]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
convert : allow conversion of Mistral HF models (#6144)
authorPedro Cuenca <redacted>
Fri, 29 Mar 2024 07:15:00 +0000 (08:15 +0100)
committerGitHub <redacted>
Fri, 29 Mar 2024 07:15:00 +0000 (09:15 +0200)
* Allow conversion of Mistral HF models

* Homogenize Llama, Mistral, Mixtral under the same entry.

* Fix tokenizer, permute tensors

* Use sentencepiece tokenizer, or fall back to hfft.

* convert-hf : small fix for mypy

* convert-hf : fix duplicated block_count

* convert-hf : add vocab size to metadata

---------

Co-authored-by: Jared Van Bortel <redacted>
convert-hf-to-gguf.py

index 918a90e584b57a11eb3597ee89bb66fadfd5fc67..6a2ce187c1994aec807ea7dfeb16b3b19348dea9 100755 (executable)
@@ -23,7 +23,7 @@ if 'NO_LOCAL_GGUF' not in os.environ:
     sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
 import gguf
 
-from convert import LlamaHfVocab
+from convert import LlamaHfVocab, permute
 
 
 ###### MODEL DEFINITIONS ######
@@ -1052,12 +1052,72 @@ class StableLMModel(Model):
         self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
 
 
-@Model.register("MixtralForCausalLM")
-class MixtralModel(Model):
+@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
+class LlamaModel(Model):
     model_arch = gguf.MODEL_ARCH.LLAMA
 
     def set_vocab(self):
-        self._set_vocab_sentencepiece()
+        try:
+            self. _set_vocab_sentencepiece()
+        except FileNotFoundError:
+            self._set_vocab_llama_hf()
+
+    def set_gguf_parameters(self):
+        super().set_gguf_parameters()
+        hparams = self.hparams
+        self.gguf_writer.add_vocab_size(hparams["vocab_size"])
+        self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
+
+    # Same as super class, but permuting q_proj, k_proj
+    def write_tensors(self):
+        block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
+        tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
+        n_head = self.hparams.get("num_attention_heads")
+        n_kv_head = self.hparams.get("num_key_value_heads")
+        for name, data_torch in self.get_tensors():
+            # we don't need these
+            if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
+                continue
+
+            old_dtype = data_torch.dtype
+
+            # convert any unsupported data types to float32
+            if data_torch.dtype not in (torch.float16, torch.float32):
+                data_torch = data_torch.to(torch.float32)
+
+            data = data_torch.numpy()
+
+            if name.endswith("q_proj.weight"):
+                data = permute(data, n_head, n_head)
+            if name.endswith("k_proj.weight"):
+                data = permute(data, n_head, n_kv_head)
+
+            data = data.squeeze()
+
+            # map tensor names
+            new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
+            if new_name is None:
+                print(f"Can not map tensor {name!r}")
+                sys.exit()
+
+            n_dims = len(data.shape)
+            data_dtype = data.dtype
+
+            # if f32 desired, convert any float16 to float32
+            if self.ftype == 0 and data_dtype == np.float16:
+                data = data.astype(np.float32)
+
+            # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
+            if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
+                data = data.astype(np.float32)
+
+            # if f16 desired, convert any float32 2-dim weight tensors to float16
+            if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
+                data = data.astype(np.float16)
+
+            print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
+
+            self.gguf_writer.add_tensor(new_name, data)
 
 
 @Model.register("GrokForCausalLM")