return [(self.map_tensor_name(name), data_torch)]
+@ModelBase.register("Lfm2MoeForCausalLM")
+class LFM2MoeModel(TextModel):
+ model_arch = gguf.MODEL_ARCH.LFM2MOE
+
+ def set_gguf_parameters(self):
+ # set num_key_value_heads only for attention layers
+ self.hparams["num_key_value_heads"] = [
+ self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
+ for layer_type in self.hparams["layer_types"]
+ ]
+
+ super().set_gguf_parameters()
+
+ self.gguf_writer.add_expert_count(self.hparams["num_experts"])
+ self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
+ self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
+ self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+
+ self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
+ self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
+
+ # cache for experts weights for merging
+ _experts_cache: dict[int, dict[str, Tensor]] = {}
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ # conv op requires 2d tensor
+ if 'conv.conv' in name:
+ data_torch = data_torch.squeeze(1)
+
+ if name.endswith(".expert_bias"):
+ name = name.replace(".expert_bias", ".expert_bias.bias")
+
+ # merge expert weights
+ if 'experts' in name:
+ n_experts = self.hparams["num_experts"]
+ assert bid is not None
+
+ expert_cache = self._experts_cache.setdefault(bid, {})
+ expert_cache[name] = data_torch
+ expert_weights = ["w1", "w2", "w3"]
+
+ # not enough expert weights to merge
+ if len(expert_cache) < n_experts * len(expert_weights):
+ return []
+
+ tensors: list[tuple[str, Tensor]] = []
+ for w_name in expert_weights:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
+ datas.append(expert_cache[ename])
+ del expert_cache[ename]
+
+ data_torch = torch.stack(datas, dim=0)
+ merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
+ new_name = self.map_tensor_name(merged_name)
+ tensors.append((new_name, data_torch))
+
+ del self._experts_cache[bid]
+ return tensors
+
+ return [(self.map_tensor_name(name), data_torch)]
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+ assert not self._experts_cache
+
+
@ModelBase.register("Lfm2VlForConditionalGeneration")
class LFM2VLModel(MmprojModel):
def __init__(self, *args, **kwargs):
{ LLM_ARCH_SMOLLM3, "smollm3" },
{ LLM_ARCH_OPENAI_MOE, "gpt-oss" },
{ LLM_ARCH_LFM2, "lfm2" },
+ { LLM_ARCH_LFM2MOE, "lfm2moe" },
{ LLM_ARCH_DREAM, "dream" },
{ LLM_ARCH_SMALLTHINKER, "smallthinker" },
{ LLM_ARCH_LLADA, "llada" },
{ LLM_TENSOR_OUTPUT, "output" },
}
},
+ {
+ LLM_ARCH_LFM2MOE,
+ {
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_SHORTCONV_CONV, "blk.%d.shortconv.conv" },
+ { LLM_TENSOR_SHORTCONV_INPROJ, "blk.%d.shortconv.in_proj" },
+ { LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
+ }
+ },
{
LLM_ARCH_SMALLTHINKER,
{
case LLM_ARCH_PLAMO2:
case LLM_ARCH_GRANITE_HYBRID:
case LLM_ARCH_LFM2:
+ case LLM_ARCH_LFM2MOE:
case LLM_ARCH_NEMOTRON_H:
return true;
default:
case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
case LLM_TYPE_A13B: return "A13B";
+ case LLM_TYPE_8B_A1B: return "8B.A1B";
case LLM_TYPE_21B_A3B: return "21B.A3B";
case LLM_TYPE_30B_A3B: return "30B.A3B";
case LLM_TYPE_106B_A12B: return "106B.A12B";
for (uint32_t il = 0; il < hparams.n_layer; ++il) {
hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
}
+ hparams.n_layer_dense_lead = hparams.n_layer;
switch (hparams.n_ff()) {
case 4608: type = LLM_TYPE_350M; break;
case 6912: type = LLM_TYPE_700M; break;
case 8192: type = LLM_TYPE_1_2B; break;
case 10752: type = LLM_TYPE_2_6B; break;
- default: type = LLM_TYPE_UNKNOWN;
+ default: type = LLM_TYPE_UNKNOWN;
}
} break;
+ case LLM_ARCH_LFM2MOE:
+ {
+ ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
+ ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
+
+ for (uint32_t il = 0; il < hparams.n_layer; ++il) {
+ hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
+ }
+
+ type = LLM_TYPE_8B_A1B;
+ } break;
case LLM_ARCH_SMALLTHINKER:
{
const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
}
} break;
case LLM_ARCH_LFM2:
+ case LLM_ARCH_LFM2MOE:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
- // ffn is same for transformer and conv layers
+
+ const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
+
+ // ffn/moe is same for transformer and conv layers
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ if (is_moe_layer) {
+ GGML_ASSERT(n_expert && n_expert_used);
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+ layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp, n_embd, n_expert}, 0);
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
+ } else { // dense
+ layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
+ }
// for operator_norm
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
}
- if (arch == LLM_ARCH_SMALLTHINKER) {
+ if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
+ const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
+
auto * prev_cur = cur;
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "model.layers.{}.operator_norm", il);
}
cur = ggml_add(ctx0, prev_cur, cur);
- cur = ggml_add(ctx0, cur, build_feed_forward(cur, il));
+
+ auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
+ cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
+
+ ggml_tensor * ffn_out = is_moe_layer ?
+ build_moe_feed_forward(ffn_norm_out, il) :
+ build_dense_feed_forward(ffn_norm_out, il);
+ cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_out);
}
cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
ggml_build_forward_expand(gf, cur);
}
- ggml_tensor * build_feed_forward(ggml_tensor * cur,
- int il) const {
- cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
- cb(cur, "model.layers.{}.ffn_norm", il);
+ ggml_tensor * build_moe_feed_forward(ggml_tensor * cur,
+ int il) const {
+ return build_moe_ffn(cur,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ model.layers[il].ffn_gate_exps,
+ model.layers[il].ffn_down_exps,
+ model.layers[il].ffn_exp_probs_b,
+ n_expert, n_expert_used,
+ LLM_FFN_SILU, true,
+ false, 0.0,
+ static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
+ il);
+ }
+ ggml_tensor * build_dense_feed_forward(ggml_tensor * cur,
+ int il) const {
GGML_ASSERT(!model.layers[il].ffn_up_b);
GGML_ASSERT(!model.layers[il].ffn_gate_b);
GGML_ASSERT(!model.layers[il].ffn_down_b);
- cur = build_ffn(cur,
+ return build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
- cb(cur, "model.layers.{}.feed_forward.w2", il);
-
- return cur;
}
ggml_tensor * build_attn_block(ggml_tensor * cur,
llm = std::make_unique<llm_build_falcon_h1>(*this, params);
} break;
case LLM_ARCH_LFM2:
+ case LLM_ARCH_LFM2MOE:
{
llm = std::make_unique<llm_build_lfm2>(*this, params);
} break;
case LLM_ARCH_OPENAI_MOE:
case LLM_ARCH_HUNYUAN_DENSE:
case LLM_ARCH_LFM2:
+ case LLM_ARCH_LFM2MOE:
case LLM_ARCH_SMALLTHINKER:
case LLM_ARCH_GLM4_MOE:
case LLM_ARCH_SEED_OSS: