uint8_t L[QK_K];
uint8_t Laux[32];
+ uint8_t Ls[QK_K/32];
+ uint8_t Lm[QK_K/32];
float weights[32];
- float mins[QK_K/32];
- float scales[QK_K/32];
+ float sw[QK_K/32];
+ float mins[QK_K/32];
+ float scales[QK_K/32];
for (int i = 0; i < nb; i++) {
float sum_x2 = 0;
for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
- float sigma2 = sum_x2/QK_K;
+ float sigma2 = 2*sum_x2/QK_K;
float av_x = sqrtf(sigma2);
- float max_scale = 0; // as we are deducting the min, scales are always positive
- float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
if (quant_weights) {
const float * qw = quant_weights + QK_K*i + 32*j;
} else {
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
}
+ float sumw = 0;
+ for (int l = 0; l < 32; ++l) sumw += weights[l];
+ sw[j] = sumw;
scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
- //scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
- float scale = scales[j];
- if (scale > max_scale) {
- max_scale = scale;
- }
- float min = mins[j];
- if (min > max_min) {
- max_min = min;
- }
}
- float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
- float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
+ float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
+ float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
for (int j = 0; j < QK_K/32; ++j) {
- uint8_t ls = nearest_int(inv_scale*scales[j]);
- uint8_t lm = nearest_int(inv_min*mins[j]);
- ls = MIN(63, ls);
- lm = MIN(63, lm);
+ uint8_t ls = Ls[j];
+ uint8_t lm = Lm[j];
if (j < 4) {
y[i].scales[j] = ls;
y[i].scales[j+4] = lm;
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
- y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
- y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
+ y[i].d = GGML_FP32_TO_FP16(d_block);
+ y[i].dmin = GGML_FP32_TO_FP16(m_block);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {
const int nb = n_per_row / QK_K;
uint8_t L[QK_K];
- float mins[QK_K/32];
- float scales[QK_K/32];
- float weights[32];
uint8_t Laux[32];
+ uint8_t Ls[QK_K/32];
+ uint8_t Lm[QK_K/32];
+ float mins[QK_K/32];
+ float scales[QK_K/32];
+ float sw[QK_K/32];
+ float weights[32];
for (int i = 0; i < nb; i++) {
float sum_x2 = 0;
for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
- float sigma2 = sum_x2/QK_K;
+ float sigma2 = 2*sum_x2/QK_K;
float av_x = sqrtf(sigma2);
- float max_scale = 0; // as we are deducting the min, scales are always positive
- float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
if (quant_weights) {
const float * qw = quant_weights + QK_K*i + 32*j;
} else {
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
}
+ float sumw = 0;
+ for (int l = 0; l < 32; ++l) sumw += weights[l];
+ sw[j] = sumw;
+
scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
- float scale = scales[j];
- if (scale > max_scale) {
- max_scale = scale;
- }
- float min = mins[j];
- if (min > max_min) {
- max_min = min;
- }
}
- float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
- float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
+ float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
+ float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
+
for (int j = 0; j < QK_K/32; ++j) {
- uint8_t ls = nearest_int(inv_scale*scales[j]);
- uint8_t lm = nearest_int(inv_min*mins[j]);
+ uint8_t ls = Ls[j];
+ uint8_t lm = Lm[j];
ls = MIN(63, ls);
lm = MIN(63, lm);
if (j < 4) {
y[i].scales[j-0] |= ((lm >> 4) << 6);
}
}
- y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
- y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
+ y[i].d = GGML_FP32_TO_FP16(d_block);
+ y[i].dmin = GGML_FP32_TO_FP16(m_block);
uint8_t sc, m;
for (int j = 0; j < QK_K/32; ++j) {