// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
}
}
+
+cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
+ const uint64_t ne0 = src->ne[0];
+ const uint64_t ne1 = src->ne[1];
+ const uint64_t nb0 = src->nb[0];
+ const uint64_t nb1 = src->nb[1];
+ const uint64_t nb2 = src->nb[2];
+ const uint64_t nb3 = src->nb[3];
+ const enum ggml_type type = src->type;
+ const size_t ts = ggml_type_size(type);
+ const size_t bs = ggml_blck_size(type);
+
+ const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
+ if (nb0 == ts && nb1 == ts*ne0/bs) {
+ return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
+ } else if (nb0 == ts) {
+ return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
+ } else {
+ for (uint64_t i1 = 0; i1 < ne1; i1++) {
+ const void * rx = (const void *) ((const char *) x + i1*nb1);
+ void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
+ // pretend the row is a matrix with cols=1
+ cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
+ if (r != cudaSuccess) return r;
+ }
+ return cudaSuccess;
+ }
+}
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
+ if (
+#if !defined(GGML_USE_CUBLAS)
+ ggml_is_contiguous(src0) &&
+ ggml_is_contiguous(src1) &&
+#endif
+ ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
+#if !defined(GGML_USE_CUBLAS)
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
-
+#endif
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS)
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
- CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
// compute
CUBLAS_CHECK(
#endif
#if defined(GGML_USE_CUBLAS)
- const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
#if defined(GGML_USE_CUBLAS)
// copy and dequantize on device
- CUDA_CHECK(
- cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
- GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream));
dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
CUDA_CHECK(cudaGetLastError());
#if defined(GGML_USE_CUBLAS)
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
// compute
CUBLAS_CHECK(