--- /dev/null
+#include "common.h"
+#include "llama.h"
+
+#include <cmath>
+#include <cstdio>
+#include <string>
+#include <vector>
+
+int main(int argc, char ** argv) {
+ gpt_params params;
+
+ if (argc == 1 || argv[1][0] == '-') {
+ printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]);
+ return 1 ;
+ }
+
+ int seed = -1;
+
+ int n_junk = 250; // number of times to repeat the junk text
+ int n_keep = 32; // number of tokens in the prompt prefix
+ int n_grp = 1; // if more than 1 - perform LongLM SelfExtend
+ int i_pos = -1; // position of the passkey in the junk text
+
+ if (argc >= 2) {
+ params.model = argv[1];
+ }
+
+ if (argc >= 3) {
+ n_junk = std::stoi(argv[2]);
+ }
+
+ if (argc >= 4) {
+ n_grp = std::stoi(argv[3]);
+ }
+
+ if (argc >= 5) {
+ i_pos = std::stoi(argv[4]);
+ }
+
+ if (argc >= 6) {
+ seed = std::stoi(argv[5]);
+ }
+
+ if (seed == -1) {
+ seed = time(NULL);
+ }
+
+ srand(seed);
+
+ if (i_pos == -1) {
+ i_pos = rand() % n_junk;
+ }
+
+ const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
+ const std::string prompt_suffix = " What is the pass key? The pass key is";
+
+ // generate junk text
+ params.prompt = prompt_prefix;
+
+ const int passkey = rand() % 50000 + 1;
+
+ for (int i = 0; i < n_junk; i++) {
+ if (i % n_junk == i_pos) {
+ params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
+ }
+
+ params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
+ }
+
+ params.prompt += prompt_suffix;
+
+ // init LLM
+
+ llama_backend_init(params.numa);
+
+ // initialize the model
+
+ llama_model_params model_params = llama_model_default_params();
+
+ model_params.n_gpu_layers = 99; // offload all layers to the GPU
+
+ llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
+
+ if (model == NULL) {
+ fprintf(stderr , "%s: error: unable to load model\n" , __func__);
+ return 1;
+ }
+
+ // initialize the context
+
+ llama_context_params ctx_params = llama_context_default_params();
+
+ ctx_params.seed = seed;
+ ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
+ ctx_params.n_batch = 512;
+ ctx_params.n_threads = params.n_threads;
+ ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
+
+ GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
+
+ llama_context * ctx = llama_new_context_with_model(model, ctx_params);
+
+ if (ctx == NULL) {
+ fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
+ return 1;
+ }
+
+ // tokenize the prompt
+ std::vector<llama_token> tokens_list;
+ tokens_list = ::llama_tokenize(ctx, params.prompt, true);
+
+ // tokenize the prefix and use it as a sink
+ const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
+
+ const int n_tokens_all = tokens_list.size();
+
+ // we leave a margin of 16 tokens for the generated text - it should contain just the passkey
+ const int n_predict = 16;
+
+ // total length of the sequences including the prompt
+ const int n_len = n_tokens_all + n_predict;
+
+ const int n_ctx = llama_n_ctx(ctx) - n_keep;
+ const int n_kv_req = llama_n_ctx(ctx);
+ const int n_batch = ctx_params.n_batch;
+ const int n_batch_grp = ctx_params.n_batch/n_grp;
+
+ LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch);
+
+ // print the prompt token-by-token
+
+ LOG_TEE("\n");
+ LOG_TEE("prefix tokens: %d\n", n_tokens_prefix);
+ LOG_TEE("prompt tokens: %d\n", n_tokens_all);
+ //LOG_TEE("prompt: %s\n", params.prompt.c_str());
+
+ llama_batch batch = llama_batch_init(512, 0, 1);
+
+ int n_past = 0;
+
+ // fill the KV cache
+ for (int i = 0; i < n_ctx; i += n_batch) {
+ if (i > 0 && n_grp > 1) {
+ // if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
+ const int ib = i/n_batch - 1;
+ const int bd = n_batch_grp*(n_grp - 1);
+
+ llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd);
+ llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
+
+ n_past -= bd;
+ }
+
+ llama_batch_clear(batch);
+
+ for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
+ llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
+ }
+
+ if (i + n_batch >= n_tokens_all) {
+ batch.logits[batch.n_tokens - 1] = true;
+ }
+
+ if (llama_decode(ctx, batch) != 0) {
+ LOG_TEE("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+
+ LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
+
+ if (i + n_batch >= n_tokens_all) {
+ break;
+ }
+ }
+
+ for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
+ const int n_discard = n_batch;
+
+ LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
+
+ llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
+ llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
+
+ n_past -= n_discard;
+
+ llama_batch_clear(batch);
+
+ for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
+ llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
+ }
+
+ if (i + n_batch >= n_tokens_all) {
+ batch.logits[batch.n_tokens - 1] = true;
+ }
+
+ if (llama_decode(ctx, batch) != 0) {
+ LOG_TEE("%s: llama_decode() failed\n", __func__);
+ return 1;
+ }
+
+ LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
+ }
+
+ {
+ const int n_discard = n_past - n_ctx + n_predict;
+
+ if (n_discard > 0) {
+ LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
+
+ llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
+ llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
+
+ n_past -= n_discard;
+ }
+ }
+
+ LOG_TEE("\n");
+ LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
+ LOG_TEE("\n");
+
+ // main loop
+
+ int n_cur = n_tokens_all;
+ int n_decode = 0;
+
+ LOG_TEE("%s", prompt_suffix.c_str());
+ fflush(stdout);
+
+ const auto t_main_start = ggml_time_us();
+
+ while (n_cur <= n_len) {
+ // sample the next token
+ {
+ auto n_vocab = llama_n_vocab(model);
+ auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
+
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+
+ // sample the most likely token
+ const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
+
+ // is it an end of stream?
+ if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
+ LOG_TEE("\n");
+
+ break;
+ }
+
+ LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
+ fflush(stdout);
+
+ n_decode += 1;
+
+ // prepare the next batch
+ llama_batch_clear(batch);
+
+ // push this new token for next evaluation
+ llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
+ }
+
+ n_cur += 1;
+
+ // evaluate the current batch with the transformer model
+ if (llama_decode(ctx, batch)) {
+ fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
+ return 1;
+ }
+ }
+
+ LOG_TEE("\n");
+
+ const auto t_main_end = ggml_time_us();
+
+ LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
+ __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
+
+ llama_print_timings(ctx);
+
+ fprintf(stderr, "\n");
+
+ llama_batch_free(batch);
+
+ llama_free(ctx);
+ llama_free_model(model);
+
+ llama_backend_free();
+
+ return 0;
+}