]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
CANN: Optimize MUL_MAT_ID (#15658)
authorhipudding <redacted>
Mon, 1 Sep 2025 00:57:23 +0000 (08:57 +0800)
committerGitHub <redacted>
Mon, 1 Sep 2025 00:57:23 +0000 (08:57 +0800)
ggml/src/ggml-cann/aclnn_ops.cpp

index 1f1d489ffa4113ec622a24b2eaf849fee7da250c..84e705af9aa75ab8ca0d23d68d3cf9a68b06ff68 100755 (executable)
@@ -2867,174 +2867,49 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){
  */
 static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
     //dst   [M, K, N, 1]
-    ggml_tensor * src0 = dst->src[0];  //src0  [D, M, A, 1]
-    ggml_tensor * src1 = dst->src[1];  //src1  [D, B, N, 1], B = K or B = 1
+    ggml_tensor * src0 = dst->src[0];  //src0  [D, M, A, 1]  -> [D, M, K, 1]
+    ggml_tensor * src1 = dst->src[1];  //src1  [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1]
     ggml_tensor * ids  = dst->src[2];  //ids   [K, N]
 
-    GGML_TENSOR_BINARY_OP_LOCALS
-
-    // copy index from npu to cpu
-    int64_t n_as = ne02; // A
-    int64_t n_ids = ids->ne[0]; // K
-
-    std::vector<char> ids_host(ggml_nbytes(ids));
-    ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
-        ACL_MEMCPY_DEVICE_TO_HOST);
-    ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
+    GGML_ASSERT(src0->ne[3] == 1);
+    GGML_ASSERT(src1->ne[3] == 1);
+    GGML_ASSERT(dst->ne[3] == 1);
 
-    char * src0_original = (char *) src0->data;
-    char * src1_original = (char *) src1->data;
-    char * dst_original  = (char *)  dst->data;
-    size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03};
+    int64_t batch = src1->ne[2];
+    GGML_ASSERT(batch == ids->ne[1]);
 
-    // src0 is F16, src1 is F32, dst is F32
-    ggml_cann_pool_alloc src0_cast_allocator;
-    if (src0->type == GGML_TYPE_F16) {
-        src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0));
-        void* src0_cast_buf = src0_cast_allocator.get();
+    ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0));
+    void* export_ptr = export_allocator.get();
+    for (int64_t i = 0; i < batch; i++) {
+        aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]);
+        aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3);
 
-        size_t cast_nb[GGML_MAX_DIMS];
-        cast_nb[0] = sizeof(float_t);
-        for (int i = 1; i < GGML_MAX_DIMS; i++) {
-            cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1];
+        int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]};
+        size_t select_export_nb[3];
+        select_export_nb[0] = src0->nb[0];
+        for (int k = 1;k < 3; k++) {
+            select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1];
         }
 
-        aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0);
-        aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf,
-            ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4);
-        GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast);
-        ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16);
+        aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3);
+        GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export);
 
-        src0_original = (char *) src0_cast_buf;
-        memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
-    }
+        int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]};
+        size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]};
+        aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3);
 
-#ifdef ASCEND_310P
-    ggml_tensor src0_row = *src0;
-    ggml_tensor src1_row = *src1;
-    ggml_tensor dst_row = *dst;
+        int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]};
+        size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]};
+        aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]);
 
-    if (src0->type == GGML_TYPE_F16) {
-        src0_row.type = GGML_TYPE_F32;
-    }
+        int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]};
+        size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]};
+        aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]);
 
-    // src0_row [D, M, 1, 1] weight without permute
-    src0_row.ne[2] = 1;
-    src0_row.ne[3] = 1;
-    src0_row.nb[0] = ori_src0_nb[0];
-    src0_row.nb[1] = ori_src0_nb[1];
-    src0_row.nb[2] = ori_src0_nb[1];
-    src0_row.nb[3] = ori_src0_nb[1];
-
-    // src1_row [D, 1, 1, 1] -> input
-    src1_row.ne[1] = 1;
-    src1_row.ne[2] = 1;
-    src1_row.ne[3] = 1;
-    src1_row.nb[2] = nb11;
-    src1_row.nb[3] = nb11;
+        GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2);
 
-    // dst_row [M, 1, 1, 1] -> out
-    dst_row.ne[1] = 1;
-    dst_row.ne[2] = 1;
-    dst_row.ne[3] = 1;
-    dst_row.nb[2] = nb1;
-    dst_row.nb[3] = nb1;
-
-    //create weight for one row
-    for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
-        for (int64_t id = 0; id < n_ids; id++) {
-            // expert index
-            int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
-            GGML_ASSERT(i02 >= 0 && i02 < n_as);
-
-            // If B = 1 (broadcast), always use 0; otherwise, use id.
-            int64_t i11 = (ne11 == 1 ? 0 : id);
-            int64_t i12 = iid1;
-
-            int64_t i1 = id;
-            int64_t i2 = i12;
-
-            void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
-            void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
-            void* dst_tmp_ptr  = dst_original  + i1*nb1   + i2*nb2;
-
-            src0_row.data = src0_tmp_ptr;
-            src1_row.data = src1_tmp_ptr;
-            dst_row.data = dst_tmp_ptr;
-            dst_row.src[0] = &src0_row;
-            dst_row.src[1] = &src1_row;
-
-            ggml_cann_mul_mat(ctx, &dst_row);
-        }
-    }
-    return;
-#endif
-
-    std::vector<aclTensor*> src0_tensor_vec;
-    std::vector<aclTensor*> src1_tensor_vec;
-    std::vector<aclTensor*> dst_tensor_vec;
-    for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
-        for (int64_t id = 0; id < n_ids; id++) {
-            // src0_row [M, D] -> weight && permute
-            int64_t src0_ne[2] = {ne01, ne00};
-            size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]};
-            // src1_row [D, 1] -> input
-            int64_t src1_ne[2] = {ne10, 1};
-            size_t src1_nb[2] = {nb10, nb11};
-            // dst_row [M, 1] -> out
-            int64_t dst_ne[2] = {ne0, 1};
-            size_t dst_nb[2] = {nb0, nb1};
-
-            // expert index
-            int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
-            GGML_ASSERT(i02 >= 0 && i02 < n_as);
-
-            // If B = 1 (broadcast), always use 0; otherwise, use id.
-            int64_t i11 = (ne11 == 1 ? 0 : id);
-            int64_t i12 = iid1;
-
-            int64_t i1 = id;
-            int64_t i2 = i12;
-
-            void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
-            void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
-            void* dst_tmp_ptr  = dst_original  + i1*nb1   + i2*nb2;
-
-            aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr,
-                ACL_FLOAT, sizeof(float),
-                src0_ne, src0_nb, 2);
-            aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr,
-                ACL_FLOAT, sizeof(float),
-                src1_ne, src1_nb, 2);
-            aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr,
-                ACL_FLOAT, sizeof(float),
-                dst_ne, dst_nb, 2);
-
-            src0_tensor_vec.push_back(acl_src0);
-            src1_tensor_vec.push_back(acl_src1);
-            dst_tensor_vec.push_back(acl_dst);
-        }
+        ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose);
     }
-
-    size_t GROUP_SIZE = 128;
-    // GroupedMatmulV3 required tensor_list.size < 128
-    for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
-        // split and call GroupedMatmulV3
-        size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
-        std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
-        std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
-        std::vector<aclTensor*> dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end);
-
-        aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size());
-        aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
-        aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
-
-        GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list,
-            nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
-
-        ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);
-    }
-    return;
 }
 
 /**