#include "unary.cuh"
-template <class T>
-static __global__ void op_abs(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
-
- dst[i] = fabsf(x[i]);
+static __device__ __forceinline__ float op_abs(float x) {
+ return fabsf(x);
}
-template <class T>
-static __global__ void op_sgn(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
-
- dst[i] = (T)(x[i] > (T)0.f ? 1.f : ((x[i] < (T)0.f ? -1.f : 0.f)));
+static __device__ __forceinline__ float op_sgn(float x) {
+ return (x > 0.f ? 1.f : ((x < 0.f ? -1.f : 0.f)));
}
-template <class T>
-static __global__ void op_neg(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
-
- dst[i] = -x[i];
+static __device__ __forceinline__ float op_neg(float x) {
+ return -x;
}
-template <class T>
-static __global__ void op_step(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
-
- dst[i] = x[i] > (T)0.0f;
+static __device__ __forceinline__ float op_step(float x) {
+ return x > 0.0f;
}
-template <class T>
-static __global__ void op_gelu(const T * x, T * dst, const int k) {
- const T GELU_COEF_A = 0.044715f;
- const T SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
+static __device__ __forceinline__ float op_gelu(float x) {
+ const float GELU_COEF_A = 0.044715f;
+ const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- T xi = x[i];
- dst[i] = (T)0.5f*xi*((T)1.0f + (T)tanhf(SQRT_2_OVER_PI*xi*((T)1.0f + GELU_COEF_A*xi*xi)));
+ return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
-template <class T>
-static __global__ void op_gelu_quick(const T * x, T * dst, int k) {
- const T GELU_QUICK_COEF = -1.702f;
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * ((T)1.0f / ((T)1.0f + (T)expf(GELU_QUICK_COEF * x[i])));
-}
+static __device__ __forceinline__ float op_gelu_quick(float x) {
+ const float GELU_QUICK_COEF = -1.702f;
-template <class T>
-static __global__ void op_silu(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / ((T)1.0f + (T)expf(-x[i]));
+ return x * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x)));
}
-template <class T>
-static __global__ void op_silu_back(
- const T * grad, const T * xf, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
-
- const T xfi = xf[i];
- const T s = (T)1.0f / ((T)1.0f + (T)expf(-xfi));
- dst[i] = grad[i] * s * ((T)1.0f + xfi * ((T)1.0f - s));
+static __device__ __forceinline__ float op_silu(float x) {
+ return x / (1.0f + expf(-x));
}
-template <class T>
-static __global__ void op_tanh(const T * x, T * dst, int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = tanhf(x[i]);
+static __device__ __forceinline__ float op_tanh(float x) {
+ return tanhf(x);
}
-template <class T>
-static __global__ void op_relu(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = fmaxf(x[i], 0);
+static __device__ __forceinline__ float op_relu(float x) {
+ return fmaxf(x, 0);
}
-template <class T>
-static __global__ void op_sigmoid(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = (T)1.0f / ((T)1.0f + (T)expf(-x[i]));
+static __device__ __forceinline__ float op_sigmoid(float x) {
+ return 1.0f / (1.0f + expf(-x));
}
-template <class T>
-static __global__ void op_hardsigmoid(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + (T)3.0f) / (T)6.0f));
+static __device__ __forceinline__ float op_hardsigmoid(float x) {
+ return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
}
-template <class T>
-static __global__ void op_hardswish(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * (T)fminf(1.0f, fmaxf(0.0f, (x[i] + (T)3.0f) / (T)6.0f));
+static __device__ __forceinline__ float op_hardswish(float x) {
+ return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
}
-template <class T>
-static __global__ void op_exp(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = expf(x[i]);
+static __device__ __forceinline__ float op_exp(float x) {
+ return expf(x);
}
-template <class T>
-static __global__ void op_leaky_relu(const T * x, T * dst, const int k, const float negative_slope) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
- return;
- }
- dst[i] = (T)fmaxf(x[i], 0) + (T)fminf(x[i], 0.0f) * (T)negative_slope;
+static __device__ __forceinline__ float op_sqr(float x) {
+ return x * x;
}
-template <class T>
-static __global__ void op_sqr(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * x[i];
+static __device__ __forceinline__ float op_sqrt(float x) {
+ return sqrtf(x);
}
-template <class T>
-static __global__ void op_sqrt(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = sqrtf(x[i]);
+static __device__ __forceinline__ float op_sin(float x) {
+ return sinf(x);
}
-template <class T>
-static __global__ void op_sin(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = sinf(x[i]);
+static __device__ __forceinline__ float op_cos(float x) {
+ return cosf(x);
}
-template <class T>
-static __global__ void op_cos(const T * x, T * dst, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
- if (i >= k) {
- return;
- }
- dst[i] = cosf(x[i]);
+static __device__ __forceinline__ float op_log(float x) {
+ return logf(x);
}
-template <class T>
-static __global__ void op_log(const T * x, T * dst, const int k) {
+template <float (*op)(float), typename T>
+static __global__ void unary_op_kernel(const T * x, T * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
- dst[i] = logf(x[i]);
-}
-template <class T>
-static void abs_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
- op_abs<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+ dst[i] = (T)op((float)x[i]);
}
-template <class T>
-static void sgn_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
+template <float (*op)(float), typename T>
+static void unary_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
- op_sgn<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+ unary_op_kernel<op><<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
-template <class T>
-static void neg_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
- op_neg<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+template <float (*op)(float)>
+void ggml_cuda_op_unary(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * src0 = dst->src[0];
+ const void * src0_d = src0->data;
+ void * dst_d = dst->data;
+ cudaStream_t stream = ctx.stream();
-template <class T>
-static void step_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE;
- op_step<<<num_blocks, CUDA_STEP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+ GGML_ASSERT(ggml_is_contiguous(src0));
-template <class T>
-static void gelu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- op_gelu<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
+ GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
+ GGML_ASSERT(src0->type == dst->type);
-template <class T>
-static void gelu_quick_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
- op_gelu_quick<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+ if (src0->type == GGML_TYPE_F16) {
+ unary_cuda<op>((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
+ } else {
+ unary_cuda<op>((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
+ }
}
-template <class T>
-static void silu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- op_silu<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_abs>(ctx, dst);
}
-template <class T>
-static void silu_back_cuda(const T * grad, const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
- op_silu_back<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
+void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_sgn>(ctx, dst);
}
-template <class T>
-static void tanh_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
- op_tanh<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_neg>(ctx, dst);
}
-template <class T>
-static void relu_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- op_relu<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_step>(ctx, dst);
}
-template <class T>
-static void sigmoid_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
- op_sigmoid<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_gelu>(ctx, dst);
}
-template <class T>
-static void hardsigmoid_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
- op_hardsigmoid<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_gelu_quick>(ctx, dst);
}
-template <class T>
-static void hardswish_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
- op_hardswish<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_silu>(ctx, dst);
}
-template <class T>
-static void exp_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE;
- op_exp<<<num_blocks, CUDA_EXP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_tanh>(ctx, dst);
}
-template <class T>
-static void leaky_relu_cuda(const T * x, T * dst, const int k, const float negative_slope, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
- op_leaky_relu<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
+void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_relu>(ctx, dst);
}
-template <class T>
-static void sqr_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
- op_sqr<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_sigmoid>(ctx, dst);
}
-template <class T>
-static void sqrt_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
- op_sqrt<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_hardsigmoid>(ctx, dst);
}
-template <class T>
-static void sin_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_SIN_BLOCK_SIZE - 1) / CUDA_SIN_BLOCK_SIZE;
- op_sin<<<num_blocks, CUDA_SIN_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_hardswish>(ctx, dst);
}
-template <class T>
-static void cos_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE;
- op_cos<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_exp>(ctx, dst);
}
-template <class T>
-static void log_cuda(const T * x, T * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE;
- op_log<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_sqr>(ctx, dst);
}
-void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- abs_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- abs_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_sqrt>(ctx, dst);
}
-void ggml_cuda_op_sgn(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- sgn_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- sgn_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_sin>(ctx, dst);
}
-void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- neg_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- neg_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_cos>(ctx, dst);
}
-void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- step_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- step_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_cuda_op_unary<op_log>(ctx, dst);
}
-void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
+/* silu_back */
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- gelu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- gelu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+static __device__ __forceinline__ float op_silu_back(float grad, float x) {
+ const float s = 1.0f / (1.0f + expf(-x));
+ return grad * s * (1.0f + x * (1.0f - s));
}
-void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
+template <class T>
+static __global__ void silu_back_kernel(const T * grad, const T * xf, T * dst, const int k) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- GGML_ASSERT(ggml_is_contiguous(src0));
+ if (i >= k) {
+ return;
+ }
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
+ dst[i] = (T)op_silu_back((float)grad[i], (float)xf[i]);
+}
- if (src0->type == GGML_TYPE_F16) {
- silu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- silu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+template <class T>
+static void silu_back_cuda(const T * grad, const T * x, T * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
+ silu_back_kernel<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
}
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
}
}
-void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
+/* leaky relu */
- if (src0->type == GGML_TYPE_F16) {
- gelu_quick_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- gelu_quick_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+static __device__ __forceinline__ float op_leaky_relu(float x, const float negative_slope) {
+ return fmaxf(x, 0) + fminf(x, 0.0f) * negative_slope;
}
-void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- tanh_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- tanh_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}
-
-void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- relu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}
-
-void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
+template <class T>
+static __global__ void leaky_relu_kernel(const T * x, T * dst, const int k, const float negative_slope) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (src0->type == GGML_TYPE_F16) {
- sigmoid_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- sigmoid_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
+ if (i >= k) {
+ return;
}
-}
-void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- hardsigmoid_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- hardsigmoid_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+ dst[i] = (T)op_leaky_relu((float)x[i], negative_slope);
}
-void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- hardswish_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- hardswish_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}
-
-void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- exp_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- exp_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
+template <class T>
+static void leaky_relu_cuda(const T * x, T * dst, const int k, const float negative_slope, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
+ leaky_relu_kernel<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
}
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
leaky_relu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), negative_slope, stream);
}
}
-
-void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- sqr_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- sqr_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}
-
-void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- sqrt_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- sqrt_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}
-
-void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- sin_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- sin_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}
-
-void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- cos_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- cos_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}
-
-void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const void * src0_d = src0->data;
- void * dst_d = dst->data;
- cudaStream_t stream = ctx.stream();
-
- GGML_ASSERT(ggml_is_contiguous(src0));
-
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
-
- if (src0->type == GGML_TYPE_F16) {
- log_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), stream);
- } else {
- log_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), stream);
- }
-}