float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
- float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
- float yarn_beta_fast = 32.0f; // YaRN low correction dim
- float yarn_beta_slow = 1.0f; // YaRN high correction dim
+ float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor
+ float yarn_beta_fast = -1.0f; // YaRN low correction dim
+ float yarn_beta_slow = -1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
// offload params
if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
# ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
res = "qwen2"
+ if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
+ # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
+ res = "grok-2"
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
yield (new_name, data_torch)
-@ModelBase.register("GrokForCausalLM")
+@ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
class GrokModel(TextModel):
model_arch = gguf.MODEL_ARCH.GROK
def set_vocab(self):
- self._set_vocab_sentencepiece()
+ if (self.dir_model / 'tokenizer.model').is_file():
+ self._set_vocab_sentencepiece()
+ return
+
+ if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
+ logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
+ sys.exit(1)
+
+ self._set_vocab_gpt2()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def set_gguf_parameters(self):
super().set_gguf_parameters()
- _experts: list[dict[str, Tensor]] | None = None
+ self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
+ self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
+ if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
+ self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
+
+ if (rope_dim := self.hparams.get("head_dim")) is None:
+ rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
+
+ if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
+ self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
+
+ # Treat "original" as "yarn", seems to have been a mistake
+ if self.hparams.get("rope_type") in ("yarn", "original"):
+ self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
+ self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
+ self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
+ self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
+ self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
+ self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
+ self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
+
+ if temp_len := self.hparams.get("attn_temperature_len"):
+ self.gguf_writer.add_attn_temperature_length(temp_len)
+
+ self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
+ self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
+ self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
+
+ _experts: list[dict[str, list[Tensor]]] | None = None
+ _cur_expert = ""
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ tensors: list[tuple[str, Tensor]] = []
+ is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
+
+ if not is_expert:
+ tensors.append((self.map_tensor_name(name), data_torch))
+
# process the experts separately
- if name.find(".moe.") != -1:
+ if is_expert or self._cur_expert:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
- self._experts[bid][name] = data_torch
+ # concatenate split tensors
+ if name in self._experts[bid]:
+ self._cur_expert = name
+ self._experts[bid][name].append(data_torch)
+ return []
+ elif is_expert:
+ self._cur_expert = name
+ self._experts[bid][name] = [data_torch]
+ return []
+ else:
+ self._cur_expert = ""
- if len(self._experts[bid]) >= n_experts * 3:
- tensors: list[tuple[str, Tensor]] = []
+ for bid in range(self.block_count):
+ if len(self._experts[bid]) >= n_experts * 3:
+ # merge the experts into a single 3d tensor
+ for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
+ datas: list[Tensor] = []
- # merge the experts into a single 3d tensor
- for wid in ["linear", "linear_1", "linear_v"]:
- datas: list[Tensor] = []
+ for xid in range(n_experts):
+ ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
+ if ename not in self._experts[bid]:
+ ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
+ tensor_list = self._experts[bid][ename]
+ datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
+ del self._experts[bid][ename]
- for xid in range(n_experts):
- ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
- datas.append(self._experts[bid][ename])
- del self._experts[bid][ename]
+ data_torch = torch.stack(datas, dim=0)
- data_torch = torch.stack(datas, dim=0)
+ merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
- merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
-
- new_name = self.map_tensor_name(merged_name)
+ new_name = self.map_tensor_name(merged_name)
- tensors.append((new_name, data_torch))
- return tensors
- else:
- return []
+ yield (new_name, data_torch)
- return [(self.map_tensor_name(name), data_torch)]
+ yield from tensors
@ModelBase.register("DbrxForCausalLM")
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B", "chkhsh": "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c"},
+ {"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
]
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
DECODER_BLOCK_COUNT = "{arch}.decoder_block_count"
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
+ ROUTER_LOGIT_SOFTCAPPING = "{arch}.router_logit_softcapping"
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
SWIN_NORM = "{arch}.swin_norm"
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
SLIDING_WINDOW = "{arch}.attention.sliding_window"
SCALE = "{arch}.attention.scale"
+ OUTPUT_SCALE = "{arch}.attention.output_scale"
+ TEMPERATURE_LENGTH = "{arch}.attention.temperature_length"
KEY_LENGTH_MLA = "{arch}.attention.key_length_mla"
VALUE_LENGTH_MLA = "{arch}.attention.value_length_mla"
SHARED_KV_LAYERS = "{arch}.attention.shared_kv_layers"
SLIDING_WINDOW_PATTERN = "{arch}.attention.sliding_window_pattern"
class Rope:
- DIMENSION_COUNT = "{arch}.rope.dimension_count"
- DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
- FREQ_BASE = "{arch}.rope.freq_base"
- SCALING_TYPE = "{arch}.rope.scaling.type"
- SCALING_FACTOR = "{arch}.rope.scaling.factor"
- SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
- SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
- SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
- SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
+ DIMENSION_COUNT = "{arch}.rope.dimension_count"
+ DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
+ FREQ_BASE = "{arch}.rope.freq_base"
+ SCALING_TYPE = "{arch}.rope.scaling.type"
+ SCALING_FACTOR = "{arch}.rope.scaling.factor"
+ SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
+ SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
+ SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
+ SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
+ SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor"
+ SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor"
+ SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast"
+ SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow"
class Split:
LLM_KV_SPLIT_NO = "split.no"
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
+ MODEL_TENSOR.FFN_POST_NORM,
MODEL_TENSOR.LAYER_OUT_NORM,
],
MODEL_ARCH.GPTNEOX: [
def add_attn_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.ATTN_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
+ def add_router_logit_softcapping(self, value: float) -> None:
+ self.add_float32(Keys.LLM.ROUTER_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
+
def add_final_logit_softcapping(self, value: float) -> None:
self.add_float32(Keys.LLM.FINAL_LOGIT_SOFTCAPPING.format(arch=self.arch), value)
def add_attention_scale(self, value: float) -> None:
self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value)
+ def add_attn_output_scale(self, value: float) -> None:
+ self.add_float32(Keys.Attention.OUTPUT_SCALE.format(arch=self.arch), value)
+
+ def add_attn_temperature_length(self, value: int) -> None:
+ self.add_uint32(Keys.Attention.TEMPERATURE_LENGTH.format(arch=self.arch), value)
+
def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
+ def add_rope_scaling_yarn_ext_factor(self, value: float) -> None:
+ self.add_float32(Keys.Rope.SCALING_YARN_EXT_FACTOR.format(arch=self.arch), value)
+
+ def add_rope_scaling_yarn_attn_factor(self, value: float) -> None:
+ self.add_float32(Keys.Rope.SCALING_YARN_ATTN_FACTOR.format(arch=self.arch), value)
+
+ def add_rope_scaling_yarn_beta_fast(self, value: float) -> None:
+ self.add_float32(Keys.Rope.SCALING_YARN_BETA_FAST.format(arch=self.arch), value)
+
+ def add_rope_scaling_yarn_beta_slow(self, value: float) -> None:
+ self.add_float32(Keys.Rope.SCALING_YARN_BETA_SLOW.format(arch=self.arch), value)
+
def add_ssm_conv_kernel(self, value: int) -> None:
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)
"model.layers.{bid}.norm", # mamba-qbert
"backbone.layers.{bid}.norm", # mamba
"transformer.decoder_layer.{bid}.rms_norm", # Grok
+ "model.layers.{bid}.pre_attn_norm", # grok-2
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
"encoder.layers.{bid}.input_layernorm", # chatglm
"transformer.layers.{bid}.attn_norm", # openelm
"transformer.layer.{bid}.sa_layer_norm", # distillbert
"encoder.layers.{bid}.norm1", # nomic-bert
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
+ "model.layers.{bid}.post_attn_norm", # grok-2
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
),
"h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
+ "model.layers.{bid}.pre_moe_norm", # grok-2
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
"transformer.layers.{bid}.ffn_norm", # openelm
"model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
# Post feed-forward norm
MODEL_TENSOR.FFN_POST_NORM: (
- "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
- "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
- "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
+ "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
+ "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
+ "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
"model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
"model.layers.{bid}.feed_forward.up_proj",
+ "model.layers.{bid}.post_moe_norm", # grok-2
),
MODEL_TENSOR.FFN_GATE_INP: (
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
{ LLM_KV_DECODER_BLOCK_COUNT, "%s.decoder_block_count" },
{ LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
+ { LLM_KV_ROUTER_LOGIT_SOFTCAPPING, "%s.router_logit_softcapping" },
{ LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
{ LLM_KV_SWIN_NORM, "%s.swin_norm" },
{ LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" },
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
+ { LLM_KV_ATTENTION_OUTPUT_SCALE, "%s.attention.output_scale" },
+ { LLM_KV_ATTENTION_TEMPERATURE_LENGTH, "%s.attention.temperature_length" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
- { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
- { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
- { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
- { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
- { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
- { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
- { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
- { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
- { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
- { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
+ { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
+ { LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
+ { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
+ { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
+ { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
+ { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
+ { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
+ { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
+ { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
+ { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
+ { LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" },
+ { LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" },
+ { LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" },
+ { LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" },
{ LLM_KV_SPLIT_NO, "split.no" },
{ LLM_KV_SPLIT_COUNT, "split.count" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
},
LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_DECODER_BLOCK_COUNT,
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
+ LLM_KV_ROUTER_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_SWIN_NORM,
LLM_KV_RESCALE_EVERY_N_LAYERS,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
+ LLM_KV_ATTENTION_OUTPUT_SCALE,
+ LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
LLM_KV_ROPE_SCALING_FINETUNED,
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
+ LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR,
+ LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR,
+ LLM_KV_ROPE_SCALING_YARN_BETA_FAST,
+ LLM_KV_ROPE_SCALING_YARN_BETA_SLOW,
LLM_KV_SPLIT_NO,
LLM_KV_SPLIT_COUNT,
{ "hunyuan-dense", LLM_CHAT_TEMPLATE_HUNYUAN_DENSE },
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
+ { "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
return LLM_CHAT_TEMPLATE_KIMI_K2;
} else if (tmpl_contains("<seed:bos>")) {
return LLM_CHAT_TEMPLATE_SEED_OSS;
+ } else if (tmpl_contains("'Assistant: ' + message['content'] + '<|separator|>")) {
+ return LLM_CHAT_TEMPLATE_GROK_2;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
if (add_ass) {
ss << "<seed:bos>assistant\n";
}
+ } else if (tmpl == LLM_CHAT_TEMPLATE_GROK_2) {
+ for (auto message : chat) {
+ std::string role(message->role);
+ if (role == "system") {
+ ss << "System: " << trim(message->content) << "<|separator|>\n\n";
+ } else if (role == "user") {
+ ss << "Human: " << trim(message->content) << "<|separator|>\n\n";
+ } else if (role == "assistant") {
+ ss << "Assistant: " << message->content << "<|separator|>\n\n";
+ }
+ }
+ if (add_ass) {
+ ss << "Assistant:";
+ }
} else {
// template not supported
return -1;
LLM_CHAT_TEMPLATE_HUNYUAN_DENSE,
LLM_CHAT_TEMPLATE_KIMI_K2,
LLM_CHAT_TEMPLATE_SEED_OSS,
+ LLM_CHAT_TEMPLATE_GROK_2,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch;
- cparams.yarn_ext_factor = params.yarn_ext_factor;
- cparams.yarn_attn_factor = params.yarn_attn_factor;
- cparams.yarn_beta_fast = params.yarn_beta_fast;
- cparams.yarn_beta_slow = params.yarn_beta_slow;
+ cparams.yarn_ext_factor = params.yarn_ext_factor >= 0.0f ? params.yarn_ext_factor : hparams.yarn_ext_factor;
+ cparams.yarn_attn_factor = params.yarn_attn_factor >= 0.0f ? params.yarn_attn_factor : hparams.yarn_attn_factor;
+ cparams.yarn_beta_fast = params.yarn_beta_fast >= 0.0f ? params.yarn_beta_fast : hparams.yarn_beta_fast;
+ cparams.yarn_beta_slow = params.yarn_beta_slow >= 0.0f ? params.yarn_beta_slow : hparams.yarn_beta_slow;
cparams.embeddings = params.embeddings;
cparams.offload_kqv = params.offload_kqv;
cparams.no_perf = params.no_perf;
/*.rope_freq_base =*/ 0.0f,
/*.rope_freq_scale =*/ 0.0f,
/*.yarn_ext_factor =*/ -1.0f,
- /*.yarn_attn_factor =*/ 1.0f,
- /*.yarn_beta_fast =*/ 32.0f,
- /*.yarn_beta_slow =*/ 1.0f,
+ /*.yarn_attn_factor =*/ -1.0f,
+ /*.yarn_beta_fast =*/ -1.0f,
+ /*.yarn_beta_slow =*/ -1.0f,
/*.yarn_orig_ctx =*/ 0,
/*.defrag_thold =*/ -1.0f,
/*.cb_eval =*/ nullptr,
if (arch == LLM_ARCH_GROK) {
// need to do the following:
- // multiply by attn_output_multiplyer of 0.08838834764831845
+ // multiply by attn_output_multiplier
// and then :
// kq = 30 * tanh(kq / 30)
// before the softmax below
- kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
+ kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, hparams.f_attn_out_scale / hparams.f_attn_logit_softcapping));
cb(kq, "kq_tanh", il);
- kq = ggml_scale(ctx0, kq, 30);
+ kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
cb(kq, "kq_scaled", il);
}
float f_norm_rms_eps;
float f_norm_group_eps;
- float f_attn_logit_softcapping = 50.0f;
- float f_final_logit_softcapping = 30.0f;
+ float f_attn_logit_softcapping = 50.0f;
+ float f_router_logit_softcapping = 30.0f;
+ float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul = 0.0f;
+ float yarn_ext_factor = -1.0f;
+ float yarn_attn_factor = 1.0f;
+ float yarn_beta_fast = 32.0f;
+ float yarn_beta_slow = 1.0f;
+
std::array<int, 4> rope_sections;
// Sliding Window Attention (SWA)
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
+ // grok-2
+ float f_attn_out_scale = 0.0f;
+ uint32_t attn_temp_length = 0;
+
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
} break;
case LLM_ARCH_GROK:
{
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ // defaults for old GGUFs
+ hparams.yarn_beta_fast = 8.0f;
+ hparams.f_logit_scale = 0.5773502691896257f;
+ hparams.f_embedding_scale = 78.38367176906169f;
+ hparams.f_attn_out_scale = 0.08838834764831845f;
+ hparams.f_attn_logit_softcapping = 30.0f;
+ hparams.f_router_logit_softcapping = 30.0f;
+ // no final_logit_softcapping in grok-1
+ hparams.f_final_logit_softcapping = 0.0f;
+
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
+ ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, false);
+ ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, false);
+ ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE, hparams.f_attn_out_scale, false);
+ ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
+ ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING, hparams.f_router_logit_softcapping, false);
+ ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
+
+ ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.attn_temp_length, false);
+ ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, hparams.yarn_ext_factor, false);
+ ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
+ ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
+ ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
switch (hparams.n_layer) {
case 64: type = LLM_TYPE_314B; break;
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
+ const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, TENSOR_NOT_REQUIRED);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
+
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
+ layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
+ if (!layer.ffn_post_norm) {
+ layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+ }
}
} break;
case LLM_ARCH_DBRX:
inpL = build_inp_embd(model.tok_embd);
- // multiply by embedding_multiplier_scale of 78.38367176906169
- inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
-
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
- // Grok
- // if attn_out_norm is present then apply it before adding the input
- if (model.layers[il].attn_out_norm) {
- cur = build_norm(cur,
- model.layers[il].attn_out_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "attn_out_norm", il);
- }
+ cur = build_norm(cur,
+ model.layers[il].attn_out_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "attn_out_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
- // MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
- cur = build_moe_ffn(cur,
+ // MoE branch
+ ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
- cb(cur, "ffn_moe_out", il);
+ cb(moe_out, "ffn_moe_out", il);
- // Grok
- // if layer_out_norm is present then apply it before adding the input
- // Idea: maybe ffn_out_norm is a better name
- if (model.layers[il].layer_out_norm) {
- cur = build_norm(cur,
- model.layers[il].layer_out_norm, NULL,
- LLM_NORM_RMS, il);
- cb(cur, "layer_out_norm", il);
+ if (model.layers[il].ffn_up) {
+ ggml_tensor * ffn_out = build_ffn(cur,
+ model.layers[il].ffn_up, NULL, NULL,
+ model.layers[il].ffn_gate, NULL, NULL,
+ model.layers[il].ffn_down, NULL, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, il);
+ cb(ffn_out, "ffn_out", il);
+
+ cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
+ cb(cur, "ffn_out", il);
+ } else {
+ cur = moe_out;
}
+ cur = build_norm(cur,
+ model.layers[il].ffn_post_norm, NULL,
+ LLM_NORM_RMS, il);
+ cb(cur, "ffn_post_norm", il);
+
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
// lm_head
cur = build_lora_mm(model.output, cur);
- // Grok
- // multiply logits by output_multiplier_scale of 0.5773502691896257
+ cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
- cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
+ // final logit soft-capping
+ if (hparams.f_final_logit_softcapping) {
+ cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
+ cur = ggml_tanh(ctx0, cur);
+ cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
+ }
cb(cur, "result_output", -1);
res->t_logits = cur;
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\\r\\n]+|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
+ case LLAMA_VOCAB_PRE_TYPE_GROK_2:
+ regex_exprs = {
+ // original regex from tokenizer.json
+ // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
+ "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+ };
+ break;
default:
// default regex for BPE tokenization pre-processing
regex_exprs = {
tokenizer_pre == "kimi-k2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_KIMI_K2;
clean_spaces = false;
+ } else if (
+ tokenizer_pre == "grok-2") {
+ pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
+ clean_spaces = false;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}
LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 36,
LLAMA_VOCAB_PRE_TYPE_KIMI_K2 = 37,
LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
+ LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
};
struct LLM_KV;