]> git.djapps.eu Git - pkg/ggml/sources/whisper.cpp/commitdiff
sync : llama.cpp
authorGeorgi Gerganov <redacted>
Mon, 17 Nov 2025 14:31:08 +0000 (16:31 +0200)
committerGeorgi Gerganov <redacted>
Mon, 17 Nov 2025 19:05:46 +0000 (21:05 +0200)
18 files changed:
cmake/arm64-apple-clang.cmake [new file with mode: 0644]
cmake/arm64-windows-llvm.cmake [new file with mode: 0644]
cmake/riscv64-spacemit-linux-gnu-gcc.cmake [new file with mode: 0644]
cmake/x64-windows-llvm.cmake [new file with mode: 0644]
examples/talk-llama/llama-arch.cpp
examples/talk-llama/llama-arch.h
examples/talk-llama/llama-graph.cpp
examples/talk-llama/llama-memory-recurrent.cpp
examples/talk-llama/llama-model.cpp
examples/talk-llama/llama-model.h
examples/talk-llama/llama-sampling.cpp
examples/talk-llama/llama-vocab.cpp
examples/talk-llama/llama-vocab.h
examples/talk-llama/models/afmoe.cpp [new file with mode: 0644]
examples/talk-llama/models/ernie4-5.cpp
examples/talk-llama/models/models.h
examples/talk-llama/models/openai-moe-iswa.cpp
examples/talk-llama/unicode.cpp

diff --git a/cmake/arm64-apple-clang.cmake b/cmake/arm64-apple-clang.cmake
new file mode 100644 (file)
index 0000000..5fcd288
--- /dev/null
@@ -0,0 +1,16 @@
+set( CMAKE_SYSTEM_NAME Darwin )
+set( CMAKE_SYSTEM_PROCESSOR arm64 )
+
+set( target arm64-apple-darwin-macho )
+
+set( CMAKE_C_COMPILER    clang )
+set( CMAKE_CXX_COMPILER  clang++ )
+
+set( CMAKE_C_COMPILER_TARGET   ${target} )
+set( CMAKE_CXX_COMPILER_TARGET ${target} )
+
+set( arch_c_flags "-march=armv8.4-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
+set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function" )
+
+set( CMAKE_C_FLAGS_INIT   "${arch_c_flags} ${warn_c_flags}" )
+set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
diff --git a/cmake/arm64-windows-llvm.cmake b/cmake/arm64-windows-llvm.cmake
new file mode 100644 (file)
index 0000000..8023796
--- /dev/null
@@ -0,0 +1,16 @@
+set( CMAKE_SYSTEM_NAME Windows )
+set( CMAKE_SYSTEM_PROCESSOR arm64 )
+
+set( target arm64-pc-windows-msvc )
+
+set( CMAKE_C_COMPILER    clang )
+set( CMAKE_CXX_COMPILER  clang++ )
+
+set( CMAKE_C_COMPILER_TARGET   ${target} )
+set( CMAKE_CXX_COMPILER_TARGET ${target} )
+
+set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
+set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" )
+
+set( CMAKE_C_FLAGS_INIT   "${arch_c_flags} ${warn_c_flags}" )
+set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
diff --git a/cmake/riscv64-spacemit-linux-gnu-gcc.cmake b/cmake/riscv64-spacemit-linux-gnu-gcc.cmake
new file mode 100644 (file)
index 0000000..08fdbf5
--- /dev/null
@@ -0,0 +1,29 @@
+set(CMAKE_SYSTEM_NAME Linux)
+set(CMAKE_SYSTEM_PROCESSOR riscv64)
+set(CMAKE_SYSTEM_VERSION 1)
+
+if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "^(riscv)")
+    message(STATUS "HOST SYSTEM ${CMAKE_HOST_SYSTEM_PROCESSOR}")
+else()
+    set(GNU_MACHINE riscv64-unknown-linux-gnu CACHE STRING "GNU compiler triple")
+    if (DEFINED ENV{RISCV_ROOT_PATH})
+        file(TO_CMAKE_PATH $ENV{RISCV_ROOT_PATH} RISCV_ROOT_PATH)
+    else()
+        message(FATAL_ERROR "RISCV_ROOT_PATH env must be defined")
+    endif()
+
+    set(RISCV_ROOT_PATH ${RISCV_ROOT_PATH} CACHE STRING "root path to riscv toolchain")
+    set(CMAKE_C_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-gcc)
+    set(CMAKE_CXX_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-g++)
+    set(CMAKE_STRIP ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-strip)
+    set(CMAKE_FIND_ROOT_PATH "${RISCV_ROOT_PATH}/riscv64-unknown-linux-gnu")
+    set(CMAKE_SYSROOT "${RISCV_ROOT_PATH}/sysroot")
+endif()
+
+set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
+set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
+set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
+set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
+set(CMAKE_C_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CMAKE_C_FLAGS}")
+set(CMAKE_CXX_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CXX_FLAGS}")
+set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -latomic")
diff --git a/cmake/x64-windows-llvm.cmake b/cmake/x64-windows-llvm.cmake
new file mode 100644 (file)
index 0000000..77e7914
--- /dev/null
@@ -0,0 +1,5 @@
+set( CMAKE_SYSTEM_NAME Windows )
+set( CMAKE_SYSTEM_PROCESSOR x86_64 )
+
+set( CMAKE_C_COMPILER    clang )
+set( CMAKE_CXX_COMPILER  clang++ )
index b7642b568dffb2bb9e4cd745ab5627a0a5068ba0..b2eb2477f930d962823e3e79bf6763e0b2e98d36 100644 (file)
@@ -90,6 +90,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_BAILINGMOE2,      "bailingmoe2"      },
     { LLM_ARCH_DOTS1,            "dots1"            },
     { LLM_ARCH_ARCEE,            "arcee"            },
+    { LLM_ARCH_AFMOE,            "afmoe"            },
     { LLM_ARCH_ERNIE4_5,         "ernie4_5"         },
     { LLM_ARCH_ERNIE4_5_MOE,     "ernie4_5-moe"     },
     { LLM_ARCH_HUNYUAN_MOE,      "hunyuan-moe"      },
@@ -333,6 +334,36 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
         },
     },
+    {
+        LLM_ARCH_AFMOE,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_GATE,       "blk.%d.attn_gate" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+            { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_GATE_SHEXP,  "blk.%d.ffn_gate_shexp" },
+            { LLM_TENSOR_FFN_UP_SHEXP,    "blk.%d.ffn_up_shexp" },
+            { LLM_TENSOR_FFN_DOWN_SHEXP,  "blk.%d.ffn_down_shexp" },
+            { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
+        },
+    },
     {
         LLM_ARCH_LLAMA4,
         {
@@ -2444,6 +2475,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
     {LLM_TENSOR_ATTN_V,                     {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_ATTN_QKV,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_ATTN_OUT,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
+    {LLM_TENSOR_ATTN_GATE,                  {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_FFN_GATE,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_FFN_DOWN,                   {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
     {LLM_TENSOR_FFN_UP,                     {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
index a769dd1e85741ba442772a264e15a89785565f32..ae7fa222acaa603b7b4650408b76de597ec3bf86 100644 (file)
@@ -94,6 +94,7 @@ enum llm_arch {
     LLM_ARCH_BAILINGMOE2,
     LLM_ARCH_DOTS1,
     LLM_ARCH_ARCEE,
+    LLM_ARCH_AFMOE,
     LLM_ARCH_ERNIE4_5,
     LLM_ARCH_ERNIE4_5_MOE,
     LLM_ARCH_HUNYUAN_MOE,
@@ -312,6 +313,7 @@ enum llm_tensor {
     LLM_TENSOR_ATTN_POST_NORM,
     LLM_TENSOR_ATTN_ROT_EMBD,
     LLM_TENSOR_ATTN_SINKS,
+    LLM_TENSOR_ATTN_GATE,
     LLM_TENSOR_FFN_GATE_INP,
     LLM_TENSOR_FFN_GATE_INP_SHEXP,
     LLM_TENSOR_FFN_NORM,
index b199e94628fff8277cc380c2bf33fa5683f3f4d3..650e40ec6ffcebf4e422e46124ddb98924e203e1 100644 (file)
@@ -1592,9 +1592,10 @@ ggml_tensor * llm_graph_context::build_attn(
             int       il) const {
     // these nodes are added to the graph together so that they are not reordered
     // by doing so, the number of splits in the graph is reduced
+    // expand k later to enable rope fusion which directly writes into k-v cache
     ggml_build_forward_expand(gf, q_cur);
-    ggml_build_forward_expand(gf, k_cur);
     ggml_build_forward_expand(gf, v_cur);
+    ggml_build_forward_expand(gf, k_cur);
 
     const auto * mctx_cur = inp->mctx;
 
index 276e1697d466c6dd738c3335265735db7e0a8331..812bf2530491a74433b41c114601aa793cffd76a 100644 (file)
@@ -151,7 +151,8 @@ bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
         p1 = std::numeric_limits<llama_pos>::max();
     }
 
-    // models like Mamba or RWKV can't have a state partially erased
+    // models like Mamba or RWKV can't have a state partially erased at the end
+    // of the sequence because their state isn't preserved for previous tokens
     if (seq_id >= (int64_t) size) {
         // could be fatal
         return false;
@@ -160,8 +161,8 @@ bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
         int32_t & tail_id = cells[seq_id].tail;
         if (tail_id >= 0) {
             const auto & cell = cells[tail_id];
-            // partial intersection is invalid
-            if ((0 < p0 && p0 < cell.pos) || (0 < p1 && p1 <= cell.pos)) {
+            // partial intersection is invalid if it includes the final pos
+            if (0 < p0 && p0 <= cell.pos && p1 > cell.pos) {
                 //printf("[DEBUG] inside `llama_memory_recurrent::seq_rm`: partial intersection is invalid, so returning false\n");
                 return false;
             }
index 829f1e3c14f828320c7c1cc38677e0d496ec6feb..e703181a19804d12ec615c88f6e2cae2ef8b38a9 100644 (file)
@@ -84,6 +84,7 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_15B:           return "15B";
         case LLM_TYPE_16B:           return "16B";
         case LLM_TYPE_20B:           return "20B";
+        case LLM_TYPE_26B:           return "26B";
         case LLM_TYPE_27B:           return "27B";
         case LLM_TYPE_30B:           return "30B";
         case LLM_TYPE_32B:           return "32B";
@@ -695,6 +696,37 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_AFMOE:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
+                ml.get_key(LLM_KV_EXPERT_SHARED_COUNT,         hparams.n_expert_shared);
+                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func, false);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE,        hparams.expert_weights_scale, false);
+                ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM,         hparams.expert_weights_norm, false);
+                ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW,    hparams.n_swa, false);
+
+                // Set up interleaved sliding window attention (ISWA)
+                // Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
+                if (hparams.n_swa > 0) {
+                    hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
+                    hparams.set_swa_pattern(4);
+                } else {
+                    hparams.swa_type = LLAMA_SWA_TYPE_NONE;
+                }
+
+                // Default to sigmoid if not set
+                if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
+                    hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
+                }
+
+                switch (hparams.n_layer) {
+                    case 56: type = LLM_TYPE_6B; break;
+                    case 32: type = LLM_TYPE_26B; break;
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_DECI:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -5749,6 +5781,71 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
                     }
                 } break;
+            case LLM_ARCH_AFMOE:
+                {
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+
+                    // if output is NULL, init from the input tok embed
+                    if (output == NULL) {
+                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+                    }
+
+                    const int64_t n_ff_exp = hparams.n_ff_exp;
+                    const int64_t n_expert_shared = hparams.n_expert_shared;
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        // dual attention normalization
+                        layer.attn_norm      = create_tensor(tn(LLM_TENSOR_ATTN_NORM,      "weight", i), {n_embd}, 0);
+                        layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
+
+                        // attention projections
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+
+                        // Q/K normalization
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
+
+                        // attention gating
+                        layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+
+                        // dual ffn normalization
+                        layer.ffn_norm      = create_tensor(tn(LLM_TENSOR_FFN_NORM,      "weight", i), {n_embd}, 0);
+                        layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+
+                        if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
+                            // MoE layers
+                            layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
+
+                            // grouped expert weights
+                            layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
+                            layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
+                            layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
+
+                            // shared expert
+                            if (n_expert_shared > 0) {
+                                const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
+                                layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
+                                layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
+                                layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {n_embd, n_ff_shexp}, 0);
+                            }
+                        } else {
+                            // Dense layers
+                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
+                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd, n_ff}, 0);
+                        }
+                    }
+                } break;
             case LLM_ARCH_ERNIE4_5:
             case LLM_ARCH_ERNIE4_5_MOE:
                 {
@@ -7243,6 +7340,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
             {
                 llm = std::make_unique<llm_build_arcee>(*this, params);
             } break;
+        case LLM_ARCH_AFMOE:
+            {
+                llm = std::make_unique<llm_build_afmoe>(*this, params);
+            } break;
         case LLM_ARCH_ERNIE4_5:
             {
                 llm = std::make_unique<llm_build_ernie4_5>(*this, params);
@@ -7528,6 +7629,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_MINIMAX_M2:
         case LLM_ARCH_COGVLM:
         case LLM_ARCH_PANGU_EMBED:
+        case LLM_ARCH_AFMOE:
             return LLAMA_ROPE_TYPE_NEOX;
 
         case LLM_ARCH_QWEN2VL:
index 71ff148e07daea14a771f736e356d63adfb1474f..f730c49540cfeec82b446c65a222e7b0590aa229 100644 (file)
@@ -76,6 +76,7 @@ enum llm_type {
     LLM_TYPE_15B,
     LLM_TYPE_16B,
     LLM_TYPE_20B,
+    LLM_TYPE_26B,
     LLM_TYPE_27B,
     LLM_TYPE_30B,
     LLM_TYPE_32B,
@@ -234,6 +235,7 @@ struct llama_layer {
     struct ggml_tensor * wk_enc    = nullptr;
     struct ggml_tensor * wv_enc    = nullptr;
     struct ggml_tensor * wo_enc    = nullptr;
+    struct ggml_tensor * wqkv_gate = nullptr;
 
     // attention bias
     struct ggml_tensor * bq   = nullptr;
index 55d2e355fd8bb50f4257ad652add533856390298..adb3f8810ed33bbbaeeaa890bb5f0629cfb8f35b 100644 (file)
@@ -4,6 +4,7 @@
 #include "llama-vocab.h"
 #include "llama-grammar.h"
 
+#include <array>
 #include <algorithm>
 #include <cassert>
 #include <cfloat>
@@ -1625,10 +1626,12 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
     auto * ctx = new llama_sampler_grammar;
 
     if (grammar_str != nullptr && grammar_str[0] != '\0') {
+        std::string trigger_pattern;
+        llama_grammar * grammar = nullptr;
         // TODO: remove trigger_words support.
         if (trigger_words != nullptr && num_trigger_words > 0) {
             GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0);
-            std::string trigger_pattern("[\\s\\S]*?(");
+            trigger_pattern = "[\\s\\S]*?(";
             for (size_t i = 0; i < num_trigger_words; ++i) {
                 static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
                 if (i > 0) {
@@ -1637,15 +1640,17 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
                 trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
             }
             trigger_pattern += ")[\\s\\S]*";
-            const auto * trigger_pattern_c = trigger_pattern.c_str();
-            trigger_patterns = &trigger_pattern_c;
-            num_trigger_patterns = 1;
+
+            std::array<const char *, 1> tmp_trigger_patterns = { trigger_pattern.c_str() };
+            grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, tmp_trigger_patterns.data(), tmp_trigger_patterns.size(), trigger_tokens, num_trigger_tokens);
+        } else {
+            grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens);
         }
         *ctx = {
             /* .vocab        = */ vocab,
             /* .grammar_str  = */ grammar_str,
             /* .grammar_root = */ grammar_root,
-            /* .grammar      = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens),
+            /* .grammar      = */ grammar,
         };
         if (!ctx->grammar) {
             delete ctx;
index 735c5d547f9e4097a9c09255f93b692d4088d834..29e31cecd1565c804972a79286e3c0bb207d9cfe 100644 (file)
@@ -443,6 +443,17 @@ struct llm_tokenizer_bpe : llm_tokenizer {
                     "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
                 };
                 break;
+            case LLAMA_VOCAB_PRE_TYPE_AFMOE:
+                regex_exprs = {
+                    // Digit handling - uses custom implementation in unicode.cpp
+                    // Groups digits with leading 1-2 based on total length modulo 3
+                    "\\p{AFMoE_digits}",
+                    // CJK and Asian scripts (using direct Unicode literals)
+                    "[一-鿿㐀-䶿豈-﫿぀-ゟ゠-ヿ・-゚⼀-⿟เ-๿຀-໿ក-៿က-႟ꩠ-ꩿꧠ-꧿가-힯ᄀ-ᇿ]+",
+                    // Main BPE pattern
+                    "[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\\r\\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
+                };
+                break;
             default:
                 // default regex for BPE tokenization pre-processing
                 regex_exprs = {
@@ -1013,7 +1024,7 @@ private:
         }
     private:
         uint32_t get_node(size_t index) {
-            if (index > xcda_array_size) {
+            if (index >= xcda_array_size) {
                 throw std::runtime_error("Index out of array bounds in XCDA array!");
             }
             return xcda_array[index];
@@ -1993,6 +2004,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
                 tokenizer_pre == "grok-2") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
                 clean_spaces = false;
+            } else if (
+                tokenizer_pre == "afmoe") {
+                pre_type = LLAMA_VOCAB_PRE_TYPE_AFMOE;
+                clean_spaces = false;
             } else if (
                 tokenizer_pre == "minimax-m2") {
                 pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
index 1194ec473d03a7b9aa374fc90bcb132226c43c89..55f8f3923c95bcecd3033c94dcee1584c3e5060e 100644 (file)
@@ -50,6 +50,7 @@ enum llama_vocab_pre_type {
     LLAMA_VOCAB_PRE_TYPE_GROK_2          = 39,
     LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
     LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2      = 41,
+    LLAMA_VOCAB_PRE_TYPE_AFMOE           = 42,
 };
 
 struct LLM_KV;
diff --git a/examples/talk-llama/models/afmoe.cpp b/examples/talk-llama/models/afmoe.cpp
new file mode 100644 (file)
index 0000000..0192e34
--- /dev/null
@@ -0,0 +1,187 @@
+#include "models.h"
+
+llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
+    const int64_t n_embd_head = hparams.n_embd_head_v;
+    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+
+    ggml_tensor * cur;
+    ggml_tensor * inpL;
+
+    inpL = build_inp_embd(model.tok_embd);
+
+    // MuP scaling: embeddings * sqrt(hidden_size)
+    // mup_enabled = true, hidden_size = 1024, scale = 32.0
+    inpL = ggml_scale(ctx0, inpL, sqrtf(float(n_embd)));
+    cb(inpL, "inp_embd_scaled", -1);
+
+    // inp_pos - contains the positions
+    ggml_tensor * inp_pos = build_inp_pos();
+    auto * inp_attn = build_attn_inp_kv_iswa();
+    ggml_tensor * inp_out_ids = build_inp_out_ids();
+
+    const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
+
+    for (int il = 0; il < n_layer; ++il) {
+        ggml_tensor * inpSA = inpL;
+
+        // dual attention normalization (pre)
+        cur = build_norm(inpL,
+                model.layers[il].attn_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "attn_norm", il);
+
+        // self-attention
+        {
+            ggml_tensor * attn_inp = cur;  // save input for gate computation
+
+            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+            cb(Qcur, "Qcur", il);
+
+            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+            cb(Kcur, "Kcur", il);
+
+            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+            cb(Vcur, "Vcur", il);
+
+            // compute gate from input
+            ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, attn_inp);
+            cb(gate, "attn_gate_proj", il);
+
+            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+
+            // Q/K normalization
+            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+            cb(Qcur, "Qcur_normed", il);
+            cb(Kcur, "Kcur_normed", il);
+
+            // RoPE only for sliding_attention layers
+            const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
+                                ((il + 1) % hparams.n_no_rope_layer_step) != 0;
+            if (use_rope) {
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Qcur, "Qcur_rope", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow);
+                cb(Kcur, "Kcur_rope", il);
+            }
+
+            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+            cur = build_attn(inp_attn,
+                    NULL, NULL,  // wo will be applied after gating
+                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
+            cb(cur, "attn_out", il);
+
+            // attention gating: attn_out * sigmoid(gate) BEFORE o_proj
+            gate = ggml_sigmoid(ctx0, gate);
+            cb(gate, "attn_gate_sig", il);
+            cur = ggml_mul(ctx0, cur, gate);
+            cb(cur, "attn_gated", il);
+
+            // now apply output projection
+            cur = build_lora_mm(model.layers[il].wo, cur);
+            cb(cur, "attn_o_proj", il);
+        }
+
+        // dual attention normalization (post)
+        cur = build_norm(cur,
+                model.layers[il].attn_post_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "attn_post_norm", il);
+
+        if (il == n_layer - 1 && inp_out_ids) {
+            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+        }
+
+        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+        cb(ffn_inp, "ffn_inp", il);
+
+        // dual ffn normalization (pre)
+        cur = build_norm(ffn_inp,
+                model.layers[il].ffn_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "ffn_norm", il);
+
+        // MoE or dense FFN
+        if ((uint32_t)il >= hparams.n_layer_dense_lead) {
+            // MoE layer with sigmoid routing, normalization, and scaling
+            ggml_tensor * moe_out = build_moe_ffn(cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    model.layers[il].ffn_exp_probs_b,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU,
+                    hparams.expert_weights_norm,           // norm_w (route_norm=True)
+                    hparams.expert_weights_scale,          // scale_w
+                    hparams.expert_weights_scale,          // w_scale (route_scale=2.826)
+                    (llama_expert_gating_func_type) hparams.expert_gating_func,
+                    il);
+            cb(moe_out, "ffn_moe_out", il);
+
+            // shared expert
+            if (hparams.n_expert_shared > 0) {
+                ggml_tensor * ffn_shexp = build_ffn(cur,
+                        model.layers[il].ffn_up_shexp,   NULL, NULL,
+                        model.layers[il].ffn_gate_shexp, NULL, NULL,
+                        model.layers[il].ffn_down_shexp, NULL, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, il);
+                cb(ffn_shexp, "ffn_shexp", il);
+
+                cur = ggml_add(ctx0, moe_out, ffn_shexp);
+                cb(cur, "ffn_out", il);
+            } else {
+                cur = moe_out;
+            }
+        } else {
+            // dense layer
+            cur = build_ffn(cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(cur, "ffn_out", il);
+        }
+
+        // dual ffn normalization (post)
+        cur = build_norm(cur,
+                model.layers[il].ffn_post_norm, NULL,
+                LLM_NORM_RMS, il);
+        cb(cur, "ffn_post_norm", il);
+
+        cur = ggml_add(ctx0, cur, ffn_inp);
+        cur = build_cvec(cur, il);
+        cb(cur, "l_out", il);
+
+        // input for next layer
+        inpL = cur;
+    }
+
+    cur = inpL;
+
+    cur = build_norm(cur,
+            model.output_norm, NULL,
+            LLM_NORM_RMS, -1);
+    cb(cur, "result_norm", -1);
+
+    res->t_embd = cur;
+
+    // lm_head
+    cur = build_lora_mm(model.output, cur);
+    cb(cur, "result_output", -1);
+    res->t_logits = cur;
+
+    ggml_build_forward_expand(gf, cur);
+}
index 99962af111f639ce1b01c5a7b65afd04a0f7ce03..99aead53283f7e48f8af17a63ca4e24740e7c014 100644 (file)
@@ -1,7 +1,5 @@
 #include "models.h"
 
-
-
 llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) :
     llm_graph_context(params) {
     const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -19,6 +17,8 @@ llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_grap
 
     auto * inp_attn = build_attn_inp_kv();
 
+    ggml_tensor * inp_out_ids = build_inp_out_ids();
+
     for (int il = 0; il < n_layer; ++il) {
         ggml_tensor * inpSA = inpL;
 
@@ -67,9 +67,8 @@ llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_grap
         }
         if (il == n_layer - 1) {
             // skip computing output for unused tokens
-            ggml_tensor * inp_out_ids = build_inp_out_ids();
-            cur                       = ggml_get_rows(ctx0, cur, inp_out_ids);
-            inpSA                     = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
+            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
         }
         ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
         cb(ffn_inp, "ffn_inp", il);
index 2fffb382df2e5274e68518b2f6c50bcb4eae9b80..4d7aeb4f42caa3ea2d5744c2b851ea1c55bb74c2 100644 (file)
@@ -57,6 +57,10 @@ struct llm_build_rwkv7_base : public llm_graph_context {
                                        int                  il) const;
 };
 
+struct llm_build_afmoe : public llm_graph_context {
+    llm_build_afmoe(const llama_model & model, const llm_graph_params & params);
+};
+
 struct llm_build_apertus : public llm_graph_context {
     llm_build_apertus(const llama_model & model, const llm_graph_params & params);
 };
index 3c0c0eecf5d4f44b35f09fea45febb7c3e1451df..96596709eec5611e14c95ef74564ac2381f8cd88 100644 (file)
@@ -11,6 +11,8 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
 
     auto * inp_attn = build_attn_inp_kv_iswa();
 
+    ggml_tensor * inp_out_ids = build_inp_out_ids();
+
     for (int il = 0; il < n_layer; ++il) {
         ggml_tensor * inpSA = inpL;
 
@@ -69,7 +71,6 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
         }
         if (il == n_layer - 1) {
             // skip computing output for unused tokens
-            ggml_tensor * inp_out_ids = build_inp_out_ids();
             cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
             inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
         }
index 65f366517158288b9cbc28dc473010ae396fc85d..77ba4fc46bc1170e52ce18370d3db3f46fc8d070 100644 (file)
@@ -729,6 +729,80 @@ static std::vector<size_t> unicode_regex_split_custom_kimi_k2(const std::string
     return bpe_offsets;
 }
 
+// AFMOE digit handling: splits digits with leading 1-2 based on total length modulo 3
+static std::vector<size_t> unicode_regex_split_custom_afmoe(const std::string & text, const std::vector<size_t> & offsets) {
+    std::vector<size_t> bpe_offsets;
+    bpe_offsets.reserve(offsets.size());
+
+    const auto cpts = unicode_cpts_from_utf8(text);
+
+    size_t start = 0;
+    for (auto offset : offsets) {
+        const size_t offset_ini = start;
+        const size_t offset_end = start + offset;
+        assert(offset_end <= cpts.size());
+        start = offset_end;
+
+        auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
+            return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
+        };
+
+        size_t _prev_end = offset_ini;
+        auto _add_token = [&] (const size_t end) -> size_t {
+            assert(_prev_end <= end && end <= offset_end);
+            size_t len = end - _prev_end;
+            if (len > 0) {
+                bpe_offsets.push_back(len);
+            }
+            _prev_end = end;
+            return len;
+        };
+
+        for (size_t pos = offset_ini; pos < offset_end; ) {
+            const auto flags = _get_flags(pos);
+
+            // Handle digit sequences with special splitting logic
+            if (flags.is_number) {
+                size_t digit_start = pos;
+                size_t digit_count = 0;
+
+                // Count consecutive digits
+                while (_get_flags(pos).is_number && pos < offset_end) {
+                    digit_count++;
+                    pos++;
+                }
+
+                // Split based on total length modulo 3
+                size_t remainder = digit_count % 3;
+                size_t current = digit_start;
+
+                // Emit leading 1-2 digits if needed
+                if (remainder > 0) {
+                    _add_token(current + remainder);
+                    current += remainder;
+                }
+
+                // Emit groups of 3
+                while (current < digit_start + digit_count) {
+                    _add_token(current + 3);
+                    current += 3;
+                }
+                continue;
+            }
+
+            // For non-digits, just move forward
+            pos++;
+        }
+
+        // Add any remaining content
+        if (_prev_end < offset_end) {
+            _add_token(offset_end);
+        }
+    }
+
+    return bpe_offsets;
+}
+
 static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
     std::vector<size_t> bpe_offsets;
 
@@ -742,6 +816,9 @@ static std::vector<size_t> unicode_regex_split_custom(const std::string & text,
     } else if (regex_expr == "\\p{Han}+") {
         // K2's first pattern - handle all K2 patterns together
         bpe_offsets = unicode_regex_split_custom_kimi_k2(text, offsets);
+    } else if (regex_expr == "\\p{AFMoE_digits}") {
+        // AFMOE digit pattern - use custom implementation for proper splitting
+        bpe_offsets = unicode_regex_split_custom_afmoe(text, offsets);
     }
 
     return bpe_offsets;