return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
+ if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
+ if rope_scaling.get("rope_type", '').lower() == "llama3":
+ base = self.hparams.get("rope_theta", 10000.0)
+ dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
+ freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
+
+ factor = rope_scaling.get("factor", 8.0)
+ low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
+ high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
+ old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
+
+ low_freq_wavelen = old_context_len / low_freq_factor
+ high_freq_wavelen = old_context_len / high_freq_factor
+ assert low_freq_wavelen != high_freq_wavelen
+
+ rope_factors = []
+ for freq in freqs:
+ wavelen = 2 * math.pi / freq
+ if wavelen < high_freq_wavelen:
+ rope_factors.append(1)
+ elif wavelen > low_freq_wavelen:
+ rope_factors.append(factor)
+ else:
+ smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
+ rope_factors.append(1 / ((1 - smooth) / factor + smooth))
+
+ self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
+
super().prepare_tensors()
if self._experts is not None:
// long rope factors
struct ggml_tensor * rope_long = nullptr;
struct ggml_tensor * rope_short = nullptr;
+ struct ggml_tensor * rope_freqs = nullptr;
// bitnet scale
struct ggml_tensor * wq_scale;
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+
if (n_expert == 0) {
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
// choose long/short freq factors based on the context size
const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
+ if (model.layers[il].rope_freqs != nullptr) {
+ return model.layers[il].rope_freqs;
+ }
+
if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
return model.layers[il].rope_long;
}
// self-attention
{
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
}
Qcur = ggml_rope_ext(
- ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
Kcur = ggml_rope_ext(
- ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);