WORLD_READ
WORLD_EXECUTE
DESTINATION ${CMAKE_INSTALL_BINDIR})
-install(
- FILES convert-lora-to-ggml.py
- PERMISSIONS
- OWNER_READ
- OWNER_WRITE
- OWNER_EXECUTE
- GROUP_READ
- GROUP_EXECUTE
- WORLD_READ
- WORLD_EXECUTE
- DESTINATION ${CMAKE_INSTALL_BINDIR})
if (LLAMA_METAL)
install(
FILES ggml-metal.metal
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
- # lora
- function compare_ppl {
- qnt="$1"
- ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
- ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
-
- if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
- printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
- return 20
- fi
-
- printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
- return 0
- }
-
- path_lora="../models-mnt/open-llama/3B-v2/lora"
- path_shakespeare="../models-mnt/shakespeare"
-
- shakespeare="${path_shakespeare}/shakespeare.txt"
- lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
-
- gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_config.json
- gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_model.bin
- gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/shakespeare.txt
-
- python3 ../convert-lora-to-ggml.py ${path_lora}
-
- # f16
- (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
- (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
- compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
-
- # q8_0
- (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
- (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
- compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
-
- # q8_0 + f16 lora-base
- (time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
- compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
-
set +e
}
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
- gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
- gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
- gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
- gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
- gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
- gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
# open_llama_7b_v2
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
- # lora
- function compare_ppl {
- qnt="$1"
- ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
- ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
-
- if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
- printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
- return 20
- fi
-
- printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
- return 0
- }
-
- path_lora="../models-mnt/open-llama/7B-v2/lora"
- path_shakespeare="../models-mnt/shakespeare"
-
- shakespeare="${path_shakespeare}/shakespeare.txt"
- lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
-
- gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_config.json
- gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_model.bin
- gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/shakespeare.txt
-
- python3 ../convert-lora-to-ggml.py ${path_lora}
-
- # f16
- (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
- (time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
- compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
-
- # currently not supported by the CUDA backend
- # q8_0
- #(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
- #(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
- #compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
-
- # q8_0 + f16 lora-base
- #(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
- #compare_ppl "q8_0 / f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
-
set +e
}
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
- gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
- gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
- gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
- #gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
- #gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
- #gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
# bge-small
+++ /dev/null
-#!/usr/bin/env python3
-from __future__ import annotations
-
-import logging
-import json
-import os
-import struct
-import sys
-from pathlib import Path
-from typing import Any, BinaryIO, Sequence
-
-import numpy as np
-import torch
-
-if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
-import gguf
-
-logging.basicConfig(level=logging.DEBUG)
-logger = logging.getLogger("lora-to-gguf")
-
-NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
-
-
-def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
- fout.write(b"ggla"[::-1]) # magic (ggml lora)
- fout.write(struct.pack("i", 1)) # file version
- fout.write(struct.pack("i", params["r"]))
- # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
- # but some models ship a float value instead
- # let's convert to int, but fail if lossless conversion is not possible
- assert (
- int(params["lora_alpha"]) == params["lora_alpha"]
- ), "cannot convert float to int losslessly"
- fout.write(struct.pack("i", int(params["lora_alpha"])))
-
-
-def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
- sname = name.encode("utf-8")
- fout.write(
- struct.pack(
- "iii",
- len(shape),
- len(sname),
- NUMPY_TYPE_TO_FTYPE[data_type.name],
- )
- )
- fout.write(struct.pack("i" * len(shape), *shape[::-1]))
- fout.write(sname)
- fout.seek((fout.tell() + 31) & -32)
-
-
-if __name__ == '__main__':
- if len(sys.argv) < 2:
- logger.info(f"Usage: python {sys.argv[0]} <path> [arch]")
- logger.info("Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'")
- logger.info(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
- sys.exit(1)
-
- input_json = os.path.join(sys.argv[1], "adapter_config.json")
- input_model = os.path.join(sys.argv[1], "adapter_model.bin")
- output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
-
- if os.path.exists(input_model):
- model = torch.load(input_model, map_location="cpu")
- else:
- input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
- # lazy import load_file only if lora is in safetensors format.
- from safetensors.torch import load_file
- model = load_file(input_model, device="cpu")
-
- arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
-
- if arch_name not in gguf.MODEL_ARCH_NAMES.values():
- logger.error(f"Error: unsupported architecture {arch_name}")
- sys.exit(1)
-
- arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
- name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
-
- with open(input_json, "r") as f:
- params = json.load(f)
-
- if params["peft_type"] != "LORA":
- logger.error(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
- sys.exit(1)
-
- if params["fan_in_fan_out"] is True:
- logger.error("Error: param fan_in_fan_out is not supported")
- sys.exit(1)
-
- if params["bias"] is not None and params["bias"] != "none":
- logger.error("Error: param bias is not supported")
- sys.exit(1)
-
- # TODO: these seem to be layers that have been trained but without lora.
- # doesn't seem widely used but eventually should be supported
- if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
- logger.error("Error: param modules_to_save is not supported")
- sys.exit(1)
-
- with open(output_path, "wb") as fout:
- fout.truncate()
-
- write_file_header(fout, params)
- for k, v in model.items():
- orig_k = k
- if k.endswith(".default.weight"):
- k = k.replace(".default.weight", ".weight")
- if k in ["llama_proj.weight", "llama_proj.bias"]:
- continue
- if k.endswith("lora_A.weight"):
- if v.dtype != torch.float16 and v.dtype != torch.float32:
- v = v.float()
- v = v.T
- else:
- v = v.float()
-
- t = v.detach().numpy()
-
- prefix = "base_model.model."
- if k.startswith(prefix):
- k = k[len(prefix) :]
-
- lora_suffixes = (".lora_A.weight", ".lora_B.weight")
- if k.endswith(lora_suffixes):
- suffix = k[-len(lora_suffixes[0]):]
- k = k[: -len(lora_suffixes[0])]
- else:
- logger.error(f"Error: unrecognized tensor name {orig_k}")
- sys.exit(1)
-
- tname = name_map.get_name(k)
- if tname is None:
- logger.error(f"Error: could not map tensor name {orig_k}")
- logger.error(" Note: the arch parameter must be specified if the model is not llama")
- sys.exit(1)
-
- if suffix == ".lora_A.weight":
- tname += ".weight.loraA"
- elif suffix == ".lora_B.weight":
- tname += ".weight.loraB"
- else:
- assert False
-
- logger.info(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
- write_tensor_header(fout, tname, t.shape, t.dtype)
- t.tofile(fout)
-
- logger.info(f"Converted {input_json} and {input_model} to {output_path}")
-r ./requirements/requirements-convert-hf-to-gguf.txt
-r ./requirements/requirements-convert-hf-to-gguf-update.txt
-r ./requirements/requirements-convert-llama-ggml-to-gguf.txt
--r ./requirements/requirements-convert-lora-to-ggml.txt
-r ./requirements/requirements-convert-persimmon-to-gguf.txt
+++ /dev/null
--r ./requirements-convert.txt
-torch~=2.1.1