#define SERVER_VERBOSE 1
#endif
+#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
+
using json = nlohmann::json;
struct server_params
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
+json oaicompat_completion_params_parse(const json &body);
+std::string format_chatml(std::vector<json> messages);
+
+
//
// base64 utils (TODO: move to common in the future)
//
bool stopped_word = false;
bool stopped_limit = false;
+ bool oaicompat = false;
+ std::string oaicompat_model;
+
std::string stopping_word;
// sampling
};
}
- void print_timings() {
+ void print_timings() const {
LOG_TEE("\n");
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
{
+ // TODO: currently, we tokenize using special tokens by default
+ // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
+ // but it's better compared to completely ignoring ChatML and other chat templates
+ const bool TMP_FORCE_SPECIAL = true;
+
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
std::vector<llama_token> p;
if (first)
{
- p = ::llama_tokenize(ctx, s, add_bos);
+ p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
}
else
{
- p = ::llama_tokenize(ctx, s, false);
+ p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
else
{
auto s = json_prompt.template get<std::string>();
- prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
+ prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
slot_params default_params;
llama_sampling_params default_sparams;
+ if (data.count("__oaicompat") != 0) {
+ slot->oaicompat = true;
+ slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
+ } else {
+ slot->oaicompat = false;
+ slot->oaicompat_model = "";
+ }
+
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
}
+ if (slot.oaicompat)
+ {
+ res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
+ res.result_json["model"] = slot.oaicompat_model;
+ }
+
queue_results.push_back(res);
}
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
+ if (slot.oaicompat)
+ {
+ res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
+ res.result_json["model"] = slot.oaicompat_model;
+ }
+
queue_results.push_back(res);
}
task_server task;
task.id = id_gen++;
task.target_id = 0;
- task.data = data;
+ task.data = std::move(data);
task.infill_mode = infill;
task.embedding_mode = embedding;
task.type = COMPLETION_TASK;
}
}
+
+static std::string random_string()
+{
+ static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
+
+ std::random_device rd;
+ std::mt19937 generator(rd());
+
+ std::string result(32, ' ');
+
+ for (int i = 0; i < 32; ++i) {
+ result[i] = str[generator() % str.size()];
+ }
+
+ return result;
+}
+
+static std::string gen_chatcmplid()
+{
+ std::stringstream chatcmplid;
+ chatcmplid << "chatcmpl-" << random_string();
+ return chatcmplid.str();
+}
+
+std::string format_chatml(std::vector<json> messages)
+{
+ std::ostringstream chatml_msgs;
+
+ for (auto it = messages.begin(); it != messages.end(); ++it) {
+ chatml_msgs << "<|im_start|>"
+ << json_value(*it, "role", std::string("user")) << '\n';
+ chatml_msgs << json_value(*it, "content", std::string(""))
+ << "<|im_end|>\n";
+ }
+
+ chatml_msgs << "<|im_start|>assistant" << '\n';
+
+ return chatml_msgs.str();
+}
+
+/* llama.cpp completion api semantics */
+json oaicompat_completion_params_parse(
+ const json &body /* openai api json semantics */)
+{
+ json llama_params;
+
+ llama_params["__oaicompat"] = true;
+
+ // Map OpenAI parameters to llama.cpp parameters
+ llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
+ llama_params["temperature"] = json_value(body, "temperature", 0.8);
+ llama_params["top_k"] = json_value(body, "top_k", 40);
+ llama_params["top_p"] = json_value(body, "top_p", 0.95);
+ llama_params["n_predict"] = json_value(body, "max_tokens", -1);
+ llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
+ llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
+ llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
+ llama_params["seed"] = json_value(body, "seed", 0);
+ llama_params["stream"] = json_value(body, "stream", false);
+ llama_params["mirostat"] = json_value(body, "mirostat", false);
+ llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
+ llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
+ llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
+ llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
+ llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
+ llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
+ llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
+
+ if (llama_params.count("grammar") != 0) {
+ llama_params["grammar"] = json_value(body, "grammar", json::object());
+ }
+
+ // Handle 'stop' field
+ if (body["stop"].is_null()) {
+ llama_params["stop"] = json::array({});
+ } else if (body["stop"].is_string()) {
+ llama_params["stop"] = json::array({body["stop"].get<std::string>()});
+ } else {
+ llama_params["stop"] = json_value(body, "stop", json::array());
+ }
+
+ // Ensure there is ChatML-specific end sequence among stop words
+ llama_params["stop"].push_back("<|im_end|>");
+
+ return llama_params;
+}
+
+static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
+{
+ json result = response.result_json;
+
+ bool stopped_word = result.count("stopped_word") != 0;
+ bool stopped_eos = json_value(result, "stopped_eos", false);
+ int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
+ int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
+ std::string content = json_value(result, "content", std::string(""));
+
+ std::string finish_reason = "length";
+ if (stopped_word || stopped_eos) {
+ finish_reason = "stop";
+ }
+
+ json choices =
+ streaming ? json::array({json{{"finish_reason", finish_reason},
+ {"index", 0},
+ {"delta", json::object()}}})
+ : json::array({json{{"finish_reason", finish_reason},
+ {"index", 0},
+ {"message", json{{"content", content},
+ {"role", "assistant"}}}}});
+
+ std::time_t t = std::time(0);
+
+ json res =
+ json{{"choices", choices},
+ {"created", t},
+ {"model",
+ json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
+ {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
+ {"usage",
+ json{{"completion_tokens", num_tokens_predicted},
+ {"prompt_tokens", num_prompt_tokens},
+ {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
+ {"id", gen_chatcmplid()}};
+
+ if (server_verbose) {
+ res["__verbose"] = result;
+ }
+
+ if (result.contains("completion_probabilities")) {
+ res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
+ }
+
+ return res;
+}
+
+// return value is vector as there is one case where we might need to generate two responses
+static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
+ json result = response.result_json;
+
+ if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
+ return std::vector<json>({response.result_json});
+ }
+
+ bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
+ std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
+
+ bool stopped_word = json_value(result, "stopped_word", false);
+ bool stopped_eos = json_value(result, "stopped_eos", false);
+ bool stopped_limit = json_value(result, "stopped_limit", false);
+ std::string content = json_value(result, "content", std::string(""));
+
+ std::string finish_reason;
+ if (stopped_word || stopped_eos) {
+ finish_reason = "stop";
+ }
+ if (stopped_limit) {
+ finish_reason = "length";
+ }
+
+ std::time_t t = std::time(0);
+
+ json choices;
+
+ if (!finish_reason.empty()) {
+ choices = json::array({json{{"finish_reason", finish_reason},
+ {"index", 0},
+ {"delta", json::object()}}});
+ } else {
+ if (first) {
+ if (content.empty()) {
+ choices = json::array({json{{"finish_reason", nullptr},
+ {"index", 0},
+ {"delta", json{{"role", "assistant"}}}}});
+ } else {
+ // We have to send this as two updates to conform to openai behavior
+ json initial_ret = json{{"choices", json::array({json{
+ {"finish_reason", nullptr},
+ {"index", 0},
+ {"delta", json{
+ {"role", "assistant"}
+ }}}})},
+ {"created", t},
+ {"id", gen_chatcmplid()},
+ {"model", modelname},
+ {"object", "chat.completion.chunk"}};
+
+ json second_ret = json{
+ {"choices", json::array({json{{"finish_reason", nullptr},
+ {"index", 0},
+ {"delta", json{
+ {"content", content}}}
+ }})},
+ {"created", t},
+ {"id", gen_chatcmplid()},
+ {"model", modelname},
+ {"object", "chat.completion.chunk"}};
+
+ return std::vector<json>({initial_ret, second_ret});
+ }
+ } else {
+ // Some idiosyncrasy in task processing logic makes several trailing calls
+ // with empty content, we ignore these at the calee site.
+ if (content.empty()) {
+ return std::vector<json>({json::object()});
+ }
+
+ choices = json::array({json{
+ {"finish_reason", nullptr},
+ {"index", 0},
+ {"delta",
+ json{
+ {"content", content},
+ }},
+ }});
+ }
+ }
+
+ json ret = json{{"choices", choices},
+ {"created", t},
+ {"id", gen_chatcmplid()},
+ {"model", modelname},
+ {"object", "chat.completion.chunk"}};
+
+ return std::vector<json>({ret});
+}
+
static json format_partial_response(
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
) {
task_result result = llama.next_result(task_id);
if (!result.error) {
const std::string str =
- "data: " +
- result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
+ "data: " +
+ result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
+ "\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
}
} else {
const std::string str =
- "error: " +
- result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
+ "error: " +
+ result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
+ "\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
}
});
+
+
+ svr.Get("/v1/models", [¶ms](const httplib::Request&, httplib::Response& res)
+ {
+ std::time_t t = std::time(0);
+
+ json models = {
+ {"object", "list"},
+ {"data", {
+ {
+ {"id", params.model_alias},
+ {"object", "model"},
+ {"created", t},
+ {"owned_by", "llamacpp"}
+ },
+ }}
+ };
+
+ res.set_content(models.dump(), "application/json");
+ });
+
+ // TODO: add mount point without "/v1" prefix -- how?
+ svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
+ {
+ json data = oaicompat_completion_params_parse(json::parse(req.body));
+
+ const int task_id = llama.request_completion(data, false, false);
+
+ if (!json_value(data, "stream", false)) {
+ std::string completion_text;
+ task_result result = llama.next_result(task_id);
+
+ if (!result.error && result.stop) {
+ json oaicompat_result = format_final_response_oaicompat(data, result);
+
+ res.set_content(oaicompat_result.dump(-1, ' ', false,
+ json::error_handler_t::replace),
+ "application/json");
+ } else {
+ res.status = 500;
+ res.set_content(result.result_json["content"], "text/plain");
+ return;
+ }
+ } else {
+ const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
+ while (true) {
+ task_result llama_result = llama.next_result(task_id);
+ if (!llama_result.error) {
+ std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
+
+ for (auto it = result_array.begin(); it != result_array.end(); ++it)
+ {
+ if (!it->empty()) {
+ const std::string str =
+ "data: " +
+ it->dump(-1, ' ', false, json::error_handler_t::replace) +
+ "\n\n";
+ LOG_VERBOSE("data stream", {{"to_send", str}});
+ if (!sink.write(str.c_str(), str.size())) {
+ return false;
+ }
+ }
+ }
+ if (llama_result.stop) {
+ break;
+ }
+ } else {
+ const std::string str =
+ "error: " +
+ llama_result.result_json.dump(-1, ' ', false,
+ json::error_handler_t::replace) +
+ "\n\n";
+ LOG_VERBOSE("data stream", {{"to_send", str}});
+ if (!sink.write(str.c_str(), str.size())) {
+ return false;
+ }
+ break;
+ }
+ }
+ sink.done();
+ return true;
+ };
+
+ auto on_complete = [task_id, &llama](bool) {
+ // cancel request
+ llama.request_cancel(task_id);
+ };
+
+ res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
+ }
+ });
+
svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
{
json data = json::parse(req.body);