} block_q4_2;
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
-#define QK4_3 16
-typedef struct {
- __half d; // delta
- __half m; // min
- uint8_t qs[QK4_3 / 2]; // nibbles / quants
-} block_q4_3;
-static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
-
#define QK5_0 32
typedef struct {
__half d; // delta
}
}
-static __global__ void dequantize_block_q4_3(const void * vx, float * y) {
- const block_q4_3 * x = (const block_q4_3 *) vx;
-
- const int i = blockIdx.x;
-
- const float d = x[i].d;
- const float m = x[i].m;
-
- const uint8_t * pp = x[i].qs;
-
- for (int l = 0; l < QK4_3; l += 2) {
- const uint8_t vi = pp[l/2];
-
- const int8_t vi0 = vi & 0xf;
- const int8_t vi1 = vi >> 4;
-
- const float v0 = vi0*d + m;
- const float v1 = vi1*d + m;
-
- y[i*QK4_3 + l + 0] = v0;
- y[i*QK4_3 + l + 1] = v1;
- }
-}
-
static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
const block_q5_0 * x = (const block_q5_0 *) vx;
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
- const int nb = k / QK4_3;
- dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y);
-}
-
void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_0;
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
}
+dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
+ switch (type) {
+ case GGML_TYPE_Q4_0:
+ return dequantize_row_q4_0_cuda;
+ case GGML_TYPE_Q4_1:
+ return dequantize_row_q4_1_cuda;
+ case GGML_TYPE_Q4_2:
+ return dequantize_row_q4_2_cuda;
+ case GGML_TYPE_Q5_0:
+ return dequantize_row_q5_0_cuda;
+ case GGML_TYPE_Q5_1:
+ return dequantize_row_q5_1_cuda;
+ case GGML_TYPE_Q8_0:
+ return dequantize_row_q8_0_cuda;
+ default:
+ return nullptr;
+ }
+}
+
// buffer pool for cuda
#define MAX_CUDA_BUFFERS 16
CUDA_CHECK(cudaFree(ptr));
}
-cublasHandle_t g_cublasH = NULL;
-cudaStream_t g_cudaStream = NULL;
+cublasHandle_t g_cublasH = nullptr;
+cudaStream_t g_cudaStream = nullptr;
+cudaStream_t g_cudaStream2 = nullptr;
+cudaEvent_t g_cudaEvent = nullptr;
-void ggml_init_cublas(void) {
- if (g_cublasH == NULL) {
+void ggml_init_cublas() {
+ if (g_cublasH == nullptr) {
// create cublas handle, bind a stream
CUBLAS_CHECK(cublasCreate(&g_cublasH));
-
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
-
CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
+ // create additional stream and event for synchronization
+ CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking));
+ CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming));
+
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
}
}
+
+cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
+ const uint64_t ne0 = src->ne[0];
+ const uint64_t ne1 = src->ne[1];
+ const uint64_t nb0 = src->nb[0];
+ const uint64_t nb1 = src->nb[1];
+ const uint64_t nb2 = src->nb[2];
+ const uint64_t nb3 = src->nb[3];
+ const enum ggml_type type = src->type;
+ const size_t ts = ggml_type_size(type);
+ const size_t bs = ggml_blck_size(type);
+
+ const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
+ if (nb0 == ts && nb1 == ts*ne0/bs) {
+ return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
+ } else if (nb0 == ts) {
+ return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
+ } else {
+ for (uint64_t i1 = 0; i1 < ne1; i1++) {
+ const void * rx = (const void *) ((const char *) x + i1*nb1);
+ void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
+ // pretend the row is a matrix with cols=1
+ cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
+ if (r != cudaSuccess) return r;
+ }
+ return cudaSuccess;
+ }
+}
+
+void * ggml_cuda_host_malloc(size_t size) {
+ void * ptr;
+ CUDA_CHECK(cudaMallocHost((void **) &ptr, size));
+ return ptr;
+}
+
+void ggml_cuda_host_free(void * ptr) {
+ CUDA_CHECK(cudaFreeHost(ptr));
+}
} block_q4_2;
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
-#define QK4_3 16
-typedef struct {
- ggml_fp16_t d; // delta
- ggml_fp16_t m; // min
- uint8_t qs[QK4_3 / 2]; // nibbles / quants
-} block_q4_3;
-static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
-
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
quantize_row_q4_2_reference(x, y, k);
}
-static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
- assert(k % QK4_3 == 0);
- const int nb = k / QK4_3;
-
- for (int i = 0; i < nb; i++) {
- float min = FLT_MAX;
- float max = -FLT_MAX;
-
- for (int l = 0; l < QK4_3; l++) {
- const float v = x[i*QK4_3 + l];
- if (v < min) min = v;
- if (v > max) max = v;
- }
-
- const float d = (max - min) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
-
- y[i].d = GGML_FP32_TO_FP16(d);
- y[i].m = GGML_FP32_TO_FP16(min);
-
- for (int l = 0; l < QK4_3; l += 2) {
- const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
- const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
-
- const uint8_t vi0 = (int) (v0 + 0.5f);
- const uint8_t vi1 = (int) (v1 + 0.5f);
-
- assert(vi0 < 16);
- assert(vi1 < 16);
-
- y[i].qs[l/2] = vi0 | (vi1 << 4);
- }
- }
-}
-
-static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
- assert(k % QK4_3 == 0);
-
- block_q4_3 * restrict y = vy;
-
- quantize_row_q4_3_reference(x, y, k);
-}
-
static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
}
}
-static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
- assert(k % QK4_3 == 0);
- const int nb = k / QK4_3;
-
- const block_q4_3 * restrict x = vx;
-
- for (int i = 0; i < nb; i++) {
- const float d = GGML_FP16_TO_FP32(x[i].d);
- const float m = GGML_FP16_TO_FP32(x[i].m);
-
- const uint8_t * restrict pp = x[i].qs;
-
- for (int l = 0; l < QK4_3; l += 2) {
- const uint8_t vi = pp[l/2];
-
- const int8_t vi0 = vi & 0x0F;
- const int8_t vi1 = vi >> 4;
-
- const float v0 = vi0*d + m;
- const float v1 = vi1*d + m;
-
- y[i*QK4_3 + l + 0] = v0;
- y[i*QK4_3 + l + 1] = v1;
-
- assert(!isnan(y[i*QK4_3 + l + 0]));
- assert(!isnan(y[i*QK4_3 + l + 1]));
- }
- }
-}
-
static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
.vec_dot_q = ggml_vec_dot_q4_2_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
- [GGML_TYPE_Q4_3] = {
- .dequantize_row_q = dequantize_row_q4_3,
- .quantize_row_q = quantize_row_q4_3,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference,
- .quantize_row_q_dot = quantize_row_q8_1,
- .vec_dot_q = ggml_vec_dot_q4_3_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- },
[GGML_TYPE_Q5_0] = {
.dequantize_row_q = dequantize_row_q5_0,
.quantize_row_q = quantize_row_q5_0,
#endif
}
-static void ggml_vec_dot_q4_3_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
- const int nb = n / QK8_1;
-
- assert(n % QK8_1 == 0);
- assert(nb % 2 == 0);
- assert(QK8_1 == 2*QK4_3);
-
- const block_q4_3 * restrict x = vx;
- const block_q8_1 * restrict y = vy;
-
-#if defined(__ARM_NEON)
- float32x4_t sumv0 = vdupq_n_f32(0.0f);
- float32x4_t sumv1 = vdupq_n_f32(0.0f);
-
- float summs0 = 0.0f;
- float summs1 = 0.0f;
-
- for (int i = 0; i < nb; ++i) {
- const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
- const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
-
- const block_q8_1 * restrict y0 = &y[i + 0];
-
- summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
- summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
-
- const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
-
- // 4-bit -> 8-bit
- const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0x0F)));
- const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
-
- // interleave
- const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
- const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
-
- // load y
- const int8x16_t v1_0l = vld1q_s8(y0->qs);
- const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
-
- const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
- const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
-
-#if defined(__ARM_FEATURE_DOTPROD)
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
-#else
- const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
- const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
- const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
- const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
-
- const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
- const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
-
- sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
- sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
-#endif
- }
-
- *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
-#elif defined(__AVX2__)
- // Initialize accumulator with zeros
- __m256 acc = _mm256_setzero_ps();
- float summs = 0.0f;
-
- // Main loop
- for (int i = 0; i < nb; i++) {
- const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
- const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
- const __m256 dx = _mm256_set_m128(d1, d0);
-
- summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
- + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
-
- const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
- const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
- const __m256i bx = _mm256_set_m128i(bx1, bx0);
-
- const __m256 dy = _mm256_broadcast_ss(&y[i].d);
- const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
-
- const __m256 q = mul_sum_i8_pairs_float(bx, by);
-
- acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
- }
-
- *s = hsum_float_8(acc) + summs;
-#else
- // scalar
- float sumf = 0.0;
- for (int i = 0; i < nb; i++) {
- const uint8_t * restrict x0 = x[2*i + 0].qs;
- const uint8_t * restrict x1 = x[2*i + 1].qs;
- const int8_t * restrict y0 = y[i].qs;
-
- const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
- const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
- const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
- const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
-
- int sxy_0 = 0;
- int sxy_1 = 0;
-
- for (int j = 0; j < QK8_1/4; j++) {
- const uint8_t v0 = x0[j];
- const uint8_t v1 = x1[j];
-
- const int x0_0 = v0 & 0x0F;
- const int x1_0 = v0 >> 4;
-
- const int x0_1 = v1 & 0x0F;
- const int x1_1 = v1 >> 4;
-
- const int y0_0 = y0[2*j + 0];
- const int y1_0 = y0[2*j + 1];
-
- const int y0_1 = y0[2*(j + QK8_1/4) + 0];
- const int y1_1 = y0[2*(j + QK8_1/4) + 1];
-
- sxy_0 += x0_0*y0_0 + x1_0*y1_0;
- sxy_1 += x0_1*y0_1 + x1_1*y1_1;
- }
-
- sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
- }
- *s = sumf;
-#endif
-}
-
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int nb = n / QK8_0;
[GGML_TYPE_Q4_0] = QK4_0,
[GGML_TYPE_Q4_1] = QK4_1,
[GGML_TYPE_Q4_2] = QK4_2,
- [GGML_TYPE_Q4_3] = QK4_3,
[GGML_TYPE_Q5_0] = QK5_0,
[GGML_TYPE_Q5_1] = QK5_1,
[GGML_TYPE_Q8_0] = QK8_0,
[GGML_TYPE_Q4_0] = sizeof(block_q4_0),
[GGML_TYPE_Q4_1] = sizeof(block_q4_1),
[GGML_TYPE_Q4_2] = sizeof(block_q4_2),
- [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
[GGML_TYPE_Q5_0] = sizeof(block_q5_0),
[GGML_TYPE_Q5_1] = sizeof(block_q5_1),
[GGML_TYPE_Q8_0] = sizeof(block_q8_0),
[GGML_TYPE_Q4_0] = "q4_0",
[GGML_TYPE_Q4_1] = "q4_1",
[GGML_TYPE_Q4_2] = "q4_2",
- [GGML_TYPE_Q4_3] = "q4_3",
[GGML_TYPE_Q5_0] = "q5_0",
[GGML_TYPE_Q5_1] = "q5_1",
[GGML_TYPE_Q8_0] = "q8_0",
[GGML_TYPE_Q4_0] = true,
[GGML_TYPE_Q4_1] = true,
[GGML_TYPE_Q4_2] = true,
- [GGML_TYPE_Q4_3] = true,
[GGML_TYPE_Q5_0] = true,
[GGML_TYPE_Q5_1] = true,
[GGML_TYPE_Q8_0] = true,
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
- case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
+ if (
+#if !defined(GGML_USE_CUBLAS)
+ ggml_is_contiguous(src0) &&
+ ggml_is_contiguous(src1) &&
+#endif
+ ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
#if defined(GGML_USE_CUBLAS)
const float alpha = 1.0f;
const float beta = 0.0f;
- const int x_ne = ne01 * ne10;
+ const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
+#if !defined(GGML_USE_CUBLAS)
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
-
+#endif
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS)
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
- CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
// compute
CUBLAS_CHECK(
}
#if defined(GGML_USE_CUBLAS)
- ggml_fp16_t * const wdata = params->wdata;
-
const float alpha = 1.0f;
const float beta = 0.0f;
- const int x_ne = ne01 * ne10;
+ const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size;
- float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
- float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
- float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
+ ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
+ ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
+ float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
#else
float * const wdata = params->wdata;
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
#if defined(GGML_USE_CUBLAS)
+ // copy src0 while converting src1
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
+
// with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
+ ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne11; ++i01) {
#endif
#if defined(GGML_USE_CUBLAS)
- const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
-
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
#if defined(GGML_USE_CUBLAS)
const float alpha = 1.0f;
const float beta = 0.0f;
- const int x_ne = ne01 * ne10;
+ const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size, y_size, d_size, q_size;
- float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
- float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
- float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
- float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
+ float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
+ float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
+ float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
+ void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
- void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
- if (type == GGML_TYPE_Q4_0) {
- dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
- }
- else if (type == GGML_TYPE_Q4_1) {
- dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
- }
- else if (type == GGML_TYPE_Q4_2) {
- dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
- }
- else if (type == GGML_TYPE_Q4_3) {
- dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
- }
- else if (type == GGML_TYPE_Q5_0) {
- dequantize_row_q_cuda = dequantize_row_q5_0_cuda;
- }
- else if (type == GGML_TYPE_Q5_1) {
- dequantize_row_q_cuda = dequantize_row_q5_1_cuda;
- }
- else if (type == GGML_TYPE_Q8_0) {
- dequantize_row_q_cuda = dequantize_row_q8_0_cuda;
- }
- else {
- GGML_ASSERT(false);
- }
-#elif !defined(GGML_USE_CLBLAST)
+ const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
+ GGML_ASSERT(dequantize_row_q_cuda != NULL);
+#else
float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
#endif
#if defined(GGML_USE_CUBLAS)
// copy and dequantize on device
- CUDA_CHECK(
- cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
- GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
- dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
+ dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
CUDA_CHECK(cudaGetLastError());
+ CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
#elif defined(GGML_USE_CLBLAST)
const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
#else
const float * x = wdata;
#endif
-
#if defined(GGML_USE_CUBLAS)
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
+
+ // wait for dequantization
+ CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
// compute
CUBLAS_CHECK(
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
- case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
- case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
- case GGML_TYPE_Q4_3:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*MAX(ggml_nelements(node->src1), ggml_nelements(node->src0));
//printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
//printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
//printf("cur = %zu\n", cur);
#endif
} else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
cur = 0;
+#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
+ if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
+ node->n_tasks = 1;
+ }
+#endif
} else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
return (n/QK4_2*sizeof(block_q4_2));
}
-size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK4_3 == 0);
- const int nb = k / QK4_3;
-
- for (int j = 0; j < n; j += k) {
- block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
-
- quantize_row_q4_3_reference(src + j, y, k);
-
- for (int i = 0; i < nb; i++) {
- for (int l = 0; l < QK4_3; l += 2) {
- const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
- const uint8_t vi1 = y[i].qs[l/2] >> 4;
-
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
-
- return (n/QK4_3*sizeof(block_q4_3));
-}
-
size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
result = ggml_quantize_q4_2(src + start, block, n, n, hist);
} break;
- case GGML_TYPE_Q4_3:
- {
- GGML_ASSERT(start % QK4_3 == 0);
- block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
- result = ggml_quantize_q4_3(src + start, block, n, n, hist);
- } break;
case GGML_TYPE_Q5_0:
{
GGML_ASSERT(start % QK5_0 == 0);