* Broadcasting for ggml_mul
* CUDA kernel for ggml_mul, norms in VRAM
* GPU weights not in RAM, direct loading with cuFile
* fixup! GPU weights not in RAM, direct loading with cuFile
* fixup! GPU weights not in RAM, direct loading with cuFile
* define default model path once, sync path with readme (#1366)
* ~7% faster Q5_1 AVX2 code (#1477)
* convert.py: Support models which are stored in a single pytorch_model.bin (#1469)
* Support models in a single pytorch_model.bin
* Remove spurious line with typo
* benchmark-matmul: Print the average of the test results (#1490)
* Remove unused n_parts parameter (#1509)
* Fixes #1511 lambda issue for w64devkit (mingw) (#1513)
* Fix for w64devkit and mingw
* make kv_f16 the default for api users (#1517)
* minor : fix compile warnings
* readme : adds WizardLM to the list of supported models (#1485)
* main : make reverse prompt option act as a stop token in non-interactive mode (#1032)
* Make reverse prompt option act as a stop token in non-interactive scenarios
* Making requested review changes
* Update gpt_params_parse and fix a merge error
* Revert "Update gpt_params_parse and fix a merge error"
This reverts commit
2bb2ff1748513591ad45b175a75ed1d8089d84c8.
* Update gpt_params_parse and fix a merge error take 2
* examples : add persistent chat (#1495)
* examples : add persistent chat
* examples : fix whitespace
---------
Co-authored-by: Georgi Gerganov <redacted>
* tests : add missing header
* ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)
* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0
* llama : bump LLAMA_FILE_VERSION to 3
* cuda : update Q4 and Q8 dequantize kernels
* ggml : fix AVX dot products
* readme : update performance table + hot topics
* ggml : fix scalar implementation of Q4_1 dot
* llama : fix compile warnings in llama_set_state_data()
* llama : fix name shadowing and C4146 (#1526)
* Fix name shadowing and C4146
* Fix if macros not using defined when required
* Update llama-util.h
Co-authored-by: github-actions[bot] <redacted>
* Update llama-util.h
Co-authored-by: github-actions[bot] <redacted>
* Code style
Co-authored-by: Georgi Gerganov <redacted>
---------
Co-authored-by: github-actions[bot] <redacted>
Co-authored-by: Georgi Gerganov <redacted>
* Fix for mingw (#1462)
* llama : add llama_init_backend() API (close #1527)
* feature : add blis and other BLAS implementation support (#1502)
* feature: add blis support
* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927
* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake
* Fix typo in INTEGER
Co-authored-by: Georgi Gerganov <redacted>
---------
Co-authored-by: Georgi Gerganov <redacted>
* Revert "feature : add blis and other BLAS implementation support (#1502)"
This reverts commit
07e9ace0f9da424d82e75df969642522880feb92.
* GPU weights not in RAM, direct loading with cuFile
* llama : code style fixes + progress print fix
* ggml : ggml_mul better broadcast support
* cmake : workarounds for cufile when CMake version < 3.25
* gg rebase fixup
* Loop in llama.cpp, fixed progress callback
* Attempt clang-tidy fix
* llama : fix vram size computation
* Add forgotten fclose()
---------
Co-authored-by: András Salamon <redacted>
Co-authored-by: Ilya Kurdyukov <redacted>
Co-authored-by: Tom Jobbins <redacted>
Co-authored-by: rankaiyx <redacted>
Co-authored-by: Stephan Walter <redacted>
Co-authored-by: DannyDaemonic <redacted>
Co-authored-by: Erik Scholz <redacted>
Co-authored-by: Georgi Gerganov <redacted>
Co-authored-by: David Kennedy <redacted>
Co-authored-by: Jason McCartney <redacted>
Co-authored-by: Evan Jones <redacted>
Co-authored-by: Maxime <redacted>
Co-authored-by: github-actions[bot] <redacted>
Co-authored-by: Zenix <redacted>
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
+#define CUDA_MUL_BLOCK_SIZE 256
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
#define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec
+static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= kx) {
+ return;
+ }
+ dst[i] = x[i] * y[i%ky];
+}
+
static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q4_0 * x = (const block_q4_0 *) vx;
}
}
+static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
+ const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
+ mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
+}
+
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
}
+static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA);
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[2];
+ const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+ size_t x_size, d_size;
+
+ float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0
+ float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted.
+ float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ const int i0 = i03*ne02 + i02;
+ float * c_X2 = d_X + i0*ne01*ne00;
+ float * c_D2 = d_D + i0*ne01*ne00;
+
+ cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS];
+ cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS];
+ cudaEvent_t cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS];
+
+ // copy src0 to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2));
+ CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
+
+ // wait for data
+ CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
+
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const int64_t i13 = i03%ne13;
+ const int64_t i12 = i02%ne12;
+ const int64_t i11 = i01%ne11;
+ const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
+
+ float * c_X1 = c_X2 + i01*ne00;
+ float * c_Y = d_Y + i1*ne10;
+ float * c_D1 = c_D2 + i01*ne00;
+
+ // compute
+ mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream);
+ CUDA_CHECK(cudaGetLastError());
+ }
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream));
+ }
+ }
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_D, d_size);
+}
+
static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
ggml_cuda_pool_free(d_Q, q_size);
}
+void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
+ ggml_cuda_mul_f32(src0, src1, dst);
+}
+
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0];
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
size_t q_size;
- char * d_Q = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
+ char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
cudaStream_t cudaStream2 = g_cudaStreams2[0];
// copy tensor to device
- CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2));
- CUDA_CHECK(cudaDeviceSynchronize());
+ for (int64_t i3 = 0; i3 < ne3; i3++) {
+ for (int64_t i2 = 0; i2 < ne2; i2++) {
+ int i = i3*ne2 + i2;
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2));
+ }
+ }
- tensor->data = d_Q;
+ tensor->data = dst;
tensor->backend = GGML_BACKEND_CUDA;
}
+
+void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
+ FILE * fp = fopen(fname, "rb");
+
+ const size_t size = ggml_nbytes(tensor);
+
+ void * buf;
+ CUDA_CHECK(cudaMalloc(&buf, size));
+ void * buf_host = malloc(size);
+
+#ifdef _WIN32
+ int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
+#else
+ int ret = fseek(fp, (long) offset, SEEK_SET);
+#endif
+ GGML_ASSERT(ret == 0); // same
+
+ size_t ret2 = fread(buf_host, size, 1, fp);
+ if (ret2 != 1) {
+ fprintf(stderr, "unexpectedly reached end of file");
+ exit(1);
+ }
+
+ cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
+ cudaDeviceSynchronize();
+
+ tensor->data = buf;
+ free(buf_host);
+ fclose(fp);
+}
void ggml_init_cublas(void);
+void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
void ggml_cuda_host_free(void * ptr);
void ggml_cuda_transform_tensor(struct ggml_tensor * tensor);
+void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset);
#ifdef __cplusplus
}
(t1->ne[3]%t0->ne[3] == 0);
}
+static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
+}
+
static inline int ggml_up32(int n) {
return (n + 31) & ~31;
}
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
+ // TODO: support less-strict constraint
+ // GGML_ASSERT(ggml_can_repeat(b, a));
+ GGML_ASSERT(ggml_can_repeat_rows(b, a));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
+ // TODO: support backward pass for broadcasting
+ GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
const int ith = params->ith;
const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- const int64_t ne0 = src0->ne[0];
- const int64_t ne1 = src0->ne[1];
- const int64_t ne2 = src0->ne[2];
+#ifdef GGML_USE_CUBLAS
+ if (src1->backend == GGML_BACKEND_CUDA) {
+ if (ith == 0) {
+ ggml_cuda_mul(src0, src1, dst);
+ }
+ return;
+ }
+#endif
+
+ const int64_t nr = ggml_nrows(src0);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1];
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
+ GGML_ASSERT(ne00 == ne10);
if (nb10 == sizeof(float)) {
- for (int ir = ith; ir < nr; ir += nth) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_mul_f32);
- vDSP_vmul(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
+ vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
#else
- ggml_vec_mul_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
+ ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
#endif
// }
// }
}
} else {
// src1 is not contiguous
- for (int ir = ith; ir < nr; ir += nth) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
+ for (int64_t ir = ith; ir < nr; ir += nth) {
+ // src0 and dst are same shape => same indices
+ // src1 is broadcastable across src0 and dst in i1, i2, i3
+ const int64_t i03 = ir/(ne02*ne01);
+ const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
+ const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
+
+ const int64_t i13 = i03 % ne13;
+ const int64_t i12 = i02 % ne12;
+ const int64_t i11 = i01 % ne11;
+
+ float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
+ float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
+
+ for (int64_t i0 = 0; i0 < ne00; i0++) {
+ float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
}
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
- llama_mmap(struct llama_file * file, bool prefetch = true) {
+ llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
- if (prefetch) {
+ if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
- if (madvise(addr, file->size, MADV_WILLNEED)) {
+ if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
// Defines fileno on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
+#include <cstddef>
#include <cstdint>
#include <cstdio>
#endif
}
}
- struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne) {
+ struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
auto it = tensors_map.name_to_idx.find(name);
if (it == tensors_map.name_to_idx.end()) {
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
}
- return get_tensor_for(lt);
+ return get_tensor_for(lt, backend);
}
- struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
+ struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
struct ggml_tensor * tensor;
if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
}
ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
+ tensor->backend = backend;
lt.ggml_tensor = tensor;
num_ggml_tensors_created++;
return tensor;
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
size_t data_size = 0;
+ size_t prefetch_size = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) {
data_size += lt.size;
+ if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
+ prefetch_size += lt.size;
+ }
}
if (use_mmap) {
- mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
+ mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
if (!lmlock) {
// Don't call the callback since the actual loading will be lazy
// and we can't measure it.
size_t done_size = 0;
for (llama_load_tensor & lt : tensors_map.tensors) {
+ if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
+ continue;
+ }
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
lmlock->grow_to(done_size);
}
}
- if (progress_callback) {
- progress_callback(1.0f, progress_callback_user_data);
- }
}
void load_data_for(llama_load_tensor & lt) {
size_t ctx_size;
size_t mmapped_size;
ml->calc_sizes(&ctx_size, &mmapped_size);
- fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/1024.0/1024.0);
-
- // print memory requirements
- {
- const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
-
- // this is the total memory required to run the inference
- const size_t mem_required =
- ctx_size +
- mmapped_size +
- MEM_REQ_SCRATCH0().at(model.type) +
- MEM_REQ_SCRATCH1().at(model.type) +
- MEM_REQ_EVAL().at(model.type);
-
- // this is the memory required by one llama_state
- const size_t mem_required_state =
- scale*MEM_REQ_KV_SELF().at(model.type);
-
- fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
- mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
- }
+ fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
// create the ggml context
{
}
}
+#ifdef GGML_USE_CUBLAS
+#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA
+#else
+#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
+#endif
+
// prepare memory for the weights
+ size_t vram_total = 0;
{
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
ml->ggml_ctx = ctx;
- model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
- model.norm = ml->get_tensor("norm.weight", {n_embd});
- model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
+ model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
+ model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU);
+
+ // "output" tensor
+ {
+ ggml_backend backend_output;
+ if (n_gpu_layers > int(n_layer)) { // NOLINT
+ backend_output = LLAMA_BACKEND_OFFLOAD;
+ } else {
+ backend_output = GGML_BACKEND_CPU;
+ }
+
+ model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
+ }
+
+ const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
+ const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
+
auto & layer = model.layers[i];
std::string layers_i = "layers." + std::to_string(i);
- layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
+ layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
- layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
- layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
- layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
- layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
+ layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend);
+ layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend);
+ layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend);
+ layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend);
- layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
+ layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
- layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
- layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
- layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
+ layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend);
+ layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend);
+ layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend);
+
+ if (backend == GGML_BACKEND_CUDA) {
+ vram_total +=
+ ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
+ ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
+ ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
+ }
}
}
ml->done_getting_tensors();
- // populate `tensors_by_name`
- for (llama_load_tensor & lt : ml->tensors_map.tensors) {
- model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
- }
+ // print memory requirements
+ {
+ const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
- ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
+ // this is the total memory required to run the inference
+ const size_t mem_required =
+ ctx_size +
+ mmapped_size - vram_total + // weights in VRAM not in memory
+ MEM_REQ_SCRATCH0().at(model.type) +
+ MEM_REQ_SCRATCH1().at(model.type) +
+ MEM_REQ_EVAL().at(model.type);
+
+ // this is the memory required by one llama_state
+ const size_t mem_required_state =
+ scale*MEM_REQ_KV_SELF().at(model.type);
+
+ fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
+ mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
- model.mapping = std::move(ml->mapping);
#ifdef GGML_USE_CUBLAS
- {
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);
+ if (n_gpu_layers > (int) hparams.n_layer) {
+ fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
+ }
+ fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
+#else
+ (void) n_gpu_layers;
+#endif
+ }
- size_t vram_total = 0;
+ // populate `tensors_by_name`
+ for (llama_load_tensor & lt : ml->tensors_map.tensors) {
+ model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
+ }
- for (int i = 0; i < n_gpu; ++i) {
- const auto & layer = model.layers[i];
+ ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
- ggml_cuda_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq);
- ggml_cuda_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk);
- ggml_cuda_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv);
- ggml_cuda_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo);
- ggml_cuda_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1);
- ggml_cuda_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2);
- ggml_cuda_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
+#ifdef GGML_USE_CUBLAS
+ {
+ size_t done_size = 0;
+ size_t data_size = 0;
+ for (llama_load_tensor & lt : ml->tensors_map.tensors) {
+ data_size += lt.size;
+ if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
+ done_size += lt.size;
+ }
}
- if (n_gpu_layers > (int) hparams.n_layer) {
- fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
- ggml_cuda_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);
+ for (llama_load_tensor & lt : ml->tensors_map.tensors) {
+ if (lt.ggml_tensor->backend != GGML_BACKEND_CUDA) {
+ continue;
+ }
+ if (progress_callback) {
+ progress_callback((float) done_size / data_size, progress_callback_user_data);
+ }
+ ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
+ done_size += lt.size;
}
+ }
+#endif // GGML_USE_CUBLAS
- fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
+ if (progress_callback) {
+ progress_callback(1.0f, progress_callback_user_data);
}
-#else
- (void) n_gpu_layers;
-#endif
+
+ model.mapping = std::move(ml->mapping);
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
{
cur = ggml_rms_norm(ctx0, inpL);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
- cur);
+ // cur = cur*attention_norm(broadcasted)
+ cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
}
// self-attention
{
cur = ggml_rms_norm(ctx0, inpFF);
- // cur = ffn_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
- cur);
+ // cur = cur*ffn_norm(broadcasted)
+ cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
inpL = ggml_rms_norm(ctx0, inpL);
- // inpL = norm*inpL
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.norm, inpL),
- inpL);
+ // inpL = inpL*norm(broadcasted)
+ inpL = ggml_mul(ctx0, inpL, model.norm);
embeddings = inpL;
}
unsigned * cur_percentage_p = (unsigned *) ctx;
unsigned percentage = (unsigned) (100 * progress);
while (percentage > *cur_percentage_p) {
- ++*cur_percentage_p;
+ *cur_percentage_p = percentage;
fprintf(stderr, ".");
fflush(stderr);
if (percentage >= 100) {
// maybe this should in llama_model_loader
if (model_loader->use_mmap) {
- model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
+ model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
}
}
}
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
- base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
+ base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
lt.data = (uint8_t *) lt.ggml_tensor->data;
model_loader->load_data_for(lt);
lt.ggml_tensor->data = lt.data;