]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
model : add support for Seed-OSS (#15490)
authorPiotr Wilkin (ilintar) <redacted>
Sat, 23 Aug 2025 13:21:52 +0000 (15:21 +0200)
committerGitHub <redacted>
Sat, 23 Aug 2025 13:21:52 +0000 (15:21 +0200)
* First draft

* Fix linter errors

* Added missing sinks nullptr

* Don't forget the llama-arch!

* We're through to the generation stage.

* Fix post-attention norm

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <redacted>
* Fix RoPE type

* Fix tensor name and reorder llm_types

* Update gguf-py/gguf/constants.py

Remove nonexistent FFN_POST_NORM tensor

Co-authored-by: Sigbjørn Skjæret <redacted>
* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <redacted>
* Add basic chat template

* Add chat template tests

* Remake chat template test

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <redacted>
* Update src/llama-chat.cpp

Co-authored-by: Sigbjørn Skjæret <redacted>
* Reorder llm type descriptions

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <redacted>
---------

Co-authored-by: Sigbjørn Skjæret <redacted>
convert_hf_to_gguf.py
gguf-py/gguf/constants.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-chat.cpp
src/llama-chat.h
src/llama-model.cpp
src/llama-model.h
tests/test-chat-template.cpp

index 42bf10d2169e2ec7f3441e1de1af975b344b4196..35fadbc83ea1b2721b0582da2355f14f715d8d83 100755 (executable)
@@ -5854,6 +5854,11 @@ class OlmoModel(TextModel):
         return [(self.map_tensor_name(name), data_torch)]
 
 
+@ModelBase.register("SeedOssForCausalLM")
+class SeedOssModel(TextModel):
+    model_arch = gguf.MODEL_ARCH.SEED_OSS
+
+
 @ModelBase.register("Olmo2ForCausalLM")
 class Olmo2Model(TextModel):
     model_arch = gguf.MODEL_ARCH.OLMO2
index 61ebe6e5e77503968994d1f60b1c44f30ccc32e8..d03a02c7bf9218568a1dc626d533f9c364df6d45 100644 (file)
@@ -385,6 +385,7 @@ class MODEL_ARCH(IntEnum):
     DREAM            = auto()
     SMALLTHINKER     = auto()
     LLADA            = auto()
+    SEED_OSS         = auto()
 
 
 class VISION_PROJECTOR_TYPE(IntEnum):
@@ -717,6 +718,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.DREAM:            "dream",
     MODEL_ARCH.SMALLTHINKER:     "smallthinker",
     MODEL_ARCH.LLADA:            "llada",
+    MODEL_ARCH.SEED_OSS:         "seed_oss",
 }
 
 VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@@ -1973,6 +1975,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN,
         MODEL_TENSOR.FFN_UP,
     ],
+    MODEL_ARCH.SEED_OSS: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.ATTN_POST_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+    ],
     MODEL_ARCH.OLMOE: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index c759a9c6d9e05756ba3f9ae756d08f36ea1a6dc2..0ca0a4c22f8149dda9c0af94dd4970c2b4d18284 100644 (file)
@@ -93,6 +93,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_DREAM,            "dream"            },
     { LLM_ARCH_SMALLTHINKER,     "smallthinker"     },
     { LLM_ARCH_LLADA,            "llada"            },
+    { LLM_ARCH_SEED_OSS,         "seed_oss"         },
     { LLM_ARCH_UNKNOWN,          "(unknown)"        },
 };
 
@@ -2068,6 +2069,23 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_SEED_OSS,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
index 7af587e7951bcf65197ad9d9a08aa9f6a060e352..7008c2514c5d4debb99263f77d914ed671751f5c 100644 (file)
@@ -97,6 +97,7 @@ enum llm_arch {
     LLM_ARCH_DREAM,
     LLM_ARCH_SMALLTHINKER,
     LLM_ARCH_LLADA,
+    LLM_ARCH_SEED_OSS,
     LLM_ARCH_UNKNOWN,
 };
 
index 4d6fdf822619bac1c01c5bd8a1b9d5235dee2f4f..9d8e57eac1f69b04d960b9fa07334c9130c83ab7 100644 (file)
@@ -69,6 +69,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
     { "gpt-oss",           LLM_CHAT_TEMPLATE_OPENAI_MOE        },
     { "hunyuan-dense",     LLM_CHAT_TEMPLATE_HUNYUAN_DENSE     },
     { "kimi-k2",           LLM_CHAT_TEMPLATE_KIMI_K2           },
+    { "seed_oss",          LLM_CHAT_TEMPLATE_SEED_OSS          },
 };
 
 llm_chat_template llm_chat_template_from_str(const std::string & name) {
@@ -201,6 +202,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
         return LLM_CHAT_TEMPLATE_HUNYUAN_DENSE;
     } else if (tmpl_contains("<|im_assistant|>assistant<|im_middle|>")) {
         return LLM_CHAT_TEMPLATE_KIMI_K2;
+    } else if (tmpl_contains("<seed:bos>")) {
+        return LLM_CHAT_TEMPLATE_SEED_OSS;
     }
     return LLM_CHAT_TEMPLATE_UNKNOWN;
 }
@@ -752,6 +755,14 @@ int32_t llm_chat_apply_template(
         if (add_ass) {
             ss << "<|im_assistant|>assistant<|im_middle|>";
         }
+    } else if (tmpl == LLM_CHAT_TEMPLATE_SEED_OSS) {
+        for (auto message: chat) {
+            std::string role(message->role);
+            ss << "<seed:bos>" << role << "\n" << (role == "assistant" ? trim(message->content) : message->content) << "<seed:eos>";
+        }
+        if (add_ass) {
+            ss << "<seed:bos>assistant\n";
+        }
     } else {
         // template not supported
         return -1;
index 35a943856fa528dd81987299ae5d83b9456e5a60..21d53ed08b4c3e39146b8d5c728b5bd61502c21c 100644 (file)
@@ -49,6 +49,7 @@ enum llm_chat_template {
     LLM_CHAT_TEMPLATE_OPENAI_MOE,
     LLM_CHAT_TEMPLATE_HUNYUAN_DENSE,
     LLM_CHAT_TEMPLATE_KIMI_K2,
+    LLM_CHAT_TEMPLATE_SEED_OSS,
     LLM_CHAT_TEMPLATE_UNKNOWN,
 };
 
index 3c8440a8f653c9ed4781dd5e2e0b9692d8583df0..d5148f7df36ed11cf98d4c8d713010cddbee2f9d 100644 (file)
@@ -83,6 +83,7 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_32B:           return "32B";
         case LLM_TYPE_34B:           return "34B";
         case LLM_TYPE_35B:           return "35B";
+        case LLM_TYPE_36B:           return "36B";
         case LLM_TYPE_40B:           return "40B";
         case LLM_TYPE_65B:           return "65B";
         case LLM_TYPE_70B:           return "70B";
@@ -1288,6 +1289,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_SEED_OSS:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    case 64: type = LLM_TYPE_36B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_OLMOE:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -3967,6 +3976,43 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                     }
                 } break;
+            case LLM_ARCH_SEED_OSS:
+                {
+                    const uint32_t head_dim             = hparams.n_embd_head_k;
+                    const int64_t n_qo_dim              = n_head * head_dim;
+                    const int64_t n_kv_dim              = n_head_kv * head_dim;
+
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+                    // if output is NULL, init from the input tok embed
+                    if (output == NULL) {
+                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_qo_dim}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_kv_dim}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_kv_dim}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
+
+                        layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "bias", i), {n_qo_dim},   TENSOR_NOT_REQUIRED);
+                        layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "bias", i), {n_kv_dim},   TENSOR_NOT_REQUIRED);
+                        layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "bias", i), {n_kv_dim},   TENSOR_NOT_REQUIRED);
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                    }
+                } break;
+
             case LLM_ARCH_OLMOE:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -17934,6 +17980,137 @@ struct llm_build_lfm2 : public llm_graph_context {
     }
 };
 
+struct llm_build_seed_oss : public llm_graph_context {
+    llm_build_seed_oss(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv();
+
+        const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
+
+        ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
+                cb(cur, "attn_out", il);
+            }
+
+            if (il == n_layer - 1 && inp_out_ids) {
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = build_norm(ffn_inp,
+                    model.layers[il].attn_post_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_post_norm", il);
+
+            cur = build_ffn(cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 template <bool iswa>
 struct llm_build_smallthinker : public llm_graph_context{
     llm_build_smallthinker(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params){
@@ -18472,6 +18649,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_bailingmoe>(*this, params);
             } break;
+        case LLM_ARCH_SEED_OSS:
+            {
+                llm = std::make_unique<llm_build_seed_oss>(*this, params);
+            } break;
         case LLM_ARCH_DOTS1:
             {
                 llm = std::make_unique<llm_build_dots1>(*this, params);
@@ -18530,6 +18711,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
     return llm->res->get_gf();
 }
 
+
 //
 // interface implementation
 //
@@ -18724,6 +18906,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_LFM2:
         case LLM_ARCH_SMALLTHINKER:
         case LLM_ARCH_GLM4_MOE:
+        case LLM_ARCH_SEED_OSS:
             return LLAMA_ROPE_TYPE_NEOX;
 
         case LLM_ARCH_QWEN2VL:
index f639fa139811a36d4b1162b75746a4a6ec783956..af4460cc01eb0b231d51a5ae75a395e98c854117 100644 (file)
@@ -76,6 +76,7 @@ enum llm_type {
     LLM_TYPE_32B,
     LLM_TYPE_34B,
     LLM_TYPE_35B,
+    LLM_TYPE_36B,
     LLM_TYPE_40B,
     LLM_TYPE_65B,
     LLM_TYPE_70B,
index edfac3b08bb3f23e9afcef8118a4b3b71f984f18..b863367db6c992b8ed8f4fe39c6de31e7b157ba4 100644 (file)
@@ -290,6 +290,14 @@ int main(void) {
             /* .bos_token= */ "",
             /* .eos_token= */ "",
         },
+        {
+            /* .name= */ "ByteDance-Seed/Seed-OSS-36B-Instruct",
+            /* .template_str */ "{# <seed:bos> #}{%- for message in messages %}{%- if message.role in [\"user\", \"system\"] %}{{ bos_token + message.role + \"\\n\" + message.content + eos_token }}{%- elif message.role == \"assistant\" %}{{ bos_token + message.role }}{%- if message.content is defined and message.content is string and message.content|trim|length > 0 %}{{ \"\\n\" + message.content|trim + eos_token }}{%- endif %}{%- else %}{{ bos_token + message.role + \"\\n\" + message.content + eos_token }}{%- endif %}{%- endfor %}{%- if add_generation_prompt %}{{ bos_token + \"assistant\\n\" }}{%- endif %}",
+            /* .expected_output= */ "<seed:bos>system\nYou are a helpful assistant<seed:eos><seed:bos>user\nHello<seed:eos><seed:bos>assistant\nHi there<seed:eos><seed:bos>user\nWho are you<seed:eos><seed:bos>assistant\nI am an assistant<seed:eos><seed:bos>user\nAnother question<seed:eos><seed:bos>assistant\n",
+            /* .expected_output_jinja= */ "<seed:bos>system\nYou are a helpful assistant<seed:eos><seed:bos>user\nHello<seed:eos><seed:bos>assistant\nHi there<seed:eos><seed:bos>user\nWho are you<seed:eos><seed:bos>assistant\nI am an assistant<seed:eos><seed:bos>user\nAnother question<seed:eos><seed:bos>assistant\n",
+            /* .bos_token= */ "<seed:bos>",
+            /* .eos_token= */ "<seed:eos>",
+        }
     };
     std::vector<char> formatted_chat(1024);
     int32_t res;