data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32
- block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
+ shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
+
# reverse shape to make it similar to the internal ggml dimension order
- shape_str = f"""{{{', '.join(str(n) for n in reversed(
- (*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
- )}}}"""
+ shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
# n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
import numpy as np
import numpy.typing as npt
+from .quants import quant_shape_to_byte_shape
+
if __name__ == "__main__":
import sys
from pathlib import Path
tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = int(np.prod(dims))
+ np_dims = tuple(reversed(dims.tolist()))
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0])
else:
item_count = n_bytes
item_type = np.uint8
+ np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
tensors.append(ReaderTensor(
name = tensor_name,
tensor_type = ggml_type,
n_elements = n_elems,
n_bytes = n_bytes,
data_offset = data_offs,
- data = self._get(data_offs, item_type, item_count),
+ data = self._get(data_offs, item_type, item_count).reshape(np_dims),
field = field,
))
self.tensors = tensors
import numpy as np
from .constants import (
- GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
TokenType,
)
+from .quants import quant_shape_from_byte_shape
+
logger = logging.getLogger(__name__)
else:
dtype = raw_dtype
if tensor_dtype == np.uint8:
- block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
- if tensor_shape[-1] % type_size != 0:
- raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
- tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
+ tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
n_dims = len(tensor_shape)
self.ti_data += self._pack("I", n_dims)
for i in range(n_dims):
from __future__ import annotations
-from typing import Callable
+from typing import Callable, Sequence
from numpy.typing import DTypeLike
import numpy as np
+def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
+ block_size, type_size = GGML_QUANT_SIZES[quant_type]
+ if shape[-1] % block_size != 0:
+ raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
+ return (*shape[:-1], shape[-1] // block_size * type_size)
+
+
+def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
+ block_size, type_size = GGML_QUANT_SIZES[quant_type]
+ if shape[-1] % type_size != 0:
+ raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
+ return (*shape[:-1], shape[-1] // type_size * block_size)
+
+
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
n = n.astype(np.float32, copy=False).view(np.int32)
for tensor in reader.tensors:
total_bytes += tensor.n_bytes
- # Dimensions are written in reverse order, so flip them first
- shape = np.flipud(tensor.shape).tolist()
- writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
+ writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)