#include "ggml-sycl/set_rows.hpp"
#include "ggml-sycl/sycl_hw.hpp"
#include "ggml-sycl/getrows.hpp"
+#include "ggml-sycl/quantize.hpp"
#include "ggml.h"
static bool g_sycl_loaded = false;
-template<int QUANT_BLOCK_TILE>
-static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
- const sycl::nd_item<3> &item_ct1) {
- const int ix = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2)) * QUANT_BLOCK_TILE;
-
- if (ix >= kx_padded) {
- return;
- }
-
- const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
-
- const int i_padded = iy*kx_padded + ix;
-
- block_q8_1 * y = (block_q8_1 *) vy;
-
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
- typedef sycl::vec<float, QUANT_BLOCK_TILE> TC;
- typedef sycl::vec<int8_t, QUANT_BLOCK_TILE> TQ;
- TC zeros;
- TQ qzeros;
-#pragma unroll
- for (int i = 0; i < QUANT_BLOCK_TILE; i++)
- {
- zeros[i] = 0.f;
- qzeros[i] = 0;
- }
- const TC xi = ix < kx ? *(const TC *)&x[iy * kx + ix] : zeros;
- float sum = xi[0];
- float amax = sycl::fabs(xi[0]);
-#pragma unroll
- for (int i = 1; i < QUANT_BLOCK_TILE; i++)
- {
- sum += xi[i];
- amax = sycl::fmax(sycl::fabs(xi[i]), amax);
- }
- sum = warp_reduce_sum(sum, item_ct1);
- amax = warp_reduce_max(amax, item_ct1);
-
- const float d = amax / 127;
- TQ q = qzeros;
- if (amax != 0.0f)
- {
-#pragma unroll
- for (int i = 0; i < QUANT_BLOCK_TILE; i++) {
- q[i] = sycl::round(xi[i] / d);
- }
- }
-
- *(TQ *)&y[ib].qs[iqs] = q;
-
- if (iqs > 0) {
- return;
- }
-
- reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
- reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
-}
-
-template <int ElementsPerWI>
-static __dpct_inline__ void quantize_and_reorder_q8_1(const float * __restrict__ x, void * reordered_q8_tensor,
- const int kx, const int kx_padded, const sycl::nd_item<1> & it) {
- /*
- Quantizes and reorders the resultant q8 tensor in a per row fashion
- Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values
- */
-
- auto subgroup_id = it.get_group(0);
- auto wi_id = it.get_local_id(0);
-
- const int num_blocks_per_row = kx / QK8_1;
- auto row = subgroup_id / num_blocks_per_row;
- auto col = subgroup_id % num_blocks_per_row;
-
- auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1);
- auto col_offset = QK8_1 * col + wi_id * ElementsPerWI;
-
- auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset);
- auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2));
-
- sycl::vec<float, ElementsPerWI> wi_f32_vals;
- sycl::vec<int8_t, ElementsPerWI> quantized_values;
-
- auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id;
- wi_f32_vals = *reinterpret_cast<const sycl::vec<float, ElementsPerWI> *>(x + float_ptr_offset);
-
- float sum = 0.0f;
- float amax = 0.0f;
-
-#pragma unroll(ElementsPerWI)
- for (int i = 0; i < ElementsPerWI; i++) {
- sum += wi_f32_vals[i];
- amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i]));
- quantized_values[i] = 0;
- }
- sum = sycl::reduce_over_group(it.get_group(), sum, sycl::plus<float>());
- amax = sycl::reduce_over_group(it.get_group(), amax, sycl::maximum<float>());
- float d = amax == 0 ? 1 : amax / 127;
-
-#pragma unroll(ElementsPerWI)
- for (int i = 0; i < ElementsPerWI; i++) {
- quantized_values[i] = sycl::round(wi_f32_vals[i] / d);
- }
-
- d = amax == 0 ? 0 : d;
-
- *reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(quant_ptr) = quantized_values;
- if (wi_id == 0) {
- *ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum));
- }
-}
-
static void mul_mat_p021_f16_f32(
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
o_ptr[cur_oh * ow + cur_ow] = res;
}
-static void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded,
- bool reorder_q8_tensor, queue_ptr stream) {
- if (reorder_q8_tensor) {
- auto local_range = std::size_t(WARP_SIZE);
- auto num_quant_blocks = ky * (kx / QK8_1);
- auto global_range = num_quant_blocks * local_range;
- stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }),
- [=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
- quantize_and_reorder_q8_1<QK8_1 / WARP_SIZE>(x, vy, kx, kx_padded, it);
- });
- } else {
- const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
- const sycl::range<3> num_blocks(1, ky, block_num_x);
- int constexpr QUANT_BLOCK_TILE = QK8_1 / WARP_SIZE;
- static_assert(QK8_1 % WARP_SIZE == 0);
- const sycl::range<3> block_size(1, 1, SYCL_QUANTIZE_BLOCK_SIZE / QUANT_BLOCK_TILE);
- {
- dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
-
- stream->parallel_for(sycl::nd_range<3>(num_blocks * block_size, block_size),
- [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
- quantize_q8_1<QUANT_BLOCK_TILE>(x, vy, kx, kx_padded, item_ct1);
- });
- }
- }
-}
static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
float *dst, const int ncols_x,
peer_access_enabled = enable_peer_access;
}
+template <template <int> typename quantize_f>
static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
- ggml_sycl_op_mul_mat_t op,
- const bool convert_src1_to_q8_1) try {
+ ggml_sycl_op_mul_mat_t op) try {
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
}
}
+ constexpr bool quantize_enabled = !std::is_same_v<quantize_f<QK8_1 / WARP_SIZE>,
+ no_quantize_q8_1<QK8_1 / WARP_SIZE>>;
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
continue;
dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ctx.pool(i), ggml_nelements(src1));
}
- if (convert_src1_to_q8_1) {
+ if constexpr(quantize_enabled) {
dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
if (src1_on_device && src1_is_contiguous) {
- bool reorder_q8_tensor = src0->extra && ((ggml_tensor_extra_gpu *)src0->extra)->optimized_feature.reorder;
scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
/*num_src=*/2, " : converting src1 to Q8_1");
- quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, reorder_q8_tensor, stream);
- /*
- DPCT1010:90: SYCL uses exceptions to report errors and does not
- use the error codes. The call was replaced with 0. You need to
- rewrite this code.
- */
- SYCL_CHECK(0);
+ try {
+ quantize_row_q8_1_sycl<quantize_f>(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
+ } catch (sycl::exception const &exc) {
+ std::cerr << "Quantize_row_q8_1_sycl error" << exc.what() << "Exception caught at file:" << __FILE__
+ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+ }
}
}
// here an event is recorded that signals that the main device has finished calculating the input data
if (split && used_devices > 1) {
ggml_sycl_set_device(ctx.device);
- /*
- DPCT1024:91: The original code returned the error code that was further
- consumed by the program logic. This original code was replaced with 0.
- You may need to rewrite the program logic consuming the error code.
- */
SYCL_CHECK(CHECK_TRY_ERROR(
*src0_extra->events[ctx.device][0] =
ctx.stream()->ext_oneapi_submit_barrier()));
// wait for main GPU data if necessary
if (split && (i != ctx.device || is != 0)) {
- /*
- DPCT1009:163: SYCL uses exceptions to report errors and does not
- use the error codes. The original code was commented out and a
- warning string was inserted. You need to rewrite this code.
- */
SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
{*src0_extra->events[ctx.device][0]})));
}
// copy src0, src1 to device if necessary
if (src1_is_contiguous) {
if (i != ctx.device) {
- if (convert_src1_to_q8_1) {
+ if constexpr (quantize_enabled) {
char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
- SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
- src1_ddq_i, src1_ddq_i_source,
- src1_ncols * src1_padded_col_size * q8_1_ts /
- q8_1_bs).wait()));
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(stream
+ ->memcpy(src1_ddq_i, src1_ddq_i_source,
+ src1_ncols * src1_padded_col_size * q8_1_ts / q8_1_bs)
+ .wait()));
} else {
-
float * src1_ddf_i_source = (float *) src1_extra->data_device[ctx.device];
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
+ src1_ddf_i_source += (i0 * ne11 + src1_col_0) * ne10;
- SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
- src1_ddf_i, src1_ddf_i_source,
- src1_ncols * ne10 * sizeof(float))));
+ SYCL_CHECK(
+ CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream, src1_ddf_i, src1_ddf_i_source,
+ src1_ncols * ne10 * sizeof(float))));
}
}
- } else if (src1_on_device && !src1_is_contiguous) {
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else {
- GGML_ABORT("fatal error");
- }
+ if (src1_on_device) {
+ SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, src1_col_0,
+ src1_col_0 + src1_ncols, stream));
+ } else {
+ GGML_ABORT("src1 is non-contiguous and not on device");
+ }
- if (convert_src1_to_q8_1 && !src1_is_contiguous) {
- scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
- /*num_src=*/2, " : converting src1 to Q8_1");
- quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, false, stream);
- /*
- DPCT1010:92: SYCL uses exceptions to report errors and does
- not use the error codes. The call was replaced with 0. You
- need to rewrite this code.
- */
- SYCL_CHECK(0);
+ if constexpr (quantize_enabled) {
+ scope_op_debug_print scope_dbg_print(__func__, "/quantize_row_q8_1_sycl", dst,
+ /*num_src=*/2, " : converting src1 to Q8_1");
+ try {
+ quantize_row_q8_1_sycl<quantize_q8_1>(src1_ddf_i, src1_ddq_i, ne10, src1_ncols,
+ src1_padded_col_size, stream);
+ } catch (const sycl::exception & exc) {
+ std::cerr << "Quantize_row_q8_1_sycl error" << exc.what()
+ << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
+ std::exit(1);
+ }
+ }
}
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
// do the computation
SYCL_CHECK(CHECK_TRY_ERROR(op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
- /*
- DPCT1010:93: SYCL uses exceptions to report errors and does not
- use the error codes. The call was replaced with 0. You need to
- rewrite this code.
- */
- SYCL_CHECK(0);
// copy dst to host or other device if necessary
if (!dst_on_device) {
// add event for the main device to wait on until other device is done
if (split && (i != ctx.device || is != 0)) {
- /*
- DPCT1024:94: The original code returned the error code that
- was further consumed by the program logic. This original
- code was replaced with 0. You may need to rewrite the
- program logic consuming the error code.
- */
SYCL_CHECK(CHECK_TRY_ERROR(
*src0_extra->events[i][is] =
stream->ext_oneapi_submit_barrier()));
// KQ + KQV multi-batch
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
- constexpr bool convert_src1_to_q8_1 = false;
opt_for_reorder(&ctx, src0, src1, dst, mul_mat_algo::DMMV);
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, convert_src1_to_q8_1);
+ ggml_sycl_op_mul_mat<no_quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec);
} else if (use_mul_mat_vec_q) {
- constexpr bool convert_src1_to_q8_1 = true;
opt_for_reorder(&ctx, src0, src1, dst, mul_mat_algo::MMVQ);
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, convert_src1_to_q8_1);
+ ggml_tensor_extra_gpu * extra = static_cast<ggml_tensor_extra_gpu *>(src0->extra);
+ if (extra && extra->optimized_feature.reorder) {
+ ggml_sycl_op_mul_mat<quantize_and_reorder_q8_1_soa>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q);
+ } else {
+ ggml_sycl_op_mul_mat<quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q);
+ }
} else if (use_mul_mat_q) {
- constexpr bool convert_src1_to_q8_1 = true;
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, convert_src1_to_q8_1);
+ ggml_sycl_op_mul_mat<quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q);
} else {
- constexpr bool convert_src1_to_q8_1 = false;
- ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, convert_src1_to_q8_1);
+ ggml_sycl_op_mul_mat<no_quantize_q8_1>(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl);
}
}
--- /dev/null
+/***************************************************************************
+ *
+ * Copyright (C) 2025 Codeplay Software Ltd.
+ * Copyright (C) 2025 Intel Corporation
+ *
+ * MIT License
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * quantize.hpp
+ *
+ * Description:
+ * Sycl backend specific quantization functions
+ **************************************************************************/
+
+#pragma once
+
+#include <sycl/nd_item.hpp>
+
+#include "ggml-sycl/dpct/helper.hpp"
+
+template <int ElementsPerWI>
+__dpct_inline__ static void quantize_q8_1_impl(const float * __restrict__ x,
+ sycl::vec<int8_t, ElementsPerWI> & quantized_values, float & d,
+ float & sum, const sycl::nd_item<1> & it) {
+ auto subgroup_id = it.get_group(0);
+ auto wi_id = it.get_local_id(0);
+
+ sycl::vec<float, ElementsPerWI> wi_f32_vals;
+
+ auto float_ptr_offset = subgroup_id * QK8_1 + ElementsPerWI * wi_id;
+ wi_f32_vals = *reinterpret_cast<const sycl::vec<float, ElementsPerWI> *>(x + float_ptr_offset);
+
+ float amax = 0.0f;
+
+#pragma unroll(ElementsPerWI)
+ for (int i = 0; i < ElementsPerWI; i++) {
+ sum += wi_f32_vals[i];
+ amax = sycl::fmax(amax, sycl::fabs(wi_f32_vals[i]));
+ quantized_values[i] = 0;
+ }
+ sum = sycl::reduce_over_group(it.get_sub_group(), sum, sycl::plus<float>());
+ amax = sycl::reduce_over_group(it.get_sub_group(), amax, sycl::maximum<float>());
+ d = amax == 0 ? 1 : amax / 127;
+
+#pragma unroll(ElementsPerWI)
+ for (int i = 0; i < ElementsPerWI; i++) {
+ quantized_values[i] = sycl::round(wi_f32_vals[i] / d);
+ }
+
+ d = amax == 0 ? 0 : d;
+}
+
+// No op to control codepath in ggml_sycl_op_mul_mat
+template <int ElementsPerWI> struct no_quantize_q8_1 {
+ void operator()(const float *, void *, int, int, const sycl::nd_item<1> &) const {}
+};
+
+template <int ElementsPerWI> struct quantize_and_reorder_q8_1_soa {
+ __dpct_inline__ void operator()(const float * __restrict__ x, void * reordered_q8_tensor, const int kx,
+ const int kx_padded, const sycl::nd_item<1> & it) const {
+ /*
+ Quantizes and reorders the resultant q8 tensor in a per row fashion
+ Each sub-group calculates one quant block. i.e. QK8_1 quant values and the d and sum values
+ */
+ auto subgroup_id = it.get_group(0);
+ auto wi_id = it.get_local_id(0);
+
+ sycl::vec<int8_t, ElementsPerWI> quantized_values;
+ float d = 0.0f;
+ float sum = 0.0f;
+ quantize_q8_1_impl<ElementsPerWI>(x, quantized_values, d, sum, it);
+
+ const int num_blocks_per_row = kx / QK8_1;
+ auto row = subgroup_id / num_blocks_per_row;
+ auto col = subgroup_id % num_blocks_per_row;
+ auto row_offset = row * (kx_padded / QK8_1) * sizeof(block_q8_1);
+ auto col_offset = QK8_1 * col + wi_id * ElementsPerWI;
+
+ auto quant_ptr = (int8_t *) ((char *) reordered_q8_tensor + row_offset + col_offset);
+ *reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(quant_ptr) = quantized_values;
+
+ auto ds_ptr = (sycl::half2 *) ((char *) reordered_q8_tensor + row_offset + kx + col * sizeof(sycl::half2));
+ if (wi_id == 0) {
+ *ds_ptr = sycl::half2(sycl::half(d), sycl::half(sum));
+ }
+ }
+};
+
+template <int ElementsPerWI> struct quantize_q8_1 {
+ __dpct_inline__ void operator()(const float * __restrict__ x, void * q8_tensor, const int kx, const int kx_padded,
+ const sycl::nd_item<1> & it) const {
+ auto subgroup_id = it.get_group(0);
+ auto wi_id = it.get_local_id(0);
+
+ const int num_blocks_per_row = kx / QK8_1;
+ auto row = subgroup_id / num_blocks_per_row;
+ const int pitch = kx_padded / QK8_1;
+
+ sycl::vec<int8_t, ElementsPerWI> quantized_values;
+ float d = 0.0f;
+ float sum = 0.0f;
+ quantize_q8_1_impl<ElementsPerWI>(x, quantized_values, d, sum, it);
+
+ block_q8_1 * quant_ptr = (block_q8_1 *) q8_tensor;
+ auto block_id = subgroup_id % num_blocks_per_row + row * pitch;
+
+ int8_t * qs = &(quant_ptr[block_id].qs[wi_id * ElementsPerWI]);
+ *reinterpret_cast<sycl::vec<int8_t, ElementsPerWI> *>(qs) = quantized_values;
+ if (wi_id == 0) {
+ quant_ptr[block_id].ds = sycl::half2(sycl::half(d), sycl::half(sum));
+ }
+ }
+};
+
+template <template <int> typename quantize_f>
+void quantize_row_q8_1_sycl(const float * x, void * vy, const int kx, const int ky, const int kx_padded,
+ dpct::queue_ptr stream) {
+ static_assert(QK8_1 % WARP_SIZE == 0);
+ auto local_range = std::size_t(WARP_SIZE);
+ auto num_quant_blocks = ky * (kx / QK8_1);
+ auto global_range = num_quant_blocks * local_range;
+ dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
+
+ stream->parallel_for(sycl::nd_range<1>({ global_range }, { local_range }),
+ [=](sycl::nd_item<1> it) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
+ quantize_f<QK8_1 / WARP_SIZE>()(x, vy, kx, kx_padded, it);
+ });
+}