params.lora_r;
- uint32_t n_rank_ffn_up = params.custom_n_rank_ffn_up ? params.n_rank_ffn_up : params.lora_r;
- uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r;
- uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1;
- uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r;
- lora.hparams.n_rank_attention_norm = n_rank_attention_norm;
- lora.hparams.n_rank_wq = n_rank_wq;
- lora.hparams.n_rank_wk = n_rank_wk;
- lora.hparams.n_rank_wv = n_rank_wv;
- lora.hparams.n_rank_wo = n_rank_wo;
- lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm;
- lora.hparams.n_rank_ffn_gate = n_rank_ffn_gate;
- lora.hparams.n_rank_ffn_down = n_rank_ffn_down;
- lora.hparams.n_rank_ffn_up = n_rank_ffn_up;
- lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings;
- lora.hparams.n_rank_norm = n_rank_norm;
- lora.hparams.n_rank_output = n_rank_output;
-
- // set opt params from command line
- opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
- opt->params.print_forward_graph = false;
- opt->params.print_backward_graph = false;
- opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
- opt->params.n_threads = params.common.n_threads;
- opt->params.past = params.common.opt_past;
- opt->params.delta = params.common.opt_delta;
- opt->params.max_no_improvement = params.common.opt_max_no_improvement;
- opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
- opt->params.adam.n_iter = params.common.adam_n_iter;
- opt->params.adam.sched = 1.0f;
- opt->params.adam.alpha = params.common.adam_alpha;
- opt->params.adam.decay = params.common.adam_decay;
- opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
- opt->params.adam.beta1 = params.common.adam_beta1;
- opt->params.adam.beta2 = params.common.adam_beta2;
- opt->params.adam.gclip = params.common.adam_gclip;
- opt->params.adam.eps_f = params.common.adam_eps_f;
-
- printf("%s: init model\n", __func__);
- bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train);
-
- if (existed) {
- // overwrite last n_ctx with user provided n_ctx
- if (params.common.custom_n_ctx) {
- model.hparams.n_ctx = params.common.n_ctx;
- }
-
- const bool opt_param_count_changed = (
- (lora.hparams.n_rank_attention_norm != n_rank_attention_norm)
- || (lora.hparams.n_rank_wq != n_rank_wq)
- || (lora.hparams.n_rank_wk != n_rank_wk)
- || (lora.hparams.n_rank_wv != n_rank_wv)
- || (lora.hparams.n_rank_wo != n_rank_wo)
- || (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm)
- || (lora.hparams.n_rank_ffn_gate != n_rank_ffn_gate)
- || (lora.hparams.n_rank_ffn_down != n_rank_ffn_down)
- || (lora.hparams.n_rank_ffn_up != n_rank_ffn_up)
- || (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings)
- || (lora.hparams.n_rank_norm != n_rank_norm)
- || (lora.hparams.n_rank_output != n_rank_output)
- );
-
- const bool opt_past_changed = opt->params.past != params.common.opt_past;
-
- if (opt_param_count_changed) {
- print_lora_params(&lora.hparams);
- die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting.");
- // need to discard previous optimizer gradient statistics and opt_init with new shapes
- // TODO
- }
- if (opt_past_changed) {
- die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
- // need to discard previous optimizer past function value statistics and opt_init with new shapes
- // TODO
- }
- } else { // existed == false
- init_lora(&model, &lora);
- randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
- if (!params.only_write_lora) {
- ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora));
- }
- }
- opt->iter = train->train_its;
-
- print_params(&model.hparams);
- print_lora_params(&lora.hparams);
- printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
- printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
- printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
- printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
- printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)), (float) (ggml_used_mem(lora.ctx) + ggml_backend_buffer_get_size(lora.data)) / (1024.0f*1024.0f));
-
- if (params.only_write_lora) {
- save_train_files_data save_data;
- save_data.fn_checkpoint_out = "";
- save_data.fn_lora_out = params.fn_lora_out;
- save_data.pattern_fn_it = params.common.pattern_fn_it;
- save_data.fn_latest = params.common.fn_latest;
- save_data.model = &model;
- save_data.lora = &lora;
-
- save_train_files(&save_data, train);
-
- free_train_state(train);
- ggml_free(lora.ctx);
- llama_free(lctx);
- llama_free_model(lmodel);
- return 0;
- }
-
- printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
- printf("%s: opt iter %d\n", __func__, opt->iter);
-
- int n_tokens = model.hparams.n_ctx;
- int n_vocab = model.hparams.n_vocab;
- int n_batch = params.common.n_batch;
-
- // context for input tensors without their data
- struct ggml_init_params ctx_input_params = {
- ggml_tensor_overhead() * 2, // mem_size
- NULL, // mem_buffer
- true, // no_alloc
- };
- struct ggml_context * ctx_input = ggml_init(ctx_input_params);
-
- // the input tensors
- struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
- struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
-
- // allocate input tensors
- // measure required memory for input tensors
- ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
- size_t max_input_size = ggml_backend_buffer_get_size(input_data);
- printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
-
- // context for compute tensors without their data
- const size_t estimated_compute_size_wo_data = (
- 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
- (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
- );
- struct ggml_init_params ctx_compute_params = {
- estimated_compute_size_wo_data, // mem_size
- NULL, // mem_buffer
- true, // no_alloc
- };
- struct ggml_context * ctx_compute = NULL;
-
- struct ggml_tensor * loss = NULL;
- struct ggml_tensor * logits = NULL;
-
- struct ggml_cgraph * gf = NULL;
- struct ggml_cgraph * gb = NULL;
- struct ggml_cgraph * gb_tmp = NULL;
-
- // measure required memory for compute tensors
- size_t best_compute_size = SIZE_MAX;
- enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
- // find best evaluation order
- for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
- ctx_compute = ggml_init(ctx_compute_params);
- ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
- gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gf->order = (enum ggml_cgraph_eval_order) order;
- gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gb_tmp = params.common.use_checkpointing
- ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
- : NULL;
- loss = llama_build_lora_finetune_graphs(
- &model, &lora, alloc, ctx_compute,
- gf, gb, gb_tmp,
- &logits, tokens_input, target_probs,
- n_tokens, n_batch,
- params.common.use_flash,
- params.common.use_checkpointing,
- true
- );
- size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
- if (max_compute_size < best_compute_size) {
- best_compute_size = max_compute_size;
- best_order = gf->order;
- }
- ggml_gallocr_free(alloc);
- ggml_free(ctx_compute);
- }
- size_t max_compute_size = best_compute_size;
- printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
- printf("%s: evaluation order = %s\n", __func__,
- (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
- (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
- "invalid");
-
- // allocate compute tensors
- ctx_compute = ggml_init(ctx_compute_params);
- ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
- gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gf->order = best_order;
- gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gb_tmp = params.common.use_checkpointing
- ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
- : NULL;
- loss = llama_build_lora_finetune_graphs(
- &model, &lora, alloc, ctx_compute,
- gf, gb, gb_tmp,
- &logits, tokens_input, target_probs,
- n_tokens, n_batch,
- params.common.use_flash,
- params.common.use_checkpointing,
- false
- );
-
- // tokenize data
- std::vector<llama_token> train_tokens;
- std::vector<size_t> train_samples_begin;
- std::vector<size_t> train_samples_size;
- printf("%s: tokenize training data from %s\n", __func__, params.common.fn_train_data);
- printf("%s: sample-start: %s\n", __func__, params.common.sample_start.c_str());
- printf("%s: include-sample-start: %s\n", __func__, params.common.include_sample_start ? "true" : "false");
- tokenize_file(lctx,
- params.common.fn_train_data,
- params.common.sample_start,
- params.common.include_sample_start,
- params.common.overlapping_samples,
- n_tokens,
- train_tokens,
- train_samples_begin,
- train_samples_size);
- GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
-
- printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
-
- std::vector<size_t> token_noccurs;
- token_noccurs.resize(model.hparams.n_vocab, 0);
- for (unsigned int i = 0; i < train_tokens.size(); ++i) {
- ++token_noccurs[train_tokens[i]];
- }
- int n_unique_tokens = 0;
- for (unsigned int i = 0; i < token_noccurs.size(); ++i) {
- if (token_noccurs[i] == 0) continue;
- ++n_unique_tokens;
- }
- printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);
-
- size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
- const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
- if (changed_train_data) {
- printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
- }
- if (params.common.force_reshuffle) {
- printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
- }
- if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
- train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
- train->shuffle_sample_count = train_samples_size.size();
- train->shuffle_next_sample = 0;
- train->shuffle_samples_hash = shuffle_samples_hash;
- }
- std::vector<size_t> train_shuffled_samples_offs;
- std::vector<size_t> train_shuffled_samples_begin;
- std::vector<size_t> train_shuffled_samples_size;
- train_shuffled_samples_offs.resize(train_samples_begin.size());
- train_shuffled_samples_begin.resize(train_samples_begin.size());
- train_shuffled_samples_size.resize(train_samples_size.size());
- train->shuffle_rng_state_next = shuffle_samples(
- train->shuffle_rng_state_current,
- train_shuffled_samples_offs.data(),
- train_shuffled_samples_begin.data(),
- train_shuffled_samples_size.data(),
- train_samples_begin.data(),
- train_samples_size.data(),
- train_samples_size.size());
-
- printf("%s: begin training\n", __func__);
-
- save_train_files_data save_data;
- save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
- save_data.fn_lora_out = params.fn_lora_out;
- save_data.pattern_fn_it = params.common.pattern_fn_it;
- save_data.fn_latest = params.common.fn_latest;
- save_data.model = &model;
- save_data.lora = &lora;
-
- struct train_opt_callback_data opt_cb_data;
- opt_cb_data.params = ¶ms.common;
- opt_cb_data.train = train;
- opt_cb_data.save_cb = &save_train_files;
- opt_cb_data.save_data = &save_data;
- opt_cb_data.lctx = lctx;
- opt_cb_data.last_save_iter = opt->iter;
- opt_cb_data.tokens_data = train_tokens.data();
- opt_cb_data.tokens_size = train_tokens.size();
- opt_cb_data.samples_begin = train_samples_begin.data();
- opt_cb_data.samples_size = train_samples_size.data();
- opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
- opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
- opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
- opt_cb_data.samples_count = train_samples_size.size();
- opt_cb_data.tokens_input = tokens_input;
- opt_cb_data.target_probs = target_probs;
- opt_cb_data.first_iter = opt->iter;
- opt_cb_data.first_epoch = train->train_epochs;
- opt_cb_data.iter_at_last_epoch = -1;
- opt_cb_data.last_time = ggml_time_ms();
- opt_cb_data.millis_per_iter = 0.0;
-
- // measure required memory for work buffer
- size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
- printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
-
- // context for work buffer
- struct ggml_init_params ctx_work_params = {
- max_work_size, // mem_size
- NULL, // mem_buffer
- false, // no_alloc
- };
- struct ggml_context * ctx_work = ggml_init(ctx_work_params);
-
- int64_t t0 = ggml_time_ms();
-
- ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
-
- ggml_free(ctx_work);
- ggml_free(ctx_compute);
- ggml_free(ctx_input);
- ggml_gallocr_free(alloc);
-
-
- int64_t t1 = ggml_time_ms();
- printf("%s: total training time: ", __func__);
- print_duration((double) (t1 - t0));
- printf("\n");
-
- int new_iters = opt->iter - opt_cb_data.last_save_iter;
- if (new_iters > 0) {
- train->train_its += new_iters;
- train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
-
- save_train_files(&save_data, train);
- opt_cb_data.last_save_iter = opt->iter;
- }
-
- ggml_free(opt->ctx);
- free_train_state(train);
- ggml_free(lora.ctx);
- llama_free(lctx);
- llama_free_model(lmodel);
- return 0;
-}
+++ /dev/null
-#!/bin/bash
-cd `dirname $0`
-cd ../..
-
-EXE="./llama-finetune"
-
-if [[ ! $LLAMA_MODEL_DIR ]]; then LLAMA_MODEL_DIR="./models"; fi
-if [[ ! $LLAMA_TRAINING_DIR ]]; then LLAMA_TRAINING_DIR="."; fi
-
-# MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2-q8_0.gguf" # This is the model the readme uses.
-MODEL="$LLAMA_MODEL_DIR/openllama-3b-v2.gguf" # An f16 model. Note in this case with "-g", you get an f32-format .BIN file that isn't yet supported if you use it with "llama-cli --lora" with GPU inferencing.
-
-while getopts "dg" opt; do
- case $opt in
- d)
- DEBUGGER="gdb --args"
- ;;
- g)
- EXE="./build/bin/Release/finetune"
- GPUARG="--gpu-layers 25"
- ;;
- esac
-done
-
-$DEBUGGER $EXE \
- --model-base $MODEL \
- $GPUARG \
- --checkpoint-in chk-ol3b-shakespeare-LATEST.gguf \
- --checkpoint-out chk-ol3b-shakespeare-ITERATION.gguf \
- --lora-out lora-ol3b-shakespeare-ITERATION.bin \
- --train-data "$LLAMA_TRAINING_DIR\shakespeare.txt" \
- --save-every 10 \
- --threads 10 --adam-iter 30 --batch 4 --ctx 64 \
- --use-checkpointing
+++ /dev/null
-set(TARGET llama-train-text-from-scratch)
-add_executable(${TARGET} train-text-from-scratch.cpp)
-install(TARGETS ${TARGET} RUNTIME)
-target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
-target_compile_features(${TARGET} PRIVATE cxx_std_11)
+++ /dev/null
-# train-text-from-scratch
-
-Basic usage instructions:
-
-```bash
-# get training data
-wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
-
-# train
-./bin/llama-train-text-from-scratch \
- --vocab-model ../models/ggml-vocab-llama.gguf \
- --ctx 64 --embd 256 --head 8 --layer 16 \
- --checkpoint-in chk-shakespeare-256x16-LATEST.gguf \
- --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
- --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
- --train-data "shakespeare.txt" \
- -t 6 -b 16 --seed 1 --adam-iter 256 \
- --no-checkpointing
-
-# predict
-./bin/llama-cli -m ggml-shakespeare-256x16-f32.gguf
-```
-
-Output files will be saved every N iterations (config with `--save-every N`).
-The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
-
-To train GGUF models just pass them to `--checkpoint-in FN`.
+++ /dev/null
-#!/usr/bin/env python3
-# train-text-from-scratch checkpoint --> gguf conversion
-
-import argparse
-import os
-import struct
-import sys
-import numpy as np
-from pathlib import Path
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
-import gguf
-
-# gguf constants
-LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
-LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
-LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
-LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
-LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
-LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
-LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
-LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
-LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
-LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
-LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
-LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
-LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
-LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
-LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
-
-LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
-LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
-
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
-LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
-LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
-LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
-LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
-
-LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
-LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
-LLM_KV_TRAINING_TYPE = "training.type"
-LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
-LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
-LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
-LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
-
-class Tensor:
- def __init__(self, dtype='f', ne=None):
- if ne is None:
- ne = []
- self.dtype = dtype
- self.ne = ne
- self.nbytes = 0
- if self.dtype == 'f':
- if len(self.ne) == 0:
- self.nbytes = 0
- else:
- self.nbytes = int(np.prod(self.ne)) * 4
- else:
- raise ValueError(f"Unhandled data type '{self.dtype}'")
-
- def load(self, data, offset):
- nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- assert(nd == len(self.ne))
- ne = []
- for d in range(nd):
- n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- ne.append(n)
-
- assert(tuple(ne) == tuple(self.ne))
-
- if self.dtype == 'f':
- assert(dtype == 0)
- else:
- raise ValueError(f"Unhandled data type '{self.dtype}'")
-
- self.name = bytes(data[offset:offset+namelen]); offset += namelen
- # 32-byte alignment
- offset += (0 - offset) & 31
- self.data = data[offset:offset+self.nbytes]
- offset += self.nbytes
- return offset
-
- def max_storage_size(self):
- result = 0
- result += 4 # nd
- result += 4 # namelen
- result += 4 # dtype
- result += len(self.ne)*8 # ne
- result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
- result += 31 # 32-byte alignment
- result += self.nbytes
- return result
-
- def save_gguf(self, gguf_writer, name):
- gguf_writer.add_tensor(
- name=name,
- tensor=self.data,
- raw_shape=np.array(list(reversed(self.ne))),
- raw_dtype=gguf.GGMLQuantizationType.F32)
-
-class OptimizationParamsV0:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.type = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_threads = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.delta = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.print_forward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
- self.print_backward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
- self.adam_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_sched = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_decay = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_alpha = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_beta1 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_beta2 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_eps_f = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_eps_g = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_max_linesearch = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_ftol = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_wolfe = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_min_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_max_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_linesearch = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- return offset
-
-class OptimizationContext:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
- offset += 4
-
- if self.version == 0:
- params = OptimizationParamsV0()
- offset = params.load(data, offset)
- self.past = params.past
- self.lbfgs_m = params.lbfgs_m
- self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
- self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
- self.type = params.type
-
- self.adam_m = Tensor('f', [self.nx])
- self.adam_v = Tensor('f', [self.nx])
- self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
- self.lbfgs_x = Tensor('f', [self.nx])
- self.lbfgs_xp = Tensor('f', [self.nx])
- self.lbfgs_g = Tensor('f', [self.nx])
- self.lbfgs_gp = Tensor('f', [self.nx])
- self.lbfgs_d = Tensor('f', [self.nx])
- self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
- self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
- self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
-
- if self.type == 0:
- # these tensors are stored, but we don't need their data
- x = Tensor('f', [self.nx])
- g = Tensor('f', [self.nx])
- g2 = Tensor('f', [self.nx])
- mh = Tensor('f', [self.nx])
- vh = Tensor('f', [self.nx])
-
- offset = x.load(data, offset)
- offset = g.load(data, offset)
- offset = g2.load(data, offset)
- offset = self.adam_m.load(data, offset)
- offset = self.adam_v.load(data, offset)
- offset = mh.load(data, offset)
- offset = vh.load(data, offset)
- offset = self.adam_pf.load(data, offset)
-
- self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- elif self.type == 1:
- offset = self.lbfgs_x.load(data, offset)
- offset = self.lbfgs_xp.load(data, offset)
- offset = self.lbfgs_g.load(data, offset)
- offset = self.lbfgs_gp.load(data, offset)
- offset = self.lbfgs_d.load(data, offset)
- offset = self.lbfgs_pf.load(data, offset)
- offset = self.lbfgs_lmal.load(data, offset)
- offset = self.lbfgs_lmys.load(data, offset)
- offset = self.lbfgs_lms.load(data, offset)
- offset = self.lbfgs_lmy.load(data, offset)
-
- self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- else:
- raise ValueError('Unknown optimizer type')
-
-
- elif self.version == 1:
- self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
- self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
-
- self.adam_m = Tensor('f', [self.nx])
- self.adam_v = Tensor('f', [self.nx])
- self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
-
- self.lbfgs_x = Tensor('f', [self.nx])
- self.lbfgs_xp = Tensor('f', [self.nx])
- self.lbfgs_g = Tensor('f', [self.nx])
- self.lbfgs_gp = Tensor('f', [self.nx])
- self.lbfgs_d = Tensor('f', [self.nx])
- self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
- self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
- self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
- self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
-
- # forgot to save type in version 1:
- # guess self.type from number of remaining bytes
- size_type_0 = 12 + sum([t.max_storage_size() for t in
- [self.adam_m, self.adam_v]
- +([self.adam_pf] if (self.past > 0) else [])])
- size_type_1 = 24 + sum([t.max_storage_size() for t in
- [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
- self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
- self.lbfgs_lmal, self.lbfgs_lmys,
- self.lbfgs_lms, self.lbfgs_lmy]
- +([self.lbfgs_pf] if (self.past > 0) else [])])
- # due to alignment padding the size might not by exact
- # but the difference in size for both types is significant,
- # so we can just use whichever is closest
- remaining = len(data) - offset
- if abs(remaining - size_type_0) < abs(remaining - size_type_1):
- self.type = 0
- else:
- self.type = 1
-
- if self.type == 0:
- offset = self.adam_m.load(data, offset)
- offset = self.adam_v.load(data, offset)
- offset = self.adam_pf.load(data,offset)
-
- self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- elif self.type == 1:
- offset = self.lbfgs_x.load(data, offset)
- offset = self.lbfgs_xp.load(data, offset)
- offset = self.lbfgs_g.load(data, offset)
- offset = self.lbfgs_gp.load(data, offset)
- offset = self.lbfgs_d.load(data, offset)
- offset = self.lbfgs_pf.load(data, offset)
- offset = self.lbfgs_lmal.load(data, offset)
- offset = self.lbfgs_lmys.load(data, offset)
- offset = self.lbfgs_lms.load(data, offset)
- offset = self.lbfgs_lmy.load(data, offset)
-
- self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- else:
- raise ValueError('Invalid version of checkpoint file')
-
- return offset
-
- def save_gguf(self, gguf_writer):
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
- gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
- gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
-
- if self.type == 0:
- gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
-
- self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
- self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
- if self.past > 0:
- self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
-
- elif self.type == 1:
- gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
- gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
- gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
- gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
-
- self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
- self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
- self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
- self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
- self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
- if self.past > 0:
- self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
- self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
- self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
- self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
- self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
- else:
- raise ValueError('Unknown optimizer type')
-
-class ModelParams:
- def __init__(self):
- pass
-
- def load(self, data, offset):
- self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- return offset
-
- def get_n_ff(self):
- # struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
- return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
-
- def save_gguf(self, gguf_writer):
- # self.n_vocab not saved
- gguf_writer.add_embedding_length(self.n_embd)
- gguf_writer.add_head_count(self.n_head)
- gguf_writer.add_block_count(self.n_layer)
- gguf_writer.add_rope_dimension_count(self.n_rot)
- gguf_writer.add_feed_forward_length(self.get_n_ff())
-
-def tensor_name(key, bid=None):
- return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
-
-class Layer:
- def __init__(self, params, bid):
- self.bid = bid
- self.att_norm = Tensor('f', [params.n_embd])
- self.wq = Tensor('f', [params.n_embd, params.n_embd])
- self.wk = Tensor('f', [params.n_embd, params.n_embd])
- self.wv = Tensor('f', [params.n_embd, params.n_embd])
- self.wo = Tensor('f', [params.n_embd, params.n_embd])
- self.ffn_norm = Tensor('f', [params.n_embd])
- self.w1 = Tensor('f', [params.n_embd, params.get_n_ff()])
- self.w2 = Tensor('f', [params.get_n_ff(), params.n_embd])
- self.w3 = Tensor('f', [params.n_embd, params.get_n_ff()])
-
- def load(self, data, offset):
- offset = self.att_norm.load(data, offset)
- offset = self.wq.load(data, offset)
- offset = self.wk.load(data, offset)
- offset = self.wv.load(data, offset)
- offset = self.wo.load(data, offset)
- offset = self.ffn_norm.load(data, offset)
- offset = self.w1.load(data, offset)
- offset = self.w2.load(data, offset)
- offset = self.w3.load(data, offset)
- return offset
-
- def save_gguf(self, gguf_writer):
- self.att_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid))
- self.wq.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid))
- self.wk.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid))
- self.wv.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid))
- self.wo.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid))
- self.ffn_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid))
- self.w1.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid))
- self.w2.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid))
- self.w3.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid))
-
-class Model:
- def __init__(self):
- self.params = ModelParams()
- self.layers = []
-
- def load(self, data, offset):
- offset = self.params.load(data, offset)
-
- self.tok_embd = Tensor('f', [self.params.n_embd, self.params.n_vocab])
- self.norm = Tensor('f', [self.params.n_embd])
- self.output = Tensor('f', [self.params.n_embd, self.params.n_vocab])
-
- offset = self.tok_embd.load(data, offset)
- offset = self.norm.load(data, offset)
- offset = self.output.load(data, offset)
-
- self.layers.clear()
- for bid in range(self.params.n_layer):
- layer = Layer(self.params, bid)
- offset = layer.load(data, offset)
- self.layers.append(layer)
-
- return offset
-
- def save_gguf(self, gguf_writer):
- self.params.save_gguf(gguf_writer)
-
- self.tok_embd.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD))
- self.norm.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM))
- self.output.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT))
-
- for layer in self.layers:
- layer.save_gguf(gguf_writer)
-
-class Checkpoint:
- def __init__(self):
- self.model = Model()
- self.opt_ctx = OptimizationContext()
-
- def load(self, data, offset):
- magic = bytes(reversed(data[offset:offset + 4])); offset += 4
- if magic != b'ggcp':
- raise ValueError(f"File header magic indicates, that this is no checkpoint file. Expected 'ggcp', Got '{str(magic)}'")
-
- self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- if self.version != 0:
- raise ValueError('Invalid version of checkpoint file')
-
- self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
- self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
-
- offset = self.model.load(data, offset)
- offset = self.opt_ctx.load(data, offset)
-
- return offset
-
- def save_gguf(self, gguf_writer):
- gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
- gguf_writer.add_layer_norm_rms_eps(1e-5)
- gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
- gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
- gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
- gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
- gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
- self.model.save_gguf(gguf_writer)
- self.opt_ctx.save_gguf(gguf_writer)
-
-def handle_args():
- parser = argparse.ArgumentParser(description = 'Convert train-text-from-scratch checkpoints to GGUF')
- parser.add_argument('--input', '-i', type = Path, help = 'Input train checkpoint filename', required=True)
- parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename', required=True)
- return parser.parse_args()
-
-def main():
- cfg = handle_args()
- data = np.memmap(cfg.input, mode = 'r')
- chk = Checkpoint()
- offset = 0
- offset = chk.load(data, offset)
- # we should have read all available data
- assert(offset == len(data))
-
- gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
- chk.save_gguf(gguf_writer)
- print(" gguf: write header")
- gguf_writer.write_header_to_file()
- print(" gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- print(" gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
-
-if __name__ == '__main__':
- main()
+++ /dev/null
-#include "ggml.h"
-#include "ggml-alloc.h"
-#include "ggml-backend.h"
-#include "common.h"
-#include "train.h"
-#include "llama.h"
-#include <unordered_map>
-#include <vector>
-#include <cassert>
-#include <climits>
-#include <cstring>
-#include <cstdarg>
-#include <ctime>
-#include <random>
-#include <stdexcept>
-#include <algorithm>
-#include <string>
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-struct my_llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512;
- uint32_t n_embd = 4096;
- uint32_t n_head = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- uint32_t n_ff = 11008;
-
- // float f_norm_eps = 1e-5f; // falcon
- float f_norm_rms_eps = 1e-5f; // llama
-
- float rope_freq_base = 10000.0f;
- float rope_freq_scale = 1.0f;
-};
-
-struct my_llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
-
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
-
- // normalization
- struct ggml_tensor * ffn_norm;
-
- // ff
- struct ggml_tensor * ffn_gate; // w1
- struct ggml_tensor * ffn_down; // w2
- struct ggml_tensor * ffn_up; // w3
-};
-
-struct my_llama_model {
- struct ggml_context * ctx = NULL;
- ggml_backend_buffer_t data = NULL;
-
- my_llama_hparams hparams;
-
- struct ggml_tensor * tok_embeddings;
-
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
-
- std::vector<my_llama_layer> layers;
-};
-
-// gguf constants (sync with gguf.py)
-static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
-static const char * LLM_KV_TRAINING_TYPE = "training.type";
-
-static const char * LLM_KV_GENERAL_NAME = "general.name";
-static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
-static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
-
-static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
-static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
-static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
-static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
-static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
-static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
-static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
-static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
-static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
-
-static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model";
-static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens";
-static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type";
-static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores";
-static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges";
-static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id";
-static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id";
-static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id";
-static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id";
-static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id";
-
-static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
-static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
-static const char * LLM_TENSOR_OUTPUT = "output";
-static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
-static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
-static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
-static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
-static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
-static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
-static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
-static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
-static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
-
-static void print_params(struct my_llama_hparams * params) {
- printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
- printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
- printf("%s: n_embd: %u\n", __func__, params->n_embd);
- printf("%s: n_head: %u\n", __func__, params->n_head);
- printf("%s: n_ff: %u\n", __func__, params->n_ff);
- printf("%s: n_layer: %u\n", __func__, params->n_layer);
- printf("%s: n_rot: %u\n", __func__, params->n_rot);
-}
-
-static void set_param_model(struct my_llama_model * model) {
- const auto& hparams = model->hparams;
-
- const uint32_t n_layer = hparams.n_layer;
-
- struct ggml_context* ctx = model->ctx;
-
- ggml_set_param(ctx, model->tok_embeddings);
- ggml_set_param(ctx, model->norm);
- ggml_set_param(ctx, model->output);
-
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
-
- ggml_set_param(ctx, layer.attention_norm);
- ggml_set_param(ctx, layer.wq);
- ggml_set_param(ctx, layer.wk);
- ggml_set_param(ctx, layer.wv);
- ggml_set_param(ctx, layer.wo);
- ggml_set_param(ctx, layer.ffn_norm);
- ggml_set_param(ctx, layer.ffn_gate);
- ggml_set_param(ctx, layer.ffn_down);
- ggml_set_param(ctx, layer.ffn_up);
- }
-}
-
-static void init_model(struct my_llama_model * model) {
- const auto & hparams = model->hparams;
-
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_vocab = hparams.n_vocab;
- const uint32_t n_ff = hparams.n_ff;
-
-
- std::vector<char> tn_buf;
- tn_buf.resize(GGML_MAX_NAME);
- auto tn = [&tn_buf](const char * key) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
- return tn_buf.data();
- };
- auto tni = [&tn_buf](const char * key, int bid) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), key, bid);
- std::string s = tn_buf.data();
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
- return tn_buf.data();
- };
-
- // context for model tensors without their data
- struct ggml_init_params ctx_model_params;
- ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
- ctx_model_params.mem_buffer = NULL;
- ctx_model_params.no_alloc = true;
-
- struct ggml_context * ctx = ggml_init(ctx_model_params);
- model->ctx = ctx;
-
- model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
- model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
-
- ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
- ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM));
- ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT));
-
- model->layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
-
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
- layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
-
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
- layer.ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- layer.ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
- layer.ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
-
- ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
-
- ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i));
- ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i));
- ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i));
- ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i));
-
- ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i));
-
- ggml_set_name(layer.ffn_gate, tni(LLM_TENSOR_FFN_GATE, i));
- ggml_set_name(layer.ffn_down, tni(LLM_TENSOR_FFN_DOWN, i));
- ggml_set_name(layer.ffn_up, tni(LLM_TENSOR_FFN_UP, i));
- }
-
- set_param_model(model);
-
- // allocate data
- model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
-}
-
-static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
- const auto & hparams = model->hparams;
-
- const uint32_t n_layer = hparams.n_layer;
-
- struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
-
- randomize_tensor_normal(model->tok_embeddings, rnd);
- randomize_tensor_normal(model->norm, rnd);
- randomize_tensor_normal(model->output, rnd);
-
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- randomize_tensor_normal(layer.attention_norm, rnd);
-
- randomize_tensor_normal(layer.wq, rnd);
- randomize_tensor_normal(layer.wk, rnd);
- randomize_tensor_normal(layer.wv, rnd);
- randomize_tensor_normal(layer.wo, rnd);
-
- randomize_tensor_normal(layer.ffn_norm, rnd);
-
- randomize_tensor_normal(layer.ffn_gate, rnd);
- randomize_tensor_normal(layer.ffn_down, rnd);
- randomize_tensor_normal(layer.ffn_up, rnd);
- }
-
- free_random_normal_distribution(rnd);
-}
-
-static struct ggml_tensor * llama_build_train_graphs(
- struct my_llama_model * model,
- ggml_gallocr_t alloc,
- struct ggml_context * ctx,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_cgraph * gb_tmp,
- struct ggml_tensor * * logits,
- struct ggml_tensor * tokens_input,
- struct ggml_tensor * targets,
- const int n_tokens,
- const int n_batch,
- const bool enable_flash_attn,
- const bool enable_checkpointing,
- const bool measure_only) {
-
- ggml_set_scratch(ctx, { 0, 0, nullptr, });
- const int n_past = 0;
- const int N = n_tokens;
- const auto & hparams = model->hparams;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_head = hparams.n_head;
- const int n_rot = hparams.n_rot;
- const int n_ff = hparams.n_ff;
- const float f_norm_rms_eps = hparams.f_norm_rms_eps;
- const float rope_freq_base = hparams.rope_freq_base;
- const float rope_freq_scale = hparams.rope_freq_scale;
-
- auto set_name = [](struct ggml_tensor * t, const char * n) {
- ggml_set_name(t, n);
- if (t->grad) {
- ggml_format_name(t->grad, "%s->grad", n);
- }
- };
-
- // KQ_pos - contains the positions
- struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
- ggml_set_input(KQ_pos);
-
- // rope has so much parameters that we make a custom function for it
- auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
- (struct ggml_tensor * t) -> struct ggml_tensor * {
- // not capturing these, to silcence warnings
- const int rope_mode = 0;
-
- return ggml_rope_ext(
- ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
- );
- };
-
- set_name(tokens_input, "tokens_input");
- set_name(targets, "targets");
-
- GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
- struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
- struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
-
- struct ggml_tensor * cur = t01;
-
- std::vector<struct ggml_tensor *> checkpoints;
- checkpoints.push_back(tokens_input);
- checkpoints.push_back(targets);
- checkpoints.push_back(t00);
- checkpoints.push_back(t01);
-
- const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
-
- for (int il = 0; il < n_layer; ++il) {
- struct my_llama_layer & layer = model->layers[il];
- struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
- struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
- struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
- struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
- struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch);
- struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd);
- struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
- struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
- struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
- struct ggml_tensor * t16;
- if (enable_flash_attn) {
- GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
- //t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
- } else {
- struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
- struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
- struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
- struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
- t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
- }
- struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
- struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
- struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
- struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
- struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
- struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
- struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
- struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.ffn_up, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
- struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.ffn_gate, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
- struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
- struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
- struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.ffn_down, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
- struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
- cur = t30;
- checkpoints.push_back(cur);
- }
- struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
- struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
- struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
- struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
- struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
- struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
-
- checkpoints.push_back(t31);
- checkpoints.push_back(t32);
- checkpoints.push_back(t33);
- checkpoints.push_back(t34);
- checkpoints.push_back(t35);
- checkpoints.push_back(t36);
-
- ggml_build_forward_expand(gf, t36);
-
- if (enable_checkpointing) {
- ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
- } else {
- ggml_graph_cpy(gf, gb);
- ggml_build_backward_expand(ctx, gf, gb, true);
- }
-
- if (alloc) {
- // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
- int n_leafs_before = gb->n_leafs;
- int n_nodes_before = gb->n_nodes;
- // output tensors
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
- // input gradient
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
- // KQ_pos
- ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
- GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
- ggml_set_input(t36->grad);
-
- // allocating checkpoints in one block to reduce memory fragmentation
- // note: they will be freed in reverse order
- for (int i = 0; i < (int) checkpoints.size(); ++i) {
- if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
- ggml_set_input(checkpoints[i]);
- }
- }
-
- //int n_leafs_after = gb->n_leafs;
- //int n_nodes_after = gb->n_nodes;
- if (measure_only) {
- // FIXME: will still allocate
- ggml_gallocr_reserve(alloc, gb);
- } else {
- ggml_gallocr_alloc_graph(alloc, gb);
-
- if (!measure_only) {
- int * data = (int *) KQ_pos->data;
- for (int i = 0; i < N; ++i) {
- data[i] = n_past + i;
- }
- }
- }
-
- // remove the additional nodes and leafs
- for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
- gb->leafs[i] = NULL;
- }
- for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
- gb->nodes[i] = NULL;
- }
- gb->n_leafs = n_leafs_before;
- gb->n_nodes = n_nodes_before;
- }
-
- *logits = t35;
- return t36;
-}
-
-#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
-do { \
- const std::string skey(key); \
- const int kid = gguf_find_key(ctx, skey.c_str()); \
- if (kid >= 0) { \
- enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
- if (ktype != (type)) { \
- die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
- } \
- (dst) = func(ctx, kid); \
- } else if (req) { \
- die_fmt("key not found in model: %s", skey.c_str()); \
- } \
-} while (0)
-
-static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
- // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
- std::string arch;
-
- std::vector<char> keybuf;
- keybuf.resize(512);
- auto kv = [&arch, &keybuf](const char * key) -> const char * {
- snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
- return keybuf.data();
- };
-
- std::vector<char> tn_buf;
- tn_buf.resize(GGML_MAX_NAME);
- auto tn = [&tn_buf](const char * key) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
- return tn_buf.data();
- };
- auto tni = [&tn_buf](const char * key, int bid) -> const char * {
- snprintf(tn_buf.data(), tn_buf.size(), key, bid);
- std::string s = tn_buf.data();
- snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
- return tn_buf.data();
- };
-
- GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
- GGML_ASSERT(arch == "llama");
-
- uint32_t ftype_u;
- GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
- GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
-
- // n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
- GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
-
- GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
- GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
- GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
- GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
-
- model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
- GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
-
- float rope_freq_scale = 1.0f;
- GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
- GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
- GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
- if (rope_freq_scale != 1.0f) {
- model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
- }
-
- init_model(model);
-
- copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
- copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
- copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
-
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
-
- copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
- copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
- copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
- copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
- copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
- copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
- copy_tensor_by_name(layer.ffn_gate, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
- copy_tensor_by_name(layer.ffn_down, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
- copy_tensor_by_name(layer.ffn_up, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
- }
-}
-
-static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
- const char * arch = "llama";
-
- enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
-
- std::vector<char> keybuf;
- keybuf.resize(512);
- auto kv = [arch, &keybuf](const char * key) -> const char * {
- snprintf(keybuf.data(), keybuf.size(), key, arch);
- return keybuf.data();
- };
-
- // set arch
- gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
- gguf_set_val_str(fctx, LLM_KV_GENERAL_NAME, arch);
- gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
-
- // set hparams
- gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx );
- gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd );
- gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff );
- gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head );
- gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer );
- gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot );
-
- gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps );
- gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp
- gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale );
-
- // set vocab by copying from vocab_model gguf file
- {
- struct gguf_init_params params = {
- /*.no_alloc = */ false,
- /*.ctx = */ NULL,
- };
- struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
-
- const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
- if (token_idx == -1) {
- die("cannot find tokenizer vocab in model file");
- }
- const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
-
- const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
- if (score_idx == -1) {
- die("cannot find tokenizer scores in model file");
- }
-
- const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
-
- const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
- if (toktype_idx == -1) {
- die("cannot find token type list in GGUF file");
- }
-
- const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
-
- std::string tokenizer_name;
- GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
-
- gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
- gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
- gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
-
- int32_t special_bos_id = 1;
- int32_t special_eos_id = 2;
- int32_t special_unk_id = 0;
- int32_t special_sep_id = -1;
- int32_t special_pad_id = -1;
- if (tokenizer_name == "llama") {
- // default special tokens
- special_bos_id = 1;
- special_eos_id = 2;
- special_unk_id = 0;
- special_sep_id = -1;
- special_pad_id = -1;
- } else if (tokenizer_name == "gpt2") {
- // read and copy bpe merges
- const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
- if (merges_keyidx == -1) {
- die("cannot find tokenizer merges in model file");
- }
-
- const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
-
- std::vector<const char*> merges;
- merges.resize(n_merges);
- for (int i = 0; i < n_merges; i++) {
- merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
- }
- gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
-
- // default special tokens
- special_bos_id = 11;
- special_eos_id = 11;
- special_unk_id = -1;
- special_sep_id = -1;
- special_pad_id = -1;
- } else {
- fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
- fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
- }
-
- std::vector<const char*> tokens;
- tokens.resize(n_vocab);
- for (uint32_t i = 0; i < n_vocab; i++) {
- tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
- }
- gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
-
- GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
- GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
- GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
- GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
- GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
-
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
- gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
-
- gguf_free(vctx);
- }
-
- // add tensors
- gguf_add_tensor(fctx, model->tok_embeddings);
- gguf_add_tensor(fctx, model->norm);
- gguf_add_tensor(fctx, model->output);
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
-
-
- gguf_add_tensor(fctx, layer.attention_norm);
- gguf_add_tensor(fctx, layer.wq);
- gguf_add_tensor(fctx, layer.wk);
- gguf_add_tensor(fctx, layer.wv);
- gguf_add_tensor(fctx, layer.wo);
- gguf_add_tensor(fctx, layer.ffn_norm);
- gguf_add_tensor(fctx, layer.ffn_gate);
- gguf_add_tensor(fctx, layer.ffn_down);
- gguf_add_tensor(fctx, layer.ffn_up);
- }
-}
-
-static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
- printf("%s: saving to %s\n", __func__, filename);
- struct gguf_context * fctx = gguf_init_empty();
-
- save_llama_model_gguf(fctx, fn_vocab_model, model);
-
- // write file
- const bool only_meta = false;
- gguf_write_to_file(fctx, filename, only_meta);
- gguf_free(fctx);
-}
-
-static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
- load_llama_model_gguf(fctx, f_ggml_ctx, model);
- if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
- std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
- GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
- GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
- } else {
- printf("%s: loaded llama model as checkpoint\n", __func__);
- }
-}
-
-static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
- gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
- save_llama_model_gguf(fctx, fn_vocab_model, model);
- save_train_state_gguf(fctx, train);
-}
-
-static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
- struct ggml_context * f_ggml_ctx;
- struct gguf_init_params params;
- params.no_alloc = false;
- params.ctx = &f_ggml_ctx;
- struct gguf_context * fctx = gguf_init_from_file(filename, params);
- if (fctx == NULL) {
- return false;
- }
-
- load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
-
- gguf_free(fctx);
- return true;
-}
-
-static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
- printf("%s: saving to %s\n", __func__, filename);
- struct gguf_context * fctx = gguf_init_empty();
-
- save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
-
- // write file
- const bool only_meta = false;
- gguf_write_to_file(fctx, filename, only_meta);
- gguf_free(fctx);
-}
-
-struct train_params {
- struct train_params_common common;
-
- const char * fn_vocab_model;
- const char * fn_model_out;
-
- bool only_write_model;
-
- int n_ctx;
- int n_embd;
- int n_head;
- int n_layer;
- int n_ff;
-
- float f_norm_rms_eps;
- float rope_freq_base;
- float rope_freq_scale;
-};
-
-static struct train_params get_default_train_params() {
- struct train_params params;
- params.common = get_default_train_params_common();
- params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
- params.fn_model_out = "ggml-checkpoint-f32.bin";
-
- params.only_write_model = false;
-
- params.n_ctx = 128;
- params.n_embd = 256;
- params.n_head = 8;
- params.n_layer = 16;
- params.n_ff = 768;
-
- params.f_norm_rms_eps = 1e-5f;
- params.rope_freq_base = 10000.0f;
- params.rope_freq_scale = 1.0f;
-
- return params;
-}
-
-static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
-
- fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
- fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
- fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
- fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
- fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff);
- fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head);
- fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer);
- fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
- fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
- fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
-
- print_common_train_usage(argc, argv, ¶ms->common);
-}
-
-static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
- bool invalid_param = false;
- std::string arg;
- struct train_params default_params = get_default_train_params();
- const std::string arg_prefix = "--";
-
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
-
- if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) {
- if (invalid_param) {
- break;
- } else if (params->common.print_usage) {
- train_print_usage(argc, argv, &default_params);
- exit(0);
- }
- } else if (arg == "--vocab-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_vocab_model = argv[i];
- } else if (arg == "--model-out") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_model_out = argv[i];
- } else if (arg == "--only-write-model") {
- params->only_write_model = true;
- } else if (arg == "--embd") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_embd = std::stoi(argv[i]);
- } else if (arg == "--ff") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_ff = std::stoi(argv[i]);
- } else if (arg == "--head") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_head = std::stoi(argv[i]);
- } else if (arg == "--layer") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->n_layer = std::stoi(argv[i]);
- } else if (arg == "--norm-rms-eps") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->f_norm_rms_eps = std::stof(argv[i]);
- } else if (arg == "--rope-freq-base") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->rope_freq_base = std::stof(argv[i]);
- } else if (arg == "--rope-freq-scale") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->rope_freq_scale = std::stof(argv[i]);
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- train_print_usage(argc, argv, &default_params);
- exit(1);
- }
- finish_processing_train_args(¶ms->common);
-
- return true;
-}
-
-struct save_train_files_data {
- const char * fn_checkpoint_out;
- const char * fn_model_out;
- const char * fn_vocab_model;
- const char * pattern_fn_it;
- const char * fn_latest;
- struct my_llama_model * model;
-};
-
-static void save_train_files(void * vdata, struct train_state * train) {
- struct save_train_files_data * data = (struct save_train_files_data *) vdata;
- int64_t iter = train->opt->iter;
-
- if (strlen(data->fn_checkpoint_out) > 0) {
- save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
- save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train);
-
- }
- if (strlen(data->fn_model_out) > 0) {
- save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
- save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model);
- }
-}
-
-static int64_t get_parameter_count(struct my_llama_model* model) {
- int64_t nx = 0;
- nx += ggml_nelements(model->tok_embeddings);
- nx += ggml_nelements(model->norm);
- nx += ggml_nelements(model->output);
-
- for (uint32_t i = 0; i < model->layers.size(); ++i) {
- auto & layer = model->layers[i];
- nx += ggml_nelements(layer.attention_norm);
- nx += ggml_nelements(layer.wq);
- nx += ggml_nelements(layer.wk);
- nx += ggml_nelements(layer.wv);
- nx += ggml_nelements(layer.wo);
- nx += ggml_nelements(layer.ffn_norm);
- nx += ggml_nelements(layer.ffn_gate);
- nx += ggml_nelements(layer.ffn_down);
- nx += ggml_nelements(layer.ffn_up);
- }
- return nx;
-}
-
-int main(int argc, char ** argv) {
- struct train_params params = get_default_train_params();
-
- if (!train_params_parse(argc, argv, ¶ms)) {
- return 1;
- }
-
- if (params.common.seed == LLAMA_DEFAULT_SEED) {
- params.common.seed = time(NULL);
- }
- printf("%s: seed: %u\n", __func__, params.common.seed);
- srand(params.common.seed);
-
- struct llama_model_params mparams = llama_model_default_params();
- mparams.vocab_only = true;
-
- struct llama_context_params cparams = llama_context_default_params();
-
- struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams);
- struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams);
-
- struct my_llama_model model;
- model.hparams.n_vocab = llama_n_vocab(lmodel);
- model.hparams.n_ctx = params.common.n_ctx;
- model.hparams.n_embd = params.n_embd;
- model.hparams.n_head = params.n_head;
- model.hparams.n_layer = params.n_layer;
- model.hparams.n_ff = params.n_ff;
- // llama.cpp requires n_rot to be exactly n_embd / n_head
- model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
- model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
- model.hparams.rope_freq_base = params.rope_freq_base;
- model.hparams.rope_freq_scale = params.rope_freq_scale;
-
- struct train_state * train = init_train_state();
- struct ggml_opt_context * opt = train->opt;
-
- // set opt params from command line
- opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
- opt->params.print_forward_graph = false;
- opt->params.print_backward_graph = false;
- opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
- opt->params.n_threads = params.common.n_threads;
- opt->params.past = params.common.opt_past;
- opt->params.delta = params.common.opt_delta;
- opt->params.max_no_improvement = params.common.opt_max_no_improvement;
- opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
- opt->params.adam.n_iter = params.common.adam_n_iter;
- opt->params.adam.sched = 1.0f;
- opt->params.adam.alpha = params.common.adam_alpha;
- opt->params.adam.decay = params.common.adam_decay;
- opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
- opt->params.adam.beta1 = params.common.adam_beta1;
- opt->params.adam.beta2 = params.common.adam_beta2;
- opt->params.adam.gclip = params.common.adam_gclip;
- opt->params.adam.eps_f = params.common.adam_eps_f;
-
- printf("%s: init model\n", __func__);
- bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
- if (existed) {
- // overwrite last n_ctx with user provided n_ctx
- if (params.common.custom_n_ctx) {
- model.hparams.n_ctx = params.common.n_ctx;
- }
-
- const bool opt_past_changed = opt->params.past != params.common.opt_past;
-
- if (opt_past_changed) {
- die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
- // need to discard previous optimizer past function value statistics and opt_init with new shapes
- // TODO
- }
- } else {
- init_model(&model);
- randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
- if (!params.only_write_model) {
- ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
- }
- }
- opt->iter = train->train_its;
-
- print_params(&model.hparams);
- printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
- printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
- printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
- printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
- printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
-
- if (params.only_write_model) {
- save_train_files_data save_data;
- save_data.fn_checkpoint_out = "";
- save_data.fn_model_out = params.fn_model_out;
- save_data.fn_vocab_model = params.fn_vocab_model;
- save_data.pattern_fn_it = params.common.pattern_fn_it;
- save_data.fn_latest = params.common.fn_latest;
- save_data.model = &model;
-
- save_train_files(&save_data, train);
-
- free_train_state(train);
- ggml_free(model.ctx);
- llama_free(lctx);
- llama_free_model(lmodel);
- return 0;
- }
-
- printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
- printf("%s: opt iter %d\n", __func__, opt->iter);
-
- int n_tokens = model.hparams.n_ctx;
- int n_vocab = model.hparams.n_vocab;
- int n_batch = params.common.n_batch;
-
- // context for input tensors without their data
- struct ggml_init_params ctx_input_params = {
- ggml_tensor_overhead() * 2, // mem_size
- NULL, // mem_buffer
- true, // no_alloc
- };
- struct ggml_context * ctx_input = ggml_init(ctx_input_params);
-
- // the input tensors
- struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
- struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
-
- // measure required memory for input tensors
- // allocate input tensors
- ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
- size_t max_input_size = ggml_backend_buffer_get_size(input_data);
- printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
-
- // context for compute tensors without their data
- const size_t estimated_compute_size_wo_data = (
- 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
- (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
- );
- struct ggml_init_params ctx_compute_params = {
- estimated_compute_size_wo_data, // mem_size
- NULL, // mem_buffer
- true, // no_alloc
- };
- struct ggml_context * ctx_compute = NULL;
-
- struct ggml_tensor * loss = NULL;
- struct ggml_tensor * logits = NULL;
-
- struct ggml_cgraph * gf = NULL;
- struct ggml_cgraph * gb = NULL;
- struct ggml_cgraph * gb_tmp = NULL;
-
- // measure required memory for compute tensors
- size_t best_compute_size = SIZE_MAX;
- enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
- // find best evaluation order
- for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
- ctx_compute = ggml_init(ctx_compute_params);
- ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
- gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gf->order = (enum ggml_cgraph_eval_order) order;
- gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gb_tmp = params.common.use_checkpointing
- ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
- : NULL;
- loss = llama_build_train_graphs(
- &model, alloc, ctx_compute,
- gf, gb, gb_tmp,
- &logits, tokens_input, target_probs,
- n_tokens, n_batch,
- params.common.use_flash,
- params.common.use_checkpointing,
- true
- );
- size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
- if (max_compute_size < best_compute_size) {
- best_compute_size = max_compute_size;
- best_order = gf->order;
- }
- ggml_free(ctx_compute);
- }
- size_t max_compute_size = best_compute_size;
- printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
- printf("%s: evaluation order = %s\n", __func__,
- (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
- (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
- "invalid");
-
- // allocate compute tensors
- ctx_compute = ggml_init(ctx_compute_params);
- ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
- gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gf->order = best_order;
- gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
- gb_tmp = params.common.use_checkpointing
- ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
- : NULL;
- loss = llama_build_train_graphs(
- &model, alloc, ctx_compute,
- gf, gb, gb_tmp,
- &logits, tokens_input, target_probs,
- n_tokens, n_batch,
- params.common.use_flash,
- params.common.use_checkpointing,
- false
- );
-
- std::vector<llama_token> train_tokens;
- std::vector<size_t> train_samples_begin;
- std::vector<size_t> train_samples_size;
- printf("%s: tokenize training data\n", __func__);
- tokenize_file(lctx,
- params.common.fn_train_data,
- params.common.sample_start,
- params.common.include_sample_start,
- params.common.overlapping_samples,
- n_tokens,
- train_tokens,
- train_samples_begin,
- train_samples_size);
- GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
-
- printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
-
- size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
- const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
- if (changed_train_data) {
- printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
- }
- if (params.common.force_reshuffle) {
- printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
- }
- if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
- train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
- train->shuffle_sample_count = train_samples_size.size();
- train->shuffle_next_sample = 0;
- train->shuffle_samples_hash = shuffle_samples_hash;
- }
- std::vector<size_t> train_shuffled_samples_offs;
- std::vector<size_t> train_shuffled_samples_begin;
- std::vector<size_t> train_shuffled_samples_size;
- train_shuffled_samples_offs.resize(train_samples_begin.size());
- train_shuffled_samples_begin.resize(train_samples_begin.size());
- train_shuffled_samples_size.resize(train_samples_size.size());
- train->shuffle_rng_state_next = shuffle_samples(
- train->shuffle_rng_state_current,
- train_shuffled_samples_offs.data(),
- train_shuffled_samples_begin.data(),
- train_shuffled_samples_size.data(),
- train_samples_begin.data(),
- train_samples_size.data(),
- train_samples_size.size());
- printf("%s: begin training\n", __func__);
-
- save_train_files_data save_data;
- save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
- save_data.fn_model_out = params.fn_model_out;
- save_data.fn_vocab_model = params.fn_vocab_model;
- save_data.pattern_fn_it = params.common.pattern_fn_it;
- save_data.fn_latest = params.common.fn_latest;
- save_data.model = &model;
-
- struct train_opt_callback_data opt_cb_data;
- opt_cb_data.params = ¶ms.common;
- opt_cb_data.train = train;
- opt_cb_data.save_cb = &save_train_files;
- opt_cb_data.save_data = &save_data;
- opt_cb_data.lctx = lctx;
- opt_cb_data.last_save_iter = opt->iter;
- opt_cb_data.tokens_data = train_tokens.data();
- opt_cb_data.tokens_size = train_tokens.size();
- opt_cb_data.samples_begin = train_samples_begin.data();
- opt_cb_data.samples_size = train_samples_size.data();
- opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
- opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
- opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
- opt_cb_data.samples_count = train_samples_size.size();
- opt_cb_data.tokens_input = tokens_input;
- opt_cb_data.target_probs = target_probs;
- opt_cb_data.first_iter = opt->iter;
- opt_cb_data.first_epoch = train->train_epochs;
- opt_cb_data.iter_at_last_epoch = -1;
- opt_cb_data.last_time = ggml_time_ms();
- opt_cb_data.millis_per_iter = 0.0;
-
- // measure required memory for work buffer
- size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
- printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
-
- // context for work buffer
- struct ggml_init_params ctx_work_params = {
- max_work_size, // mem_size
- NULL, // mem_buffer
- false, // no_alloc
- };
- struct ggml_context * ctx_work = ggml_init(ctx_work_params);
-
- int64_t t0 = ggml_time_ms();
-
- ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
-
- ggml_free(ctx_work);
- ggml_free(ctx_compute);
- ggml_free(ctx_input);
-
- int64_t t1 = ggml_time_ms();
- printf("%s: total training time: ", __func__);
- print_duration((double) (t1 - t0));
- printf("\n");
-
- int new_iters = opt->iter - opt_cb_data.last_save_iter;
- if (new_iters > 0) {
- train->train_its += new_iters;
- train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
-
- save_train_files(&save_data, train);
- opt_cb_data.last_save_iter = opt->iter;
- }
-
- ggml_free(opt->ctx);
- free_train_state(train);
- ggml_free(model.ctx);
- llama_free(lctx);
- llama_free_model(lmodel);
- return 0;
-}