]> git.djapps.eu Git - pkg/ggml/sources/llama.cpp/commitdiff
llama : support LiquidAI LFM2-MoE hybrid model (#16464)
authorTarek Dakhran <redacted>
Tue, 7 Oct 2025 18:03:35 +0000 (20:03 +0200)
committerGitHub <redacted>
Tue, 7 Oct 2025 18:03:35 +0000 (20:03 +0200)
* llama : support LiquidAI LFM2-MoE hybrid model

Add support for [LiquidAI/LFM2-8B-A1B](https://huggingface.co/LiquidAI/LFM2-8B-A1B) model.
For more information about models, please read [the blog post](https://www.liquid.ai/company/news).

[HF PR](https://github.com/huggingface/transformers/pull/41401)
[GGUFs](https://huggingface.co/LiquidAI/LFM2-8B-A1B-GGUF)

* Do not use defaultdict

* Address PR feedback

convert_hf_to_gguf.py
gguf-py/gguf/constants.py
gguf-py/gguf/tensor_mapping.py
src/llama-arch.cpp
src/llama-arch.h
src/llama-model.cpp
src/llama-model.h

index 942888015d86972ee3d3ea81b065eceed3b92c61..a59ebfc0da7766ac5a6ce3ceb6a80d5b762fc6b8 100755 (executable)
@@ -8836,6 +8836,75 @@ class LFM2Model(TextModel):
         return [(self.map_tensor_name(name), data_torch)]
 
 
+@ModelBase.register("Lfm2MoeForCausalLM")
+class LFM2MoeModel(TextModel):
+    model_arch = gguf.MODEL_ARCH.LFM2MOE
+
+    def set_gguf_parameters(self):
+        # set num_key_value_heads only for attention layers
+        self.hparams["num_key_value_heads"] = [
+            self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
+            for layer_type in self.hparams["layer_types"]
+        ]
+
+        super().set_gguf_parameters()
+
+        self.gguf_writer.add_expert_count(self.hparams["num_experts"])
+        self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
+        self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
+        self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
+
+        self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
+        self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
+
+    # cache for experts weights for merging
+    _experts_cache: dict[int, dict[str, Tensor]] = {}
+
+    def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+        # conv op requires 2d tensor
+        if 'conv.conv' in name:
+            data_torch = data_torch.squeeze(1)
+
+        if name.endswith(".expert_bias"):
+            name = name.replace(".expert_bias", ".expert_bias.bias")
+
+        # merge expert weights
+        if 'experts' in name:
+            n_experts = self.hparams["num_experts"]
+            assert bid is not None
+
+            expert_cache = self._experts_cache.setdefault(bid, {})
+            expert_cache[name] = data_torch
+            expert_weights = ["w1", "w2", "w3"]
+
+            # not enough expert weights to merge
+            if len(expert_cache) < n_experts * len(expert_weights):
+                return []
+
+            tensors: list[tuple[str, Tensor]] = []
+            for w_name in expert_weights:
+                datas: list[Tensor] = []
+
+                for xid in range(n_experts):
+                    ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
+                    datas.append(expert_cache[ename])
+                    del expert_cache[ename]
+
+                data_torch = torch.stack(datas, dim=0)
+                merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
+                new_name = self.map_tensor_name(merged_name)
+                tensors.append((new_name, data_torch))
+
+            del self._experts_cache[bid]
+            return tensors
+
+        return [(self.map_tensor_name(name), data_torch)]
+
+    def prepare_tensors(self):
+        super().prepare_tensors()
+        assert not self._experts_cache
+
+
 @ModelBase.register("Lfm2VlForConditionalGeneration")
 class LFM2VLModel(MmprojModel):
     def __init__(self, *args, **kwargs):
index ec520288506280c06400643e4592b43a892379b8..9c99b90faace83d6dc65522563ee112ed96fb99d 100644 (file)
@@ -407,6 +407,7 @@ class MODEL_ARCH(IntEnum):
     SMOLLM3          = auto()
     GPT_OSS          = auto()
     LFM2             = auto()
+    LFM2MOE          = auto()
     DREAM            = auto()
     SMALLTHINKER     = auto()
     LLADA            = auto()
@@ -749,6 +750,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.SMOLLM3:          "smollm3",
     MODEL_ARCH.GPT_OSS:          "gpt-oss",
     MODEL_ARCH.LFM2:             "lfm2",
+    MODEL_ARCH.LFM2MOE:          "lfm2moe",
     MODEL_ARCH.DREAM:            "dream",
     MODEL_ARCH.SMALLTHINKER:     "smallthinker",
     MODEL_ARCH.LLADA:            "llada",
@@ -2698,6 +2700,29 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.ATTN_OUT,
         MODEL_TENSOR.OUTPUT,
     ],
+    MODEL_ARCH.LFM2MOE: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.TOKEN_EMBD_NORM,
+        MODEL_TENSOR.SHORTCONV_CONV,
+        MODEL_TENSOR.SHORTCONV_INPROJ,
+        MODEL_TENSOR.SHORTCONV_OUTPROJ,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.ATTN_NORM, # operator_norm
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+        MODEL_TENSOR.FFN_EXP_PROBS_B,
+    ],
     MODEL_ARCH.SMALLTHINKER: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
index 67b27413405f17d503bae58badc2c388bd3a20e4..3e9a2dd8f8cc912e2dffc4ae00bba25d3fd15d24 100644 (file)
@@ -358,6 +358,7 @@ class TensorNameMap:
             "model.layers.{bid}.mlp.router",                    # openai-moe
             "model.layers.{bid}.mlp.gate.wg",                   # hunyuan
             "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
+            "model.layers.{bid}.feed_forward.gate",               # lfm2moe
         ),
 
         MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@@ -367,6 +368,7 @@ class TensorNameMap:
         MODEL_TENSOR.FFN_EXP_PROBS_B: (
             "model.layers.{bid}.mlp.gate.e_score_correction",               # deepseek-v3 dots1
             "model.layers.{bid}.mlp.moe_statics.e_score_correction",        # ernie4.5-moe
+            "model.layers.{bid}.feed_forward.expert_bias",                  # lfm2moe
         ),
 
         # Feed-forward up
index 4fd083aa048431debfecfe3bad64ca2d6d617ae3..45f0d0e2cbbd4a763b469d52dfc65e352fc255ce 100644 (file)
@@ -93,6 +93,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_SMOLLM3,          "smollm3"          },
     { LLM_ARCH_OPENAI_MOE,       "gpt-oss"          },
     { LLM_ARCH_LFM2,             "lfm2"             },
+    { LLM_ARCH_LFM2MOE,          "lfm2moe"          },
     { LLM_ARCH_DREAM,            "dream"            },
     { LLM_ARCH_SMALLTHINKER,     "smallthinker"     },
     { LLM_ARCH_LLADA,            "llada"            },
@@ -2104,6 +2105,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_OUTPUT,            "output" },
         }
     },
+    {
+        LLM_ARCH_LFM2MOE,
+        {
+            { LLM_TENSOR_ATTN_NORM,         "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,            "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,            "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,            "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,          "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_K_NORM,       "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_Q_NORM,       "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_FFN_DOWN,          "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_GATE,          "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_NORM,          "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_UP,            "blk.%d.ffn_up" },
+            { LLM_TENSOR_SHORTCONV_CONV,    "blk.%d.shortconv.conv" },
+            { LLM_TENSOR_SHORTCONV_INPROJ,  "blk.%d.shortconv.in_proj" },
+            { LLM_TENSOR_SHORTCONV_OUTPROJ, "blk.%d.shortconv.out_proj" },
+            { LLM_TENSOR_TOKEN_EMBD,        "token_embd" },
+            { LLM_TENSOR_TOKEN_EMBD_NORM,   "token_embd_norm" },
+            { LLM_TENSOR_FFN_GATE_INP,      "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE_EXPS,     "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,     "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,       "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_FFN_EXP_PROBS_B,   "blk.%d.exp_probs_b" },
+        }
+    },
     {
         LLM_ARCH_SMALLTHINKER,
         {
@@ -2493,6 +2520,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
         case LLM_ARCH_PLAMO2:
         case LLM_ARCH_GRANITE_HYBRID:
         case LLM_ARCH_LFM2:
+        case LLM_ARCH_LFM2MOE:
         case LLM_ARCH_NEMOTRON_H:
             return true;
         default:
index bc4b04bb4e015d0f791d81f2043fd7f55b80b0f7..507fe5f3793e0b62666997b2f35e478767f26ad5 100644 (file)
@@ -97,6 +97,7 @@ enum llm_arch {
     LLM_ARCH_SMOLLM3,
     LLM_ARCH_OPENAI_MOE,
     LLM_ARCH_LFM2,
+    LLM_ARCH_LFM2MOE,
     LLM_ARCH_DREAM,
     LLM_ARCH_SMALLTHINKER,
     LLM_ARCH_LLADA,
index ba4e9bf3f4f5c131d63ccc7977de1e8f2afc1f1c..03c2f49d7826766aee44c431979b0834da4141a7 100644 (file)
@@ -114,6 +114,7 @@ const char * llm_type_name(llm_type type) {
         case LLM_TYPE_17B_16E:       return "17Bx16E (Scout)";
         case LLM_TYPE_17B_128E:      return "17Bx128E (Maverick)";
         case LLM_TYPE_A13B:          return "A13B";
+        case LLM_TYPE_8B_A1B:        return "8B.A1B";
         case LLM_TYPE_21B_A3B:       return "21B.A3B";
         case LLM_TYPE_30B_A3B:       return "30B.A3B";
         case LLM_TYPE_106B_A12B:     return "106B.A12B";
@@ -1995,14 +1996,29 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                 for (uint32_t il = 0; il < hparams.n_layer; ++il) {
                     hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
                 }
+                hparams.n_layer_dense_lead = hparams.n_layer;
                 switch (hparams.n_ff()) {
                     case  4608: type = LLM_TYPE_350M; break;
                     case  6912: type = LLM_TYPE_700M; break;
                     case  8192: type = LLM_TYPE_1_2B; break;
                     case 10752: type = LLM_TYPE_2_6B; break;
-                    default:   type = LLM_TYPE_UNKNOWN;
+                    default:    type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_LFM2MOE:
+            {
+                ml.get_key(LLM_KV_SHORTCONV_L_CACHE,           hparams.n_shortconv_l_cache);
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT,   hparams.n_layer_dense_lead);
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,  hparams.n_ff_exp);
+                ml.get_key(LLM_KV_EXPERT_GATING_FUNC,          hparams.expert_gating_func);
+
+                for (uint32_t il = 0; il < hparams.n_layer; ++il) {
+                    hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
+                }
+
+                type = LLM_TYPE_8B_A1B;
+            } break;
         case LLM_ARCH_SMALLTHINKER:
             {
                 const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
@@ -5814,6 +5830,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                     }
                 } break;
             case LLM_ARCH_LFM2:
+            case LLM_ARCH_LFM2MOE:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD,      "weight"), {n_embd, n_vocab}, 0);
                     tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
@@ -5825,11 +5842,23 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
 
                     for (int i = 0; i < n_layer; ++i) {
                         auto & layer = layers[i];
-                        // ffn is same for transformer and conv layers
+
+                        const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
+
+                        // ffn/moe is same for transformer and conv layers
                         layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
-                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
-                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
-                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                        if (is_moe_layer) {
+                            GGML_ASSERT(n_expert && n_expert_used);
+                            layer.ffn_gate_inp    = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i),  {n_embd, n_expert}, 0);
+                            layer.ffn_gate_exps   = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
+                            layer.ffn_down_exps   = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp,   n_embd, n_expert}, 0);
+                            layer.ffn_up_exps     = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i),   {n_embd, hparams.n_ff_exp, n_expert}, 0);
+                            layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
+                        } else {  // dense
+                            layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
+                            layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                            layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                        }
 
                         // for operator_norm
                         layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
@@ -6310,7 +6339,7 @@ void llama_model::print_info() const {
         LLAMA_LOG_INFO("%s: expert_weights_norm  = %d\n",     __func__, hparams.expert_weights_norm);
     }
 
-    if (arch == LLM_ARCH_SMALLTHINKER) {
+    if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
         LLAMA_LOG_INFO("%s: n_ff_exp             = %d\n",     __func__, hparams.n_ff_exp);
         LLAMA_LOG_INFO("%s: expert_gating_func   = %s\n",     __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
     }
@@ -18602,6 +18631,8 @@ struct llm_build_lfm2 : public llm_graph_context {
         ggml_tensor * inp_out_ids = build_inp_out_ids();
 
         for (int il = 0; il < n_layer; ++il) {
+            const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
+
             auto * prev_cur = cur;
             cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
             cb(cur, "model.layers.{}.operator_norm", il);
@@ -18616,7 +18647,16 @@ struct llm_build_lfm2 : public llm_graph_context {
             }
 
             cur = ggml_add(ctx0, prev_cur, cur);
-            cur = ggml_add(ctx0, cur, build_feed_forward(cur, il));
+
+            auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
+            cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
+
+            ggml_tensor * ffn_out = is_moe_layer ?
+                build_moe_feed_forward(ffn_norm_out, il) :
+                build_dense_feed_forward(ffn_norm_out, il);
+            cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_out);
         }
 
         cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
@@ -18631,23 +18671,32 @@ struct llm_build_lfm2 : public llm_graph_context {
         ggml_build_forward_expand(gf, cur);
     }
 
-    ggml_tensor * build_feed_forward(ggml_tensor * cur,
-                                     int           il) const {
-        cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
-        cb(cur, "model.layers.{}.ffn_norm", il);
+    ggml_tensor * build_moe_feed_forward(ggml_tensor * cur,
+                                         int           il) const {
+        return build_moe_ffn(cur,
+                    model.layers[il].ffn_gate_inp,
+                    model.layers[il].ffn_up_exps,
+                    model.layers[il].ffn_gate_exps,
+                    model.layers[il].ffn_down_exps,
+                    model.layers[il].ffn_exp_probs_b,
+                    n_expert, n_expert_used,
+                    LLM_FFN_SILU, true,
+                    false, 0.0,
+                    static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
+                    il);
+    }
 
+    ggml_tensor * build_dense_feed_forward(ggml_tensor * cur,
+                                           int           il) const {
         GGML_ASSERT(!model.layers[il].ffn_up_b);
         GGML_ASSERT(!model.layers[il].ffn_gate_b);
         GGML_ASSERT(!model.layers[il].ffn_down_b);
-        cur = build_ffn(cur,
+        return build_ffn(cur,
                 model.layers[il].ffn_up,   NULL, NULL,
                 model.layers[il].ffn_gate, NULL, NULL,
                 model.layers[il].ffn_down, NULL, NULL,
                 NULL,
                 LLM_FFN_SILU, LLM_FFN_PAR, il);
-        cb(cur, "model.layers.{}.feed_forward.w2", il);
-
-        return cur;
     }
 
     ggml_tensor * build_attn_block(ggml_tensor             * cur,
@@ -19817,6 +19866,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
                 llm = std::make_unique<llm_build_falcon_h1>(*this, params);
             } break;
         case LLM_ARCH_LFM2:
+        case LLM_ARCH_LFM2MOE:
             {
                 llm = std::make_unique<llm_build_lfm2>(*this, params);
             } break;
@@ -20039,6 +20089,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_OPENAI_MOE:
         case LLM_ARCH_HUNYUAN_DENSE:
         case LLM_ARCH_LFM2:
+        case LLM_ARCH_LFM2MOE:
         case LLM_ARCH_SMALLTHINKER:
         case LLM_ARCH_GLM4_MOE:
         case LLM_ARCH_SEED_OSS:
index eec564e70b69e038914275d6aeb64b09b4d8515d..20b59d952bf909e433c979e8d6df508af8a3aca4 100644 (file)
@@ -107,6 +107,7 @@ enum llm_type {
     LLM_TYPE_17B_16E, // llama4 Scout
     LLM_TYPE_17B_128E, // llama4 Maverick
     LLM_TYPE_A13B,
+    LLM_TYPE_8B_A1B, // lfm2moe
     LLM_TYPE_21B_A3B, // Ernie MoE small
     LLM_TYPE_30B_A3B,
     LLM_TYPE_106B_A12B, // GLM-4.5-Air