layout (constant_id = 0) const uint BLOCK_SIZE = 64;
layout (constant_id = 1) const uint BM = 64;
layout (constant_id = 2) const uint BN = 64;
-layout (constant_id = 3) const uint BK = 16; // Assumed to be 32 if working with a quant
layout (constant_id = 4) const uint WM = 32;
layout (constant_id = 5) const uint WN = 32;
layout (constant_id = 6) const uint WMITER = 2;
layout (constant_id = 9) const uint TK = 1; // Only needed for coopmat
layout (constant_id = 10) const uint WARP = 32;
+#if defined(DATA_A_F32) || defined(DATA_A_F16)
+#define BK 32
+#define BK_STEP 4
+#else
+layout (constant_id = 3) const uint BK = 16; // Assumed to be 32 if working with a quant
+#define BK_STEP 2
+#endif
+
#ifdef COOPMAT
#define SHMEM_STRIDE (BK / 2 + 4)
#else
}
#else
ACC_TYPE_VEC2 sums[WMITER * TM * WNITER * TN/2];
+#if defined(DATA_A_F32) || defined(DATA_A_F16)
+ FLOAT_TYPE_VEC4 cache_a[WMITER * TM];
+ FLOAT_TYPE_VEC4 cache_b;
+#else
FLOAT_TYPE_VEC2 cache_a[WMITER * TM];
FLOAT_TYPE_VEC2 cache_b;
+#endif
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN/2; i++) {
sums[i] = ACC_TYPE_VEC2(0.0f, 0.0f);
}
}
#else
- [[unroll]] for (uint i = 0; i < BK / 2; i++) {
+ [[unroll]] for (uint i = 0; i < BK / BK_STEP; i++) {
// Load from shared into cache
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint j = 0; j < TM; j++) {
+ #if defined(DATA_A_F32) || defined(DATA_A_F16)
+ cache_a[wsir * TM + j].xy = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * SHMEM_STRIDE + 2 * i ];
+ cache_a[wsir * TM + j].zw = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * SHMEM_STRIDE + 2 * i + 1];
+ #else
cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * SHMEM_STRIDE + i];
+ #endif
}
}
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
+ #if defined(DATA_A_F32) || defined(DATA_A_F16)
+ cache_b.xy = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + cc) * SHMEM_STRIDE + 2 * i ];
+ cache_b.zw = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + cc) * SHMEM_STRIDE + 2 * i + 1];
+ #else
cache_b = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + cc) * SHMEM_STRIDE + i];
+ #endif
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint cr = 0; cr < TM / 2; cr++) {
// [WNITER][TN][WMITER][TM / 2] -> [wsic][cc][wsir][cr]
const uint sums_idx = (wsic * TN + cc) * WMITER * (TM / 2) + wsir * (TM / 2) + cr;
+ #if defined(DATA_A_F32) || defined(DATA_A_F16)
+ sums[sums_idx].x = fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].x), ACC_TYPE(cache_b.x), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].y), ACC_TYPE(cache_b.y),
+ fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].z), ACC_TYPE(cache_b.z), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].w), ACC_TYPE(cache_b.w), sums[sums_idx].x))));
+ sums[sums_idx].y = fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].x), ACC_TYPE(cache_b.x), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].y), ACC_TYPE(cache_b.y),
+ fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].z), ACC_TYPE(cache_b.z), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].w), ACC_TYPE(cache_b.w), sums[sums_idx].y))));
+ #else
sums[sums_idx].x = fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].x), ACC_TYPE(cache_b.x), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr ].y), ACC_TYPE(cache_b.y), sums[sums_idx].x));
sums[sums_idx].y = fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].x), ACC_TYPE(cache_b.x), fma(ACC_TYPE(cache_a[wsir * TM + 2 * cr + 1].y), ACC_TYPE(cache_b.y), sums[sums_idx].y));
+ #endif
}
}
}