result->prev.resize(params.n_prev);
+ result->n_considered = 0;
+
llama_sampling_set_rng_seed(result, params.seed);
return result;
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
+ ctx->n_considered = 0;
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
}
}
+ ctx_sampling->n_considered = cur_p.size;
+
return id;
}
`logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`
- `n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token. Default: `0`
+ `n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
- const int32_t n_probs = slot.sparams.n_probs;
- if (slot.sparams.temp <= 0 && n_probs > 0) {
- // for llama_sample_token_greedy we need to sort candidates
- llama_sample_softmax(ctx, &cur_p);
- }
+ const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
+ if (n_probs > 0) {
+ const size_t n_considered = slot.ctx_sampling->n_considered;
- for (size_t i = 0; i < std::min(cur_p.size, (size_t) n_probs); ++i) {
- result.probs.push_back({
- cur_p.data[i].id,
- cur_p.data[i].p
- });
+ // Make sure at least n_probs top tokens are at the front of the vector:
+ if (slot.sparams.temp == 0.0f && n_probs > n_considered) {
+ llama_sample_top_k(ctx, &cur_p, n_probs, 0);
+ }
+
+ if (slot.sparams.temp == 0.0f) {
+ // With greedy sampling the probabilities have possibly not been calculated.
+ for (size_t i = 0; i < n_probs; ++i) {
+ result.probs.push_back({
+ cur_p.data[i].id,
+ i == 0 ? 1.0f : 0.0f
+ });
+ }
+ } else {
+ for (size_t i = 0; i < n_probs; ++i) {
+ result.probs.push_back({
+ cur_p.data[i].id,
+ i >= n_considered ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
+ });
+ }
+ }
}
if (!process_token(result, slot)) {